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Metropolis Algorithm and Beyond

We have discussed in the previous chapters the important role of Monte
Carlo methods in evaluating integrals and simulating stochastic systems.
The most critical step in developing an efficient Monte Carlo algorithm
is the simulation (sampling) from an appropriate probability distribution
m(x). When directly generating independent samples from 7 (x) is not pos-
sible, we have to either opt for an importance sampling strategy, in which
random samples are generated from a trial distribution different from (but
close to) the target one and then weighted according to the importance ra-
tio; or produce statistically dependent samples based on the idea of Markov
chain Monte Carlo sampling. The importance sampling approach and its
extensions have been discussed in Chapters 2—4. In this chapter, we intro-
duce the cornerstone of all Markov chain-based Monte Carlo methods: the
algorithm proposed in a very short paper (four pages) by Nicholas Metropo-
lis, Arianna Rosenbluth, Marshall Rosenbluth, Augusta Teller, and Edward
Teller in 1953.

Let m(x) = Z ' exp{—h(x)} be the target distribution under investiga-
tion (presumably all probability distribution functions can be written in
this form), where the normalizing constant, or the partition function, Z,
is often unknown to us. In principle, Z = [ exp{—h(x)}dx is “knowable,”
but evaluating Z is no easier (and often harder) than the original problem
of simulating from 7. Motivated by computational problems in statistical
physics, Metropolis et al. (1953) introduced the fundamental idea of evolv-
ing a Markov process to achieve the sampling of 7. This idea, later known
as the Metropolis algorithm, is of great simplicity and power — its varia-
tions and extensions have now been widely adopted by researchers in many
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different scientific fields, including biology, chemistry, computer sciences,
economics, engineering, material sciences, physics, statistics, and others.
The Metropolis algorithm can be used to generate random samples from
virtually any target distribution 7(x) known up to a normalizing constant,
regardless of its analytical complexity and its dimensionality. Although
this claim is true in theory, a potential problem with these Markov-chain-
based Monte Carlo methods is that the resulting samples are often highly
correlated. Therefore, the estimates resulting from these samples tend to
have greater (often much greater) variances than those resulting from in-
dependent samples. Various attempts have been made in many different
fields (e.g., physics, chemistry, structural biology, and statistics) to over-
come these limitations. Interesting research topics include the design of
Markov-chain-based Monte Carlo algorithms that can generate less corre-
lated samples, the finding of more efficient ways to use generated Monte
Carlo samples, the assessment of statistical errors of the estimates, etc. De-
tailed discussions regarding these topics will be given in the later chapters.

5.1 The Metropolis Algorithm

The basic idea of the Metropolis algorithm is to simulate a Markov chain
in the state space of x so that the limiting/stationary/equilibrium® distri-
bution of this chain is the target distribution 7. Note that in traditional
Markov chain analysis, one is often given a transition rule? and is inter-
ested in knowing what the stationary distribution is (see Section 12.1 for
an introduction to Markov chains), whereas in Markov chain Monte Carlo
simulations, one knows the equilibrium distribution and is interested in
prescribing an efficient transition rule so as to reach this equilibrium.

Starting with any configuration x(%), the Metropolis algorithm proceeds
by iterating the following two steps.

M1: Propose a random “unbiased perturbation” of the current state x® so
as to generate a new configuration x’. Mathematically, x’ can be seen
as being generated from a symmetric probability transition function®
(often called the proposal function or trial proposal) T(x®,x') [i.e.,
T(x,x') = T(x',x)]; calculate the change Ah = h(x') — h(x®).

IThere are subtle differences among these three concepts: limiting, stationary, or
equilibrium distributions. But for most practical examples, they are the same thing. See
the Appendix and Karlin and Taylor (1998) for more details.

2A transition rule is a probabilistic law, or more precisely, a conditional distribution,
that dictates the chances of moving from one point in the state space to another.

3A function T'(x,y) is called a probability transition function if it is non-negative
and satisfies 3° ), T(x,y) =1, for all x.
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M2: Generate a random number U ~ Uniform[0,1]. Let x(**+1) = x' if
U < 7n(x')/m(x®) = exp(—Ah),
and let x(**1) = x(® otherwise.

A more casual but perhaps better known description of the Metropolis
algorithm is as follows: At each iteration, (a) a small but random pertur-
bation of the current configuration is made, (b) the “gain” in an objective
function [i.e., —h(x)] resulting from this perturbation is computed, (c) a
random number U is generated independently, and (d) the new configu-
ration is accepted if log(U) is smaller than or equal to the “gain” and is
rejected otherwise. Heuristically, the Metropolis algorithm is constructed
based on a “trial-and-error” strategy.

Metropolis et al. (1953) restricted their choices of the “perturbation rule”
to the symmetric ones. According to this perturbation rule, the chance
of obtaining x’ from perturbing x is always equal to that of obtaining x
from perturbing x'. Intuitively, this means that there is no “trend bias”
at the proposal stage. Mathematically, this symmetry requirement can be
expressed as

T(x,x') =T(x',x).

The Metropolis scheme has been extensively used in statistical physics over
the past five decades and is the cornerstone of all Markov chain Monte
Carlo (MCMC) techniques recently adopted and further developed in the
statistics community.

As an illustration, we consider the simulation of a simple hard-shell ball
model for gas. In this model, the positions of K nonoverlapping hard-
shell balls, with equal diameters, are required to be uniformly distributed
in the box [0, 4] x [0, B]. Let (X,Y) = {(zi,¥:), ¢ =1,..., K} denote the
positions of these balls. The target distribution of interest, 7(X,Y), is then
uniform for all allowable configurations (i.e., nonoverlapping and within the
box). The Metropolis algorithm for this simulation can be implemented as
follows: (a) Pick a ball at random, say, the ball at position (z;,y;); (b)
propose to move this ball to a new position (z},y}) = (2; + 01,¥; + 02),
where §; ~ N(0,03); and (c) accept the proposed position (z},}) if it does
not violate the constraints, otherwise stay put. With K =6,d = 0.8, A =
B = 3.5, and starting positions of the balls at regular grids, we adjusted o3
to 0.5, which gave us an acceptance rate of about 30%. Figure 5.1 shows two
snapshots of this simulation: The first one was taken after 1000 iterations,
and the second one taken after 2000 iterations.

Another example is the simulation of the Ising model. As described in
Section 1.3, the Ising model takes a probabilistic form

m(x) < exp{-U(x)/ 6T},

where x = (25, s € £) and z, = £1, L is a lattice space; and U(x) =
—JY s O2,=z,, - To simulate from this model, one needs to prescribe a
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FIGURE 5.1. The simulation of a hard-shell ball model by the Metropolis algo-
rithm. Left: after 1000 iterations; right: after 2000 iterations.

way to “perturb” the current configuration. A convenient proposal transi-
tion function is as follows: Pick a site, say, o, at random, and negate its
current value z, to —z,. Thus, the proposed new configuration x’ differs
from the initial one x only by a single site.

To be more concrete, consider the simulation of a one-dimensional Ising
model in which x = (21,...,24) and U(x) = —J Zg;ll ZTsZsy1. By letting
J = puBT, we write the target distribution as

d—1
1
m(x) = 7 &P {p2x5$5+1} . (5.1)
s=1
Suppose the current configuration is x(* = (xgt), .. ,xgt)); then the next

state x(*+1) is produced by the Metropolis rule as follows:

e Choose a site, say, the jth site at random and set its current spin
xg-t) to the opposite. Thus, the newly proposed configuration is x' =

(xgt), e —wg-t), e ,a:((it)).

e Compute the Metropolis ratio. In this case, it is easy to check that the
random flipping process is completely symmetric; hence, T'(x®,x') =
T(x',x®), and, when j # 1 or d,

r=nx")/rx®) = exp {—2uw§t) (ng;)l + :135'21)} .

e Simulate an independent uniform random variable U. Let x(*+1) = x/
if U < r and let x(tt1) = x®) otherwise.

Since this distribution has many components, it is difficult to have an over-
all sense of how the chain moves in the space. In Figure 5.2(a), we plot the
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traces of the total magnetization, defined as M(®) = E?:l xgt), for the first
2000 steps of a simulation. In this example, we took p = 1, d = 50, and

the “all-up” starting configuration [i.e., x(®) = (1,...,1)].

(a) First 2000 steps (b) A total of 50000 iterations

o 500 1000 1500 2000 o 10000 20000 30000 40000 50000
Iteration Iteration

FIGURE 5.2. Simulation of the 1-D Ising model. The trace plots of (a) the first
2000 steps and (b) the total of 50,000 steps.

For this example, we can, in fact, compute the normalizing constant Z
analytically and conduct an ezact simulation (Section 2.4). Note that

d—1
Z g(x) = (e!™* + e H"2)exp {,u Z :cia:i+1}
T1 =2
d—1
(e™ +e*) exp {p Z $i$i+1} )

=2

We can recursively sum out x,x3, etc., and obtain that

Y s0-3 l...z{;g(x)}...] YRS

L1yeeesd Trd r2

for d > 2. Thus, the marginal distribution of z4 is z4 = 1 or —1 with equal
probability (which is actually obvious without doing any computation).
Conditional on x4, the distribution of x4_1 is

Pr(zg_1 = zq) = e*/(e" +e7#),

and Pr(zg_1 = —z4) = e */(e* + e *). Thus, we can recursively simulate
x backward (Section 2.4).

We implemented both the exact simulation method and the Metropolis
algorithm for the 1-D Ising model (5.1) with g = 1 and pu = 2, respectively.
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Figures 5.3(a) and 5.3(c) show the histograms of the total magnetization
variable M from 20,000 exact samples, for model (5.1) with g = 1 and
u = 2, respectively. Figures 5.3 (b) and 5.3(d) show the corresponding
histograms from 20,000 Monte Carlo samples generated from 1,000,000

Metropolis sampling steps. The chosen samples were 1 in every 50 lags
[i.e., x(30) x(100) " x(50k) "],
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FIGURE 5.3. Histograms of the total magnetization M. (a) and (c): using 20,000
exact samples from the 1-D Ising models with g = 1 and p = 2; (b) and (d):
using 20,000 samples chosen from 1 million Metropolis steps for each model.

From these simple graphs, we can make several interesting observations:
(i) The computational effort for each Metropolis step is roughly 1/50th
of that of exact simulation, so 1 million Metropolis steps took roughly the
same CPU time as the production of 20,000 exact samples; (ii) when p =1,
the samples produced by the Metropolis algorithm were almost as good as
those produced by independent sampling (at least to our eyes); (iii) when
p = 2, the independent sampling showed an obvious advantage. These
observations, in fact, reflect some important features of and deeper issues
about the Metropolis algorithm: Each step of the Metropolis algorithm is
usually very simple, but the Monte Carlo samples produced by a Metropolis
sampler may become very “sticky”(e.g., getting stuck in local modes) in
distributions with “low temperature” (i.e., high-energy barrier). In fact,
the “stickiness” is already observable when g = 1 from Figure 5.2 (a):
If one starts from an “all-up” configuration, it took about 1000 steps to
get to the “ball park” of the interesting region and it took about 2000
steps to complete an “up-down” cycle. Quantitative measurement of this
“stickiness” is often expressed as autocorrelations. A lag-k autocorrelation
for a time series M), M) is defined as

pi. = corr(M®), MU+D),
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under their stationary distribution. Higher autocorrelations imply that the
produced samples are stickier. Figure 5.4 shows the autocorrelation plots
(i-e., a plot for py versus k) for those Monte Carlo samples in Figures 5.3(b)
and 5.3(d), respectively.

100 2000 o soo 1000 1500 2000

Lag

.

FIGURE 5.4. Autocorrelation plots of the time series M ™ produced by the
Metropolis sampler for the 1-D Ising model with (a) p =1 and (b) p =2.

One observes that the 2000-lag autocorrelation of the M (") series pro-
duced by the Metropolis sampler for p = 2 is still as high as about 0.9, im-
plying that roughly one independent sample is as good as 20,000 Metropolis
steps. More discussions on efficiency analysis of Markov chain Monte Carlo
methods are discussed in Section 5.8 and Chapter 12.

5.2 Mathematical Formulation and Hastings’s
Generalization

The Metropolis algorithm prescribes a transition rule for a Markov chain.
It uses a symmetric proposal function T'(x,y) to suggest a possible move
and then employs an acceptance-rejection rule to “thin it down.” Hastings
(1970) later extended the algorithm to the case when T is not necessarily
symmetric. In Hastings’ generalization, the only serious restriction on the
proposal function is that T'(x,y) > 0 if and only if T'(y,x) > 0. With this
transition function, one can implement the following iteration:

Metropolis-Hastings Algorithm. Given current state x(®:
e Draw y from the proposal distribution T'(x(®), y).

e Draw U ~ Uniform[0,1] and update

i (t)
(t+1) — Y, if U< T(X Jy)
X { x®  otherwise. (5.2)
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where Metropolis et al. (1953) and Hastings (1970) suggested using
()T (y,x) }
m(x)T(%,y)

Clearly, this algorithm is identical to the original Metropolis algo-
rithm when T'(x,y) = T(y, X).

r(X,y) = min {1,

Barker (1965) suggested another acceptance function:
()T (y,x)
()T (y,%) + 7(x)T(x,y)

A more general formula for r(x,y) is given by Charles Stein (personal
communication):

B (X7 Y) =

§(x,y)
m(x)T(x,y)’
where 4(x,y) is any symmetric function in x and y that makes r(x,y) <
1 for all x,y. The intuition behind the ratio T(y,x)/T(x,y) is that it
compensates the “flow bias” of the proposal function.

If a rejection function of the form (5.3) is used, then for any y # x, the
actual transition probability from x to y is

i(x,y)
m(x)T'(x,y)

Because 6(x,y) = 6(y,x), we have that 7(x)A(x,y) = 7(y)A(y,x). This
implies that the Markov chain induced by the Metropolis-Hastings rule is
reversible and has 7 as its invariant distribution (the next section).

For discrete state spaces, Peskun (1973) showed that the optimal choice
of r(x,y) in terms of statistical efficiency is the one in the original Metropo-
lis algorithm (see Section 13.3.1 for more details). But the issue is less clear
in terms of convergence rate of the induced Markov chain (Frigessi, Diste-
fano, Hwang and Sheu 1993, Liu 1996¢) As we will show in the next section,
a main criterion used in the design of a Markov transition rule such as the
Metropolis-Hastings algorithm is to ensure that the target distribution 7 (x)
is the invariant distribution of this chain.

r(x,y) = (5.3)

A(x,y) = T(x,y)r(x,y) = T(x,y) =7(x)7'6(x,y). (5.4)

5.3 Why Does the Metropolis Algorithm Work?

We first verify that the Metropolis-Hastings algorithm prescribes a tran-
sition rule with respect to which the target distribution 7(x) is invariant.
Let A(x,y) be the actual transition function of the algorithm. It differs
from the proposal function T'(x,y) because an acceptance-rejection step is
involved. We are required to show that

/ T(x)A(x,y)dx = m(y). (5.5)
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Fortunately, there is an easier-to-check, but more restrictive, condition
than (5.5), the detailed balance, which can be stated as

T(x)A(x,y) = n(y) Ay, x). (5.6)
Clearly, if the detailed balance (5.6) holds, we have

[ 7046, y)dx = [ )ty xdx = n(y) [ Aly,x)dx = 7).

Thus, the detailed balance ensures invariance. The converse is not true. In
Markov chain literature, chains that satisfy the detailed balance condition
are called reversible.

We can write down A(x,y) explicitly for the Metropolis algorithm: For
any x # y, the probability that we actually make the move from x to y
is equal to the proposal probability, T(x,y), multiplied by the acceptance
probability; that is,

Ax,y) = T, yymin {1, 20T 5.)

for x # y. Hence,

m(x)A(x,y) = 7(x)T(x,y) min {17 %}

= min{z(x)T(x,y), 7(y)T(y,x)},

which is a symmetric function in x and y. Thus, the detailed balance con-
dition is satisfied.
More generally, as long as the transition function A(x,y) is of the form

Ax,y) = n(y)(x,y),

where §(x,y) is a symmetric function in x,y, one can easily verify that
the detailed balance condition has to be satisfied. The difficulty in the
construction of A, however, is that the symmetric function §(x,y) has to
be chosen properly so that the integral [ A(x,y)dy = 1. One can easily
check that the Metropolis transition can be written as (for x # y)

T(x,y) T(y,X)}
n(y) = w(x)

The acceptance rule proposed by Barker (1965) corresponds to a transition
(for x #y)

Ax,y) = n(y)min {

T(x,y)T(y,x)
()T (y,x) +n(x)T(x,y)
It was not clear, then, which acceptance rule is better. Peskun (1973) later

showed that the Metropolis rule generally works better in terms of statis-
tical efficiency.

A(x,y) = (y)
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By the standard Markov chain theory, if the chain is irreducible*, ape-
riodic® [this is almost surely true for the Metropolis algorithm (Tierney
1994)], and possesses an invariant distribution, then the chain will be-
come stationary at its invariant distribution, m. Therefore, if we run this
chain long enough (say, after a burn-in period of ng steps), the samples
Xng+1, Xng+2, - - - Produced by the chain can be regarded as approximately
following the target distribution 7. One then realizes the task of drawing
random (but correlated) samples from a given distribution.

5.4 Some Special Algorithms

To illustrate how the Metropolis-Hastings rule is practiced, we describe a
few special algorithms that have appeared frequently in the literature.

9.4.1 Random-walk Metropolis

Suppose the target distribution 7(x) is defined on the d-dimensional Eu-
clidean space R%. A natural “perturbation” of the current configuration
x® is the addition of a random “error;” that is, the next candidate po-
sition is proposed as x' = x® + €;, where €; ~ g, (-) is independent and
identically distributed for different ¢. Here, o represents the “range” of the
proposal exploration and is controlled by the user. In problems where we
do not have much information on the shape of the target distribution, we
often end up letting g, (-) be a spherically symmetric distribution. Typical
choices include the spherical Gaussian distribution N (0,02I) or the uni-
form distribution in a ball of radius o. Clearly, if one does not exercise
the Metropolis rejection rule to this proposal, the resulting walk will drift
away to infinity and never come back (when d > 3). It is thus worthwhile
to point out that in a Metropolis algorithm, the proposal chain is not re-
quired to have any good “global properties” other than being irreducible
(see footnote 4 on page 114). But we do require some local properties for
T(x,y) [e.g., T(x,y) > 0 whenever T(y,x) > 0].

Given the current state x(®), the random-walk Metropolis algorithm it-
erates the following steps:

e Draw e ~ g, and set x' = x(¥) +¢, where g, is a spherically symmetric
distribution and o can be controlled by the user.

4 A Markov chain is said to be irreducible if the chain has nonzero probability (density)
to move from one position in the state space to any other position in a finite number of
steps.

5A Markov chain is said aperiodic if the maximum common divider of the number of
steps it takes for the chain to come back to the starting point (any) is equal to one.
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e Simulate u ~ Uniform[0,1] and update

: m(x')
x(t-‘rl) — y if u S ’/T(X(t))

x®  otherwise.

In the example of simulating six hard-shell balls in a box, we used the
random-walk method for each individual ball. In an interesting study, Gel-
man, Roberts and Gilks (1995) suggested that a rule of thumb in choosing
o in a random-walk Metropolis is to maintain a 25% to 35% acceptance
rate. This rule is supported by a theoretical analysis for a Gaussian target
density (more details in Section 5.8).

5.4.2 Metropolized independence sampler

A very special choice of the proposal transition function 7T'(x,y) is an in-
dependent trial density g(y); that is, the proposed move y is generated
from g(-) independent of the previous state x(*). This method, as first sug-
gested in Hastings (1970), appears to be an alternative to the rejection
sampling and importance sampling. Its convergence properties was studied
in Liu (1996a), where all the eigenvalues and eigenfunctions of the actual
transition function are derived (see Section 13.4).

The MIS Scheme: given the current state x(®),
e Draw y ~ g(y).

e Simulate u ~ Uniform[0,1] and let

: : w(y)
Lt = )Y if ugmln{l,m}
z®  otherwise,

where w(x) = m(x)/g(x) is the usual importance sampling weight.

As with the rejection method, the efficiency of MIS depends on how close
the trial density g(y) is to the target w(y). To ensure robust performance, it
is advisable to let g(-) be a relatively long-tailed distribution. Gelman and
Rubin (1992) and Tierney (1994) suggested that one can insert a couple of
MIS steps into Gibbs iteration when correctly sampling from a conditional
distribution is difficult. The idea is useful in many Bayesian computations
in which each conditional density can be approximated reasonably well
by a Gaussian distribution. To accommodate irregular tail behaviors, it is
essential to use a long-tailed ¢-distribution as g(x).
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5.4.8 Configurational bias Monte Carlo

The configurational bias Monte Carlo (CBMC) algorithm can be viewed as
an SIS-based Metropolized independence sampler. Suppose the argument
of the target distribution, x, can be decomposed as x = (z1,...,24). As in
a sequential importance sampler (Section 2.6.3 and Chapters 3 and 4), we
assume that there is a sequence of auziliary distributions

7T1(.’E1),7T2(.Z’1,$2)7 e ,7rd_1(xd_1),7r(x)

that can help us construct the trial sampling distribution.
Let the trial sampling distribution of x be

9(x) = g1(z1)g2(22 | 21) - - - ga(za | Xa-1)-

To implement a CBMC algorithm (Siepmann and Frenkel 1992), we first
draw x(©) from g(x) via a SIS strategy and compute its importance weight
w(® (up to a normalizing constant). Suppose that currently we have x(*
with weight w(x®); then, at the next iteration, we do the following:

e Independently generate a trial configuration y from g( ) (using the
sequential approach); compute its importance weight

w(y) =7(y)/9(y),
which can often be derived recursively as

m(y) 2 (y1,92) Ta(Y1; - - -, Ya)
gl(yl) 92(2112 | y1)7r1(y1) gd(yd | Ydfl)'/rdfl(}’dfl)-

w(y) =
(This recursion is key to the SIS approach.)

e Accept y; that is, let x+1D) =y with probability min {1, %},

and let x(+1) = x(®) otherwise.

This procedure is exactly the same as the Metropolized independence sam-
pler described in the previous subsection, except that the trial density is
built up sequentially and the importance weight computed recursively.

A useful modification of the foregoing CBMC procedure is to incorporate
a stage-wise rejection decision. Suppose all the previous k — 1 steps in the
sequential simulation of the trial configuration x' have been accepted. Then,
at the kth stage of SIS, we accept xj, = (21, ...,)) with probability

7k (X5 )Tk —1 (Xk—1) gk (2

pk:min{l’ T (Xk)Tr—1(X}_1)g (HTZ: Z 3} —min{l, %},

where uy, is the same as that in (3.10). In other words, the acceptance
probability is equal to the ratio of the incremental importance weights
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between the trial and the current configurations. When rejected, we go
back to the first stage to rebuild the whole configuration. It should be
noted that one does not need to perform the acceptance-rejection decision
at every stage and she/he has a complete control on when to conduct
conduct the acceptance-rejection step.

This multistage method has been shown effective in simulating super-
fluid Helium 4 and other quantum mechanical systems (Ceperley 1995).
Compared to the CBMC, this multistage sampler can force an early stop
o as to save computing power. However, the chance of the final acceptance
of a complete configuration in the multistage approach should be smaller
than that in the CBMC because

min(1,a;) x --» x min(1,aq) < min(l, a; x --- X aq).

To show that the multistage modification of CBMC is proper, we can
write down its actual transition function and prove that it satisfies the
detailed balance. Here, we provide only a proof for the case when d = 2 [i.e.
x = (21, %2)]. The general proof is left to the reader. Suppose the auxiliary
distributions when d = 2 are m; (z1) and m2(x) = m(x). Suppose the current
state is x. Then, the probability of accepting a new configuration x’' =

(zhah) # x is
P@aﬂ=m@m%MMm@T

mln ( Il

% { 7T($1,

() miniou(el s (o),

x min{ m ()91 (z 2|37'1) 7r1(3171)91(902|3U1)}_

m(x') ’ m(x)

Hence, this transition function is indeed of the form 7 (x')d(x,x'), where
0 is a symmetric function. The detailed balance condition is thus satisfied
(see the argument in Section 5.3).

5.5 Multipoint Metropolis Methods

In principle, the Metropolis sampling method discussed in Section 5.2 can
be applied to almost any target distribution. In practice, however, it is
not infrequent to discover that finding a good proposal transition kernel is
rather difficult. Although the important generalization of Hastings (1970)
enables one to use asymmetric proposal functions, a simple random-walk-
type proposal is still most frequently seen in practice simply because there
is no obviously advantageous alternative available. It is then often the case
that a small step-size in the proposal transition (for the algorithms similar
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to those described in Section 5.4.1) will result in exceedingly slow movement
of the corresponding Markov chain, whereas a large step-size will result in
very low acceptance rate. In both cases, the mixing rate of the algorithm
would be very slow.

Here, we describe a generalization of the Metropolis-Hastings’s transition
rule. This new rule (Frenkel and Smit 1996, Liu, Liang and Wong 2000, Qin
and Liu 2000) enables a MCMC sampler to make large step-size jumps
without lowering the acceptance rate.

5.5.1 Multiple independent proposals

Suppose T'(x,y) is an arbitrary proposal transition function and §(x,y) is
an arbitrary symmetric and non-negative function. A modest requirement
is that T'(x,y) > 0 if and only if T'(y,x) > 0. Define

w(x,y) = m(x)T(x,y)A(%,y), (5.8)

where \(x,y) is a non-negative symmetric function in x and y that can
be chosen by the user. The only requirement is that A\(x,y) > 0 whenever
T(x,y) > 0. We present a few choices of A\(x,y) in the latter part of this
section. Suppose the current state is x) = x; then, a MTM transition is
defined as follows:

Multiple-Try Metropolis (MTM)

e Draw k independent trial proposals, y1,...,¥k, from T(x,-). Com-
pute w(y;,x) asin (5.8) for j =1,...,k.

e Select y among the trial set {yi1,...,yxr} with probability propor-
tional to w(y;,x), j = 1,..., k. Then, produce a “reference set” by
drawing x7,...,xj_, from the distribution T'(y,-). Let xj = x.

e Accept y with probability

’lU(yl,X) +"'+w(yk;x)} (59)

ry =minq 1, " "
! { w(x],y) + -+ +w(xg,y)
and reject it with probability 1 — r,. The quantity ry is called the
generalized M-H ratio.

When T'(x,y) is symmetric, for example, one can choose A(x,y) =
T~Y(x,y). Then, w(x,y) = m(x). In this case, the MTM algorithm is sim-
plified as the following algorithm, known as orientational bias Monte Carlo
(OBMCO) in the field of molecular simulation.

OBMC Algorithm
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e Draw k trials yi,...,yx from a symmetric proposal function T'(x,y).

e Select Y = y; among the y’s with probability proportional to w(y;),
j = 1,...,k; then, draw the reference points x{,...,x},_; from the
distribution T'(y;,x’). Let xj, = x.

e Accept y; with probability

R ESHES Y

7o) + e m(x))

and reject with the remaining probability.

The proof of the correctness of this method is straightforward (Liu, Liang
and Wong 2000). Roughly speaking, one can directly check the detailed
balance by writing down what the algorithmic instructions mean mathe-
matically. To illustrate the idea, we prove the case for k = 2.

Proof: Let A(x,y) be the actual transition probability for moving from
x to y in a MTM sampler. Suppose x # y and let I indicate which of
y; has been selected. Since w(y,x) = n(y)T(y,x)A(y,x) and the y; are
exchangeable, we have

r(x)A(x,y) = 27(x)P[(Y1 =y) N (I=1) |x]  (symmetry)

= 2 W(X)/T(X7Y)T(x’yz)w(y,;l))(i,;cEY%X)

w(Yax) + ’UJ(yQ,X) } * *
T(y,x5)dy2dx
w(xy) T wi,y) J | VX3

= 2 WEIE) [0 y)T(y. )

xmin{l,

. 1 1
X min , "
{w(YaX) +w(y25X) ﬂ)(X,y) +1U(X2,y)

} dy,dx;.

The final expression is symmetric in x and y because A(x,y) = Ay, X).
Thus, we proved that w(x)A(x,y) = 7(y)A(y,x), which is the detailed
balance condition. &

Another interesting application is to combine the MTM approach with
the Metropolized independence sampler (Section 5.4.2). Because the trial
samples are generated independently, one does not need to generate another
“reference set.” More precisely, suppose the current state is x(!) = x in our
MCMC iteration; then, the next state can be generated by the following
multiple-trial Metropolized independence sampler (MTMIS):

MTMIS:
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e Generate a trial set of i.i.d. samples by drawing y; ~ p(y), j =
1,...,k, independently, where p( ) is a trial distribution chosen by

the user. Compute w(y;) = 7(y;)/p(y;) and W = Z?Zl w(y;).

e Draw y from the trial set {y1,...,¥yx} with probability proportional
to w(y;).

o Let x(*+1) =y with probability

min {1, W — w(z; + w(x) }

and let x(*+1) = x with the remaining probability.

The idea of using MTM to make large-step moves along certain favorable
directions is a useful heuristic and can be applied broadly. We will show
later (Chapter 11) how the MTM can be applied to improve the algorithm’s
performance in more complicated settings.

5.5.2  Correlated multipoint proposals

Based on the work of OBMC and MTM, Qin and Liu (2000) provide a
more general scheme, termed as the multipoint method, which allows one to
choose from multiple correlated proposals at each iteration. Its application
in hybrid Monte Carlo has shown promising results. Suppose the current
state is x(!) = x. We generate k trial proposals as follows: Let y; ~ Py (- | x)
and let

Yy NP]( | X;yla-"ayj—l), J: 2’”"k‘
For brevity, we also let y[1.;) = (y1,---,¥5), ¥[j:y = (V5. --,¥1) and let

Pj(Y[1:j] | x) = Pi(y1 | %) Pi(y; | X;Y[1:j—1])-
A weight function is defined as
w;i (X, ¥1:5)) = 7(X) P (g1 [ %) A5 (%, ¥11:57) (5.10)

where A;( ) is a sequentially symmetric function; that is,

The general algorithm is as follows:

Multipoint Method:

e Sample y from the trial set {y1,...,yr} with probability proportional
to w(y[.1), X); suppose y; is chosen.



5.5 Multipoint Metropolis Methods 121

e Create areference set by lettingx; =y, forl=1,...,j-1,x} =x,

and drawing

X ~ P(- | yaxrl:m—l])’

form=j3+1,...,k.

o Let x(t+1) = y with probability

k
Ry - SO
1=1 @(X{p.1,Y)

and let x(*+1) = x with the remaining probability.

The simplest choice of \;( ) for (5.10) is the constant function. But we
may, in some cases, want to give larger weights to larger j’s since these
points are “farther” away from the initial point x. When P; is constructed
by composing a symmetric transition kernel j times, the resulting function
is sequentially symmetric. Thus, we can choose A; as v;/P;, where v; is a
constant, so that w;(y[;.1},%x) = v;m(y;). The resulting algorithm is very
similar to OBMC.

When the state space is R?, we can create a random-grid Monte Carlo
algorithm similar to the random-ray Monte Carlo method (Liu, Liang and
Wong 2000) to be described in Section 6.3.3. At each iteration, we do the
following steps.

Random-Grid Method:

¢ Randomly generate a direction e and a grid size r.
e Construct the candidate set as

yi=x+1l-r-& for I=1,... k.

e Draw y = y; from {yi,...,yx} with probability proportional to
u;m(y;), where u; is a constant chosen by the user (e.g., u; = /7).

e Construct the reference set by letting x; =y —1-r-e,forl =1,...k.
Therefore, x; =y; ;forl <jand xf =x— (I —j)-r-&éforl>j.

e Accept the candidate y with probability
p=min {1, > v/ ZW(X?‘)} ;
=1 =1

and reject otherwise.
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5.6 Reversible Jumping Rule

In applications such as image analysis (Grenander and Miller 1994) and
Bayesian model selections (Green 1995), one often needs to design a sam-
pler that jumps between different dimensional spaces. In principle, one still
can follow the Metropolis-Hastings’s rule to guide for the design of such a
sampler. The only technical complication is in ensuring the reversibility of
proposals for jumping between two different dimensional spaces.

Suppose X is the state space of interest and ) is a subspace of X with a
lower dimensionality. For example, ) can be a manifold defined as J) = {x:
f(x) = 0} for some differentiable function f. Furthermore, we suppose that
the target distribution 7(x), known up to a normalizing constant, lives on
these two spaces simultaneously. This distribution can be represented as

(%)  go(%)|xey + q1(x), (5.11)

where gy and ¢; are two unnormalized probability density functions defined
on their respective spaces [i.e., ¢;(x) = ¢;m;(x) with ¢; unknown]. Therefore,
if we draw a random sample from X according to m(x), the chance that
it lies in ) is zero! To make things worse, we assume that the ratio of the
two constants, v = ¢o/c1, is generally unknown to us. If we can design a
Monte Carlo algorithm to sample from m(x), the ratio  can be estimated
by the ratio of the number of samples lying in ) over that lying in X.

The above setting is of particular interest in Bayesian hypothesis testing
problems. Suppose we have a probability model f(y | @) where 8 = (6, 61)
and we are interested in testing Hy: 8y = 0, versus Hy: 8y # 61 in light of an
observation y. We let model M; correspond to the unrestricted parameter
space @ (two dimensional) and let model M, correspond to the subspace
defined by 6y — 01 = 0. It is sometimes natural assume that the two models
are equally likely a priori; then, the posterior distribution of @ under the
“mixture” of two plausible models is

m(0) o< f(y | 0)fo(0)lo=0, + f(y | 6)So(6)]go-06, -

Statisticians are often interested in estimating the ratio of the two normal-

izing constants,
co _ Joyms, F(y | )fo(8)d8
a  [fy|6)fi(6)de ’

which reflects the posterior odds ratio of model M, versus model M;. As
we mentioned in the previous paragraph, this ratio can be estimated if we
can design a Monte Carlo scheme to sample 7.

In order to design a Monte Carlo Markov chain that lives on both the
general state space and the restricted space, we need to have two different
proposals, one for Y — X and another for X — ). Since ) is of lower
dimensional, any transition from ) to X must have a degenerate density
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with respect to the dominant measure on X, implying that no proposal for
moves from X — Y can be properly “reversed” by a proposal from ) to X.
To overcome this difficulty, we must have a “matching space” Z, so that
Y x Z has the same dimension as X’ and a matching proposal g(z | y). With
the matched space, one can come up with two non-degenerate proposals
and follow the Metropolis-Hastings’s rule to design jumps.

Green (1995) presented a formal treatment of this type of moves (involv-
ing change-of-variables and Jacobians) and named them reversible jumps.
Here, we study only a sufficiently instructive special case: X = )Y x Z.
Therefore, each x can be written as x = (y,z), and “subspace” Y in fact
corresponds to YV x {zo} for some zg € Z. In order to jump from Y to
X, we may first propose y — y' by a proposal transition 77 (y,y’), match
y' with a z’ drawn from g(- | y'), and then let x' = (y',2z’). This can be
viewed as an expansion transition. A contraction transition is needed to
propose from x € X back into ). This can be achieved by first dropping
the z component in x, and then proposing y’ from T (y,y’). According the
Metropolis-Hastings rule, the expansion proposal y — x' is accepted with

probability
ay,z)(y',y) }
")y, y)e(z | y') )’

where ¢go and ¢; are as defined in (5.11). The contraction proposal x — y’
(where x = (y, z)) is accepted with probability

—in [1 ©ONLGy)9(z | y)
b= {1’ @ (y,2)Ta(y,y') }

a:min{l

The expansion proposal in the foregoing procedure can be seen as first
“proposing” and then “lifting” (from a lower dimensional space to the
higher one). Similarly, we can conduct “lifting” first and “proposing” after-
ward. More precisely, in order to accomplish the proposal y = x’, we can
first draw z ~ g(- | y) and then draw x' from S1[(y,z),]. The contraction
move is achieved by first proposing x = x’ = (y', 2’) according to Sa(x, x')
and then dropping z'. Thus, the acceptance probabilities are respectively

¢ (x')Sa[x', (v, 2)] }
20 (¥)9(z | y)S1[(y,2),x]

8’ = min {17 %0 (v)g(z' | Y’)Sl[(Y’,Z’),X]} _
01 (x)S2[x, (y', 2')]

Note that both S; and S are proposals in the higher-dimensional space
X, whereas both T} and T» are proposals in the lower-dimensional sub-
space Y. Thus, without having other justifications, we prefer lifting after
proposing than the other way around because it is often easier to pro-
pose lower-dimensional moves. It is conceivable, however, that lifting before
proposing can sometimes help the chain escape from a local energy trap

o' = min {1,
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of the lower-dimensional space. Similar ideas have been employed in the
clustering method and simulated tempering (Chapters 7 and 10).

A useful strategy in improving Monte Carlo sampling efficiency is to in-
troduce a number of related probabilistic systems with different levels of
“difficulties” (in terms of Monte Carlo sampling) and then simulate them
together. These auxiliary systems are often made by varying a “temper-
ature” parameter in the original target distribution for the sake of easy
manipulation (i.e., simulated tempering and parallel tempering; see Chap-
ter 10). However, it may be more efficient to consider a system consisting
of spaces with different dimensions (Liu and Sabatti 1998). To sample
from this augmented system, one needs to use the reversible jumping rule.
It should be noted that the basic principle behind the reversible jumps is
similar to that behind the sequential importance sampling and the CBMC
(Sections 2.6.3 and 5.4.3) because the move from y to x can be seen as a
one-step SIS update.

5.7 Dynamic Weighting

Wong and Liang (1997) introduced the use of a dynamic weighting vari-
able for controlling Markov chain simulation. By using this scheme, they
were able to obtain better results for many optimization problems, such
as the traveling salesman problem and neural network training, and high-
dimensional integration problems, such as the Ising model simulation.

To start a dynamic weighting scheme, we first augment the sample space
X to X x RT so as to include a weight variable. Similar to the Metropolis
algorithm, we also need a proposal function T'(x,y) on the space X. Sup-
pose at iteration ¢, we have (x(,w)) = (x,w). Then an R-type move is
defined as follows:

e Draw y from T'(x,y) and compute the Metropolis-Hastings ratio

7(y)T(y,x)

oY) = T y)

e Choose § = 6(w,x) > 0, and draw U from Uniform(0,1). Then let

: wr(x,y)
) 3 + 0 f U S N |
(D) (1)) = O rGey) +6) 1 wr(x,y) +6
(Xm, W) otherwise.
(5.12)

It is easy to check that the R-type move does not have 7 as its equilibrium
distribution. Wong and Liang (1997) propose to use invariance with respect
to importance weighting (IWIW) for justifying the above scheme; that is,
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if the joint distribution of (x,w) is f(x,w) and x is said correctly weighted
by w with respect to 7 if 3, wf(x,w) x m(x). A transition rule is said
to satisfy IWIW if it maintains the correctly weightedness for the joint
distribution of (x,w). Clearly, the R-type move satisfies IWIW.

The purpose of introducing importance weights into the dynamic Monte
Carlo process is to provide a means for the system to make large transitions
not allowable by the standard Metropolis transition rules. The weight vari-
able is updated in a way that allows for an adjustment of the bias induced
by such non-Metropolis moves. Although this algorithm has been applied
successfully in many difficult optimization and simulation problems [see
Section 10.6 and Liang (1997)], theoretical properties of this algorithm are
still rather subtle. A first theory is recently given by Liu, Liang and Wong
(2001) and some of which, together with another type of dynamic weighting
scheme, the Q-type move, will be presented in Section 13.6. An important
application of the dynamic weighting method is to be combined with a
stmulated tempering algorithm, and this aspect will be discussed in more
detail in Section 10.6.

5.8 Output Analysis and Algorithm Efficiency

In analyzing outputs from a Markov chain Monte Carlo algorithm (this
applies to all the later chapters), one of the major concerns is its statis-
tical efficiency in estimating the expectation of interest. Let us suppose
that the Markov chain is irreducible and aperiodic (see footnotes 4 and 5
on page 114) and converges to its unique stationary distribution, m(x). At
the heart of every MCMC computation is the estimation of E,h(x) for a
certain h( ) of interest. Thus, what we really care about at the end is how
accurate we can estimate this quantity. Suppose we have drawn samples
xM ..., x(M via a MCMC sampler with 7(x) as its equilibrium distri-
bution. Let us further assume that we have run the process long enough
(in the previous day, say) and have thrown away the initial ng iterations
needed for the equilibration of the chain (i.e., we assume that x(®) ~ 7).
Then,

Wy 4 ... (m) = ~
mvar{h(x )+ hix )} = o? 1+22(1—%)Pj
j=1

m

Q
Q

21142 p; (5.13)
L j=1

where 02 = var[h(x)] and p; = corr{h(x™)), h(xU+1)}. In physics litera-
ture (Goodman and Sokal 1989), one defines the integrated autocorrelation
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time of h(x) as
1 oo
iz

Then we have

mvar(h) = 27ins (h)o>.
This variance is, in effect, equal to that of an estimator with m/[27,(h)]
independent random samples. Thus, m /[27,4(h)] is often called the effective
sample size.
If is often observed that p; decays exponentially. Therefore, we can model
the autocorrelation curve as

J
Pj| ~ €xXp§ — )
| Jl { Texp(h)}

which gives rise to the expression

J

Texp(h) = lim Supj%mm,
J

where Texp(h) is called the exponential autocorrelation time. When Texp(h)
is large, we can see that
> 1

. 1
v ~ _]/Texp(h) -— = —_— O .~ .
e () 7 e 2 1—e—1/rep(h) 2 Texp ()

—

Jj=0
The “relaxation time” of the system is defined as

Texp = SUD  Texp(h).
heL?(m)

The concepts of the autocorrelation and relaxation time are also closely
related to the convergence rate of the algorithm (i.e., the second largest
eigenvalue of the Markov chain transition matrix). More precisely, if we let
h be an eigenfunction that corresponds to an eigenvalue X of the transition
matrix, then we have p;(h) = M. Hence,

14+ A 1
nt(h) = ———, wxp(h) = ———,
Ti t( ) 2(1 —A) Te p( ) 10g|)\|
and the relaxation time is
1
Texp = —7_ _ 1\ 7
P log |2

where )y is the second largest eigenvalue in modular of the transition
matrix. Thus, Texp reflects the convergence speed of an MCMC sampler,
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whereas 7in¢ is most relevant when the statistical efficiency of the algorithm
is of interest.

It is commonly agreed that finding an ideal proposal chain is an art.
In fact, the Metropolis algorithm aided with Hastings’s (1970) generaliza-
tion is so general that one always tends to feel unsatisfactory in settling
down on any specific proposal chain. It is important, therefore, to analyze
autocorrelation curves of an algorithm in order to obtain its behavioral
characteristics. Peskun (1973) suggests that two Markov chains, with tran-
sition functions P; and P», respectively, and the same equilibrium distribu-
tion, should be compared based on a statistical criterion — the asymptotic
variance of the corresponding estimator (5.13). When the state space is
finite, he found an explicit asymptotic formula for (5.13), from which he
concluded that for a given proposal transition, the Metropolis acceptance-
rejection rule is “optimal” in the sense of having the smallest asymptotic
variance for the resulting estimates. Consequently, Barker’s proposal is less
desirable in general. An interesting twist of Peskun’s result will be described
more details in Section 5.4.2.

Another interesting result is given by Gelman, Roberts and Gilks (1995)
for a continuous state space. Suppose the target distribution is N(0,1)
and a random-walk Metropolis algorithm (Section 5.4.1) is used for its
simulation. The proposal transition is of the form x’ = x(!) + ¢, where

N(0,0?). Gelman, Roberts and Gilks (1995) show that the optimal
choice for o that gives the smallest autocorrelation is o = 2.38. A slightly
larger o does not affect the efficiency much, but a smaller one has a signif-
icant adverse effect. These assertions can be verified by direct simulation.
This optimal o corresponds to an acceptance rate of 44%, suggesting that
this is a useful reference number to be watched when tuning a proposal dis-
tribution. Roberts, Gelman and Gilks (1997) recommended calibrating the
acceptance rate to about 25% for a high-dimensional model and to about
50% for models of dimensions 1 or 2.

5.9 Problems

1. Implement a Metropolis algorithm to sample from a Poisson (A) dis-
tribution. Test it for A=3, 5, and 10. A suggestion for the proposal
function: the simple random walk on a line.

2. Let 7(x) be N(0,1). Implement the random-walk Metropolis algo-
rithm to sample from 7, using N(-,02) as the proposal function. Plot
the autocorrelation curve for the corresponding chain. Argue why
o = 2.38 is a good choice.

3. Prove that the multistage modification of the CBMC method is proper
for all d (Section 5.4.3).
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10.

11.
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Show that the detailed balance condition m(x)A(x,y) = n(y)A(y, x)
guarantees that 7 is the invariant distribution of A(x,y).

Suppose the Metropolized independence sampler (MIS) is applied to
sample from 7(x), where x is defined on a finite state space and the
trial distribution is g(x).

(a) Write down the actual transition matrix A for the MIS.
(b) Show that the second largest eigenvalue of A is miny {w(x)/g(x)}.

(¢) Find its corresponding eigenvector.

Show that the random-grid method is proper [i.e., it leaves the tar-
get distribution 7 (x) invariant]. Implement the random-grid method
to sample from a multidimensional Gaussian distribution. Study em-
pirically how the choices of k and the grid-size distribution affect
algorithmic efficiency.

Show that the reversible jump algorithm as described in Section 5.6
leaves 7 invariant.

Show that the R-type dynamic weighting rule satisfies the IWIW
property.

Show that the @Q-type dynamic weighting rule does not satisfy the
IWIW property.

Implement both the random-ray and the random-grid methods to
replace the griddy-Gibbs method in Example 6.1 of Ritter and Tanner
(1992).

Prove that the MTMIS algorithm gives rise to a reversible Markov
chain whose equilibrium distribution is 7.



