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Maximum Likelihood Estimation

Introduction
Let y = (y1, y2, . . . , yn)

′
be a vector of iid, random variables from one of a family of

distributions on <n
and indexed by a p-dimensional parameter θ = (θ1, . . . , θp)

′
where

θ ε Ω ⊂ <p
and p ≤ n . Denote the distribution function of y by F (y|θ) and assume

that the density function f(y|θ) exists. Then the likelihood function of θ is given by

L(θ) =

n
∏

i=1

f(yi|θ) .

In practice, the natural logarithm of the likelihood function, called the log-likelihood function

and denoted by

`(θ) = log L(θ) =

n
∑

i=1

log(f(yi|θ)) ,

is used since it is found to be easier to manipulate algebraically. Let the p partial derivatives

of the log-likelihood form the p × 1 vector

u(θ) =
∂ ` (θ)

∂ θ
=









∂`
∂θ1

...
∂`
∂θp









.

The vector u(θ) is called the score vector of the log-likelihood function. The moments of

u(θ) satisfy two important identities. First, the expectation of u(θ) with respect to y is

equal to zero, and second, the variance of u(θ) is the negative of the second derivative of

`(θ) , i.e.,

Var(u(θ)) = −E
{

u(θ)u (θ)
T
}

= −E

{(

∂2 `(θ)

∂ θj ∂θk

)}

.

The p×p matrix on the right hand side is called the expected Fisher information matrix and

usually denoted by I(θ). The expectation here is taken over the distribution of y at a fixed

value of θ. Under conditions which allow the operations of integration with respect to y and

differentiation with respect to θ to be interchanged, the maximum likelihood estimate of θ

is given by the solution θ̂ to the p equations

u(θ̂) = 0

and under some regularity conditions, the distribution of θ̂ is asymptotically normal with

mean θ and variance-covariance matrix given by the p× p matrix I(θ)
−1

i.e., the inverse of

the expected information matrix. The p × p matrix

I(θ) = −

{

∂2 ` (θ)

∂ θj ∂ θk

}

is called the observed information matrix. In practice, since the true value of θ is not known,

these two matrices are estimated by substituting the estimated value θ̂ to give I(θ̂) and I(θ̂),
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respectively. Asymptotically, these four forms of the information matrix can be shown to be

equivalent.

From a computational standpoint, the above quantities are related to those computed to

solve an optimization problem as follows: −`(θ) corresponds to the objective function to be

minimized, u(θ) represents the gradient vector, the vector of first-order partial derivatives,

usually denoted by g, and I(θ), corresponds to the negative of the Hessian matrix H(θ),

the matrix of second-order derivatives of the objective function, respectively. In the MLE

problem, the Hessian matrix is used to determine whether the minimum of the objective

function −`(θ) is achieved by the solution θ̂ to the equations u(θ) = 0, i.e., whether θ̂ is a

stationery point of `(θ). If this is the case, then θ̂ is the maximum likelihood estimate of

θ and the asymptotic covariance matrix of θ̂ is given by the inverse of the negative of the

Hessian matrix evaluated at θ̂, which is the same as I(θ̂), the observed information matrix

evaluated at θ̂.

Sometimes it is easier to use the observed information matrix I(θ̂) for estimating the

asymptotic covariance matrix of θ̂ , since if I(θ̂) were to be used then the expectation of

I(θ̂) needs to be evaluated analytically. However, if computing the derivatives of `(θ) in

closed form is difficult or if the optimization procedure does not produce an estimate of the

Hessian as a byproduct, estimates of the derivatives obtained using finite difference methods

may be substituted for I(θ̂).

Newton-Raphson method is widely used for function optimization. Recall that the iter-

ative formula for finding a maximum or a minimum of f(x) was given by

x(i+1) = x(i) − H−1

(i) g(i),

where H(i) is the Hessian f
′′

(x(i)) and g(i) is the gradient vector f
′

(x(i)) of f(x) at the ith

iteration. The Newton-Raphson method requires that the starting values be sufficiently close

to the solution to ensure convergence. Under this condition the Newton-Raphson iteration

converges quadratically to at least a local optimum. When Newton-Raphson method is

applied to the problem of maximizing the likelihood function the ith iteration is given by

θ̂(i+1) = θ̂(i) − H(θ̂(i))
−1 u(θ̂(i)).

We shall continue to use the Hessian matrix notation here instead of replacing it with −I(θ).

Observe that the Hessian needs to be computed and inverted at every step of the iteration. In

difficult cases when the Hessian cannot be evaluated in closed form, it may be substituted by

a discrete estimate obtained using finite difference methods as mentioned above . In either

case, computation of the Hessian may end up being a substantially large computational

burden. When the expected information matrix I(θ) can be derived analytically without

too much difficulty, i.e., the expectation can be expressed as closed form expressions for the

elements of I(θ), and hence I(θ)
−1

, it may be substituted in the above iteration to obtain

the modified iteration

θ̂(i+1) = θ̂(i) + I(θ̂(i))
−1 u(θ̂(i)).

This saves on the computation of H(θ̂) because functions of the data y are not involved in the

compuitation of I(θ̂(i)) as they are with the computation of H(θ̂). This provides a sufficiently
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accurate Hessian to correctly orient the direction to the maximum. This procedure is called

the method of scoring, and can be as effective as Newton-Raphson for obtaining the maximum

likelihood estimates iteratively.

Example 1:

Let y1, . . . , yn be a random sample from N(µ, σ2
), −∞ < µ < ∞, 0 < σ2 < ∞. Then

L(µ, σ2
)|y) =

n
∏

i=1

1

(2π)1/2σ
exp

[

−(yi − µ)
2/2σ2

]

=
1

(2π)n/2σn
exp

[

−
∑

(yi − µ)
2/2σ2

]

giving

`(µ, σ2
) = logL(µ, σ2|y) = −n logσ −

∑

(yi − µ)
2/2σ2

+ constant.

The first partial derivatives are:

∂`

∂µ
=

2Σ(yi − µ)

2σ2

∂`

∂σ2
=

Σ(yi − µ)
2

2σ4
−

n

2σ2

Setting them to zero,

∑

yi − nµ = 0

and
∑

(yi − µ)
2/2σ4 − n/2σ2

= 0,

give the m.l.e.’s µ̂ = ȳ, and σ̂2
=
∑

(yi − ȳ)
2/n, respectively.

The observed information matrix I(θ) is:

I(θ) = −

{

∂2`

∂θj∂θk

}

= −





Σ(−1)

σ2

−Σ(yi−µ)

σ4

−Σ(yi−µ)

σ4

−Σ(yi−µ)2

σ6 +
n

2σ4





=





n
σ2

Σ(yi−µ)

σ4

Σ(yi−µ)

σ4

Σ(yi−µ)2

σ6 − n
2σ4





and the expected information matrix I(θ) is:

I(θ) =

[

n
σ2 0

0
nσ2

σ6 − n
2σ4

]

=

[

n
σ2 0

0
n

2σ4

]

I(θ)
−1

=

[

σ2

n
0

0
2σ4

n

]

2
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Example 2:

In this example, Fisher scoring is used to obtain the m.l.e. of θ using a sample of size n
from the Cauchy distribution with density:

f(x) =
1

π

1

1 + (x − θ)2
, −∞ < x < ∞ .

The likelihood function is

L(θ) =

(

1

π

)n n
∏

i=1

1

1 + (xi − θ)2

and the log-likelihood is

logL(θ) = −
∑

log (1 + (xi − θ)2
) + constant

giving

∂ log L

∂ θ
=

n
∑

i=1

2(xi − θ)

1 + (xi − θ)2
= u(θ) .

Information I(θ) is

I(θ) =
∂2

log L

∂θ2
= n/2

and therefore

θi+1 = θi +
2u(θi)

n
is the iteration formula required for the scoring method. 2

Example 3:

The following example is given by Rao (1973). The problem is to estimate the gene

frequencies of blood antigens A and B from observed frequencies of four blood groups in

a sample. Denote the gene frequencies of A and B by θ1 and θ2 respectively, and the

expected probabilities of the four blood group O, A, B and AB by π1, π2, π3, and π4 . These

probabilities are functions of θ1 and θ2 and are given as follows:

π1(θ1, θ2) = 2θ1 θ2

π2(θ1, θ2) = θ1(2 − θ1 − 2θ2)

π3(θ1, θ2) = θ2(2 − θ2 − 2θ1)

π4(θ1, θ2) = (1 − θ1 − θ2)
2

The joint distribution of the observed frequencies y1, y2, y3, y4 is a multinomial with

n = y1 + y2 + y3 + y4.

f(y1, y2, y3, y4) =
n!

y1!y2!y3!y4!
πy1

1 πy2

2 πy3

3 πy4

4 .
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It follows that the log-likelihood can be written as

log L(θ) = y1 log π1 + y2 log π2 + y3 log π3 + y4 log π4 + constant .

The likelihood estimates are solutions to

∂ log L(θ)

∂θ
=

(

∂π

∂θ

)T

·

(

∂ log L(θ)

∂π

)

= 0

i.e., u(θ) =

4
∑

j=1

(yj/πj)

(

∂πj

∂θ

)

= 0,

where π = (π1, π2, π3, π4)
T , θ = (θ1, θ2)

T
, and

∂π1

∂θ
=

(

2 θ2

2 θ1

)

,
∂π2

∂θ
=

(

2 (1 − θ1 − θ2)

−2θ1

)

,
∂π3

∂θ
=

(

−2θ2

2(1 − θ1 − θ2)

)

,
∂π4

∂θ
=

(

−2(1 − θ1 − θ2)

−2(1 − θ1 − θ2)

)

.

The Hessian of the log-likelihood function is the 2 × 2 matrix:

H(θ) =
∂

∂θ

(

∂ log L(θ)

∂θ

)

=

4
∑

j=1

[

(yj/πj)
∂

∂θ

(

∂πj

∂θ

)

+

(

∂πj

∂θ

)

·
∂

∂θ
(yj/πj)

]

=

4
∑

j=1



(yj/πj) Hj(θ) −

(

∂πj

∂θ

)

(yj/π
2

j )

(

∂πj

∂θ

)T




=

4
∑

j=1

yj



(1/πj) Hj(θ) − (1/π2

j )

(

∂πj

∂θ

) (

∂πj

∂θ

)T




where Hj(θ) =

(

∂2πj

∂θh∂θk

)

is the 2 × 2 Hessian of πj, j = 1, 2, 3, 4. These are easily computed

by differentiation of the gradient vectors above:

H1 =

(

0 2

2 0

)

, H2 =

(

−2 −2

−2 0

)

, H3 =

(

0 −2

−2 −2

)

, H4 =

(

2 2

2 2

)

.

The information matrix is then given by:

I(θ) = E

{

−
∂2

log(θ)

∂θj∂θk

}

= −
4
∑

j=1

nπj



(1/πj)Hj(θ) − (1/π2

j )

(

∂πj

∂θ

)(

∂πj)

∂θ

)T




= n
4
∑

j=1

(1/πj)

(

∂πj

∂θ

)(

∂πj

∂θ

)T

Thus elements of I(θ) can be expressed as closed form functions of θ. In his discussion, Rao

gives the data as y1 = 17, y2 = 182, y3 = 60, y4 = 176 and n = y1 + y2 + y3 + y4 = 435.
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The first step in using iterative methods for computing m.l.e.’s is to obtain starting values

for θ1 and θ2. Rao suggests some methods for providing good estimates. A simple choice

is to set π1 = y1/n, π2 = y2/n and solve for θ1 and θ2. This gives θ(0) = (0.263, 0.074)
′
.

Three methods are used below for computing m.l.e.’s; method of scoring, Newton-Raphson

with analytical derivatives and, Newton-Raphson with numerical derivatives, and results of

several iterations are tabulated:

Table 1: Convergence of iterative methods for computing maximum likelihood estimates.

(a) Method of Scoring

Iteration No. θ1 θ2 I11 I12 I22 log L(θ)

0 .263000 .074000 2.98150 28.7419 2.43674 -494.67693

1 .164397 .092893 9.00457 23.2801 2.47599 -492.52572

2 .264444 .093168 9.00419 23.2171 2.47662 -492.53532

(b) Newton’s Method with Hessian computed directly using analytical derivatives

Iteration No. θ1 θ2 H11 H12 H22 log L(θ)

0 .263000 .074000 −3872.33 −15181.07 −1006.17 −494.67693
1 .265556 .089487 −3869.46 −10794.02 −1059.73 −492.60313
2 .264480 .093037 −3899.85 −10083.28 −1067.56 −492.53540
3 .264444 .093169 −3900.90 −10058.49 −1067.86 −492.53532

(c) Newton’s Method with Hessian computed numerically using finite differences

Iteration No. θ1 θ2 Ĥ11 Ĥ12 Ĥ22 log L(θ)

0 .263000 .074000 −3823.34 −14907.05 −1010.90 −494.67693
1 .265494 .089776 −3824.23 −10548.51 −1065.84 −492.59283
2 .264440 .093118 −3853.20 −9896.60 −1073.19 −492.52533
3 .264444 .093170 −3853.29 −9887.19 −1073.37 −492.53532
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Using nlm() to maximize loglikelihood in the Rao example

% Set-up function to return negative loglikelihood

logl=function(t)

{

p1 = 2 * t[1] * t[2]

p2 = t[1] * (2 - t[1] - 2 * t[2])

p3 = t[2] * (2 - t[2] - 2 * t[1])

p4 = (1 - t[1] - t[2])^2

return( - (17 * log(p1) + 182 * log(p2) + 60 * log(p3) + 176 * log(p4)))

}

% Use nlm() to minimize negative loglikelihood

> nlm(logl,c(.263,.074),hessian=T,print.level=2)

iteration = 0

Step:

[1] 0 0

Parameter:

[1] 0.263 0.074

Function Value

[1] 494.6769

Gradient:

[1] -25.48027 -237.68086

iteration = 1

Step:

[1] 0.002574994 0.024019643

Parameter:

[1] 0.26557499 0.09801964

Function Value

[1] 492.6586

Gradient:

[1] 9.635017 47.935126

iteration = 2

Step:

[1] -0.0007452647 -0.0040264713

Parameter:

[1] 0.26482973 0.09399317

Function Value

[1] 492.5393

Gradient:

[1] 2.386392 8.646591
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iteration = 3

Step:

[1] -0.0002310889 -0.0008887750

Parameter:

[1] 0.2645986 0.0931044

Function Value

[1] 492.5354

Gradient:

[1] 0.5349342 -0.4784625

iteration = 4

Step:

[1] -4.312360e-05 4.180465e-05

Parameter:

[1] 0.2645555 0.0931462

Function Value

[1] 492.5353

Gradient:

[1] 0.4114774 -0.1036801

iteration = 5

Step:

[1] -8.846223e-05 2.977044e-05

Parameter:

[1] 0.26446705 0.09317597

Function Value

[1] 492.5353

Gradient:

[1] 0.09830296 0.10132959

iteration = 6

Step:

[1] -2.113552e-05 -4.583349e-06

Parameter:

[1] 0.26444592 0.09317139

Function Value

[1] 492.5353

Gradient:

[1] 0.01096532 0.03266155

iteration = 7

Step:

[1] -2.165882e-06 -2.800342e-06

Parameter:

[1] 0.26444375 0.09316859

Function Value

[1] 492.5353

Gradient:

[1] -0.0004739604 0.0021823894
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iteration = 8

Parameter:

[1] 0.26444429 0.09316885

Function Value

[1] 492.5353

Gradient:

[1] -6.392156e-05 4.952284e-05

Relative gradient close to zero.

Current iterate is probably solution.

$minimum

[1] 492.5353

$estimate

[1] 0.26444429 0.09316885

$gradient

[1] -6.392156e-05 4.952284e-05

$hessian

[,1] [,2]

[1,] 3899.064 1068.172

[2,] 1068.172 10039.791

$code

[1] 1

$iterations

[1] 8

Warning messages:

1: NaNs produced in: log(x)

2: NaNs produced in: log(x)

3: NA/Inf replaced by maximum positive value

4: NaNs produced in: log(x)

5: NaNs produced in: log(x)

6: NA/Inf replaced by maximum positive value

7: NaNs produced in: log(x)

8: NaNs produced in: log(x)

9: NA/Inf replaced by maximum positive value
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Generalized Linear Models: Logistic Regression

In generalized linear models (GLM’s), a random variable yi from a distribution that is a

member of the scaled exponential family is modelled as a function of a dependent variable

xi. This family is of the form

f(y|θ) = exp {[yθ − b(θ)]/a(φ) + c(y, θ)}

where θ is called the natural (or canonical) parameter and φ is the scale parameter. Two

useful properties of this family are

• E(Y ) = b′(θ)

• V ar(Y ) = b′′(θ(φ)

The “linear” part of the GLM comes from the fact that some function g() of the mean

E(Yi|xi) is modelled as a linear function xT β i.e.

g(E(Yi|xi) = xT β

This function g() is called the link function and is dependent on the distribution of yi. The

logistic regression model is an example of a GLM. Suppose that (yi|xi) i = 1, . . . , n represent

a random sample from the Binomial distribution with parameters ni and pi i.e., Bin(ni, pi).

Then

f(y|p) =

(

n

y

)

py
(1 − p)

n−y

=

(

n

y

)

(1 − p)
n
(

p

1 − p
)
y

= exp {y log (
p

1 − p
) + n log (1 − p) + log

(

n

y

)

}

Thus the natural parameter is θ = log (
p

1−p
), a(φ) = 1, b(θ) = −n log (1 − p), and c(y, φ) =

log

(

n

y

)

.

Logistic Regression Model: Letyi|xi ∼ Binomial (ni, pi) Then the model is:

log
pi

1 − pi

= β0 + β1xi, i = 1, . . . , n

It can be derived from this model that pi =
eβ0+β1xi

1+eβ0+β1xi
and thus 1 − pi =

1

1+eβ0+β1xi

The likelihood of p is:

L(p|y) =

k
∏

i=1

(

ni

yi

)

pyi

i (1 − pi)
ni−yi

and the log likelihood is:

`(p) =

k
∑

i=1

[

log

(

ni

yi

)

+ yi log pi + (ni − yi) log(1 − pi)

]
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where pi are as defined above. There are two possible approaches for deriving the gradient

and the Hessian. First, one can substitute pi in ` above and obtain the log likelihood as a

function of β:

`(β) =

k
∑

i=1

[

log

(

ni

yi

)

− nilog(1 + exp (β0 + β1xi)) + yi(β0 + β1xi)

]

and then calculate the gradient and the Hessian of `(β) with respect to β directly i.e.

compute
∂`

∂β0
, ∂`

∂β1
, ∂2`

∂β0∂β1
, . . . etc., directly or use the chain rule

∂`
∂βj

=
∂`
∂pi

· ∂pi

∂βj
, j = 0, 1 to

calculate the partials from the original model as follows:

log
pi

1−pi
= β0 + β1xi

log pi − log(1 − pi) = β0 + β1xi

(

1

pi
+

1

1−pi

)

∂pi = ∂β0 giving
∂pi

∂β0
= pi(1 − pi)

(

1

pi
+

1

1−pi

)

∂pi = xi∂β1 giving
∂pi

∂β1
= pi(1 − pi)

So, after substitution, it follows that:

∂`

∂β0

=

k
∑

i=1

{

yi

pi

−
(ni − yi)

1 − pi

}

∂pi

∂β0

=

k
∑

i=1

{

yi

pi

−
(ni − yi)

1 − pi

}

pi(1 − pi)

=

k
∑

i=1

(yi − nipi)

∂`

∂β1

=

k
∑

i=1

{

yi

pi

−
(ni − yi)

1 − pi

}

pi(1 − pi)xi

=

k
∑

i=1

xi(yi − nipi)

∂2`

∂β2
0

= −
k
∑

i=1

ni

∂pi

∂β0

= −
k
∑

i=1

nipi(1 − pi)

∂2`

∂β0∂β1

= −
k
∑

i=1

nipi(1 − pi)xi

∂2`

∂β2
1

= −
k
∑

i=1

nixipi(1 − pi)xi

= −
k
∑

i=1

nipi(1 − pi)x
2

i

In the following implementations of Newton-Raphson, a negative sign is inserted in front

of the log likelihood, the gradient, and the hessian, as these routines are constructed for

minimizing nonlinear functions.
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Logistic Regression using an R function I wrote for 
implementing Newton-Raphson using analytical derivatives  
 
 
Starting Values:  -3.9 0.64 
    
Current Value of Log Likelihood:  6.278677 
  
Current Estimates at Iteration  1 : 
 Beta     =  -3.373257 0.6232912 
 Gradient =  0.1055660 -0.1294950 
 Hessian  =  6.178139 32.31268 32.31268 200.8371 
Current Value of Log Likelihood:  5.754778 
  
Current Estimates at Iteration  2 : 
 Beta     =  -3.502322 0.6447013 
 Gradient =  0.001067698 -0.01121716 
 Hessian  =  6.009407 31.39635 31.39635 194.2825 
Current Value of Log Likelihood:  5.746453 
  
Current Estimates at Iteration  3 : 
 Beta     =  -3.505401 0.6452565 
 Gradient =  -3.942305e-07 -1.349876e-05 
 Hessian  =  6.005219 31.37172 31.37172 194.0973 
Current Value of Log Likelihood:  5.746449 
  
 
Convergence Criterion of  1e-05  met for norm 
of estimates. 
 
Final Estimates Are:  -3.505402 0.6452569 
 
Final Value of Log Likelihood:  5.746449 
 
Value of Gradient at Convergence: 
-3.942305e-07 -1.349876e-05 
 
Value of Hessian at Convergence: 
 
          [,1]      [,2] 
[1,]  6.005219  31.37172 
[2,] 31.371717 194.09727 
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Logistic Regression: Using the R function nlm() without 
specifying analytical derivatives. In this case nlm() will 
use numerical derivatives. First, define (the negative of) 
the log likelihood: 
 
fun=function(b,xx,yy,nn) 
{      
        b0 = b[1] 
        b1 = b[2] 
        c=b0+b1*xx 
        d=exp(c) 
        p=d/(1+d) 
        e=d/(1+d)^2 
        f  = -sum(log(choose(nn,yy))-nn*log(1+d)+yy*c) 
        return(f) 
} 
 
Data: 
> x 
[1] 10.2  7.7  5.1  3.8  2.6 
> y 
[1] 9 8 3 2 1 
> n 
[1] 10  9  6  8 10 
 
 
> nlm(fun,c(-3.9,.64),hessian=T,print.level=2,xx=x,yy=y,nn=n) 
 
iteration = 0 
Step: 
[1] 0 0 
Parameter: 
[1] -3.90  0.64 
Function Value 
[1] 6.278677 
Gradient: 
[1]  -2.504295 -13.933817 
 
iteration = 1 
Step: 
[1] 0.01250237 0.06956279 
Parameter: 
[1] -3.8874976  0.7095628 
Function Value 
[1] 5.812131 
Gradient: 
[1] -0.2692995  0.3948808 
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iteration = 2 
Step: 
[1]  0.001281537 -0.001881983 
Parameter: 
[1] -3.8862161  0.7076808 
Function Value 
[1] 5.81129 
Gradient: 
[1] -0.3164593  0.1001753 
 
iteration = 3 
Step: 
[1]  0.004598578 -0.002751733 
Parameter: 
[1] -3.881618  0.704929 
Function Value 
[1] 5.809923 
Gradient: 
[1] -0.3706596 -0.2551295 
 
iteration = 4 
Step: 
[1]  0.013477313 -0.004877317 
Parameter: 
[1] -3.8681402  0.7000518 
Function Value 
[1] 5.806892 
Gradient: 
[1] -0.4379372 -0.7371624 
 
iteration = 5 
Step: 
[1]  0.03893449 -0.01021976 
Parameter: 
[1] -3.829206  0.689832 
Function Value 
[1] 5.799401 
Gradient: 
[1] -0.5215346 -1.4545062 
 
iteration = 6 
Step: 
[1]  0.08547996 -0.01754651 
Parameter: 
[1] -3.7437258  0.6722855 
Function Value 
[1] 5.784796 
Gradient: 
[1] -0.5641819 -2.1742337 
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iteration = 7 
Step: 
[1]  0.13604133 -0.02206089 
Parameter: 
[1] -3.6076844  0.6502246 
Function Value 
[1] 5.764175 
Gradient: 
[1] -0.4541274 -2.2419222 
 
iteration = 8 
Step: 
[1]  0.10499324 -0.01132109 
Parameter: 
[1] -3.5026912  0.6389035 
Function Value 
[1] 5.749875 
Gradient: 
[1] -0.1843692 -1.1615320 
 
iteration = 9 
Step: 
[1] 0.010799142 0.003049408 
Parameter: 
[1] -3.4918920  0.6419529 
Function Value 
[1] 5.746656 
Gradient: 
[1] -0.02263585 -0.21858969 
 
iteration = 10 
Step: 
[1] -0.011132763  0.002875633 
Parameter: 
[1] -3.5030248  0.6448285 
Function Value 
[1] 5.746451 
Gradient: 
[1]  0.0008509039 -0.0084593736 
 
iteration = 11 
Step: 
[1] -0.0022772925  0.0004153859 
Parameter: 
[1] -3.5053021  0.6452439 
Function Value 
[1] 5.746449 
Gradient: 
[1] 0.0002068596 0.0007312231 
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iteration = 12 
Step: 
[1] -9.381231e-05  1.163371e-05 
Parameter: 
[1] -3.5053959  0.6452556 
Function Value 
[1] 5.746449 
Gradient: 
[1] 8.464233e-06 4.623324e-05 
 
iteration = 13 
Parameter: 
[1] -3.5054026  0.6452569 
Function Value 
[1] 5.746449 
Gradient: 
[1] -2.239637e-07 -1.805893e-06 
 
Relative gradient close to zero. 
Current iterate is probably solution. 
 
$minimum 
[1] 5.746449 
 
$estimate 
[1] -3.5054026  0.6452569 
 
$gradient 
[1] -2.239637e-07 -1.805893e-06 
 
$hessian 
          [,1]      [,2] 
[1,]  6.005267  31.36796 
[2,] 31.367958 194.02490 
 
$code 
[1] 1 
 
$iterations 
[1] 13 
 
 
Note:  
 
The convergence criterion was determined using the default 
parameter values for ndigit, gradtol, stepmax, gradtol, and 
iterlim. 
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Logistic Regression Example:  Solution using  user written R function for 
computing the Loglikelihood with “gradient” and “Hessian” attributes. 
 
derfs4=function(b,xx,yy,nn) 
{      
        b0 = b[1] 
        b1 = b[2] 
        c=b0+b1*xx 
        d=exp(c) 
        p=d/(1+d) 
        e=d/(1+d)^2 
        f  = -sum(log(choose(nn,yy))-nn*log(1+d)+yy*c) 
        attr(f,"gradient")=c(-sum(yy-nn*p),-sum(xx*(yy-nn*p))) 
        attr(f,"hessian")=matrix(c(sum(nn*e),sum(nn*xx*e),sum(nn*xx*e), 
                                                                                               sum(nn*xx^2*e)),2,2) 
        return(f) 
} 
    
> x 
[1] 10.2  7.7  5.1  3.8  2.6 
> y 
[1] 9 8 3 2 1 
> n 
[1] 10  9  6  8 10 
 
> nlm(derfs4,c(-3.9,.64), hessian=T, iterlim=500, xx=x, yy=y, nn=n) 
$minimum 
[1] 5.746449 
 
$estimate 
[1] -3.5054619  0.6452664 
 
$gradient 
[1] -5.751195e-05 -1.252621e-05 
 
$hessian 
          [,1]      [,2] 
[1,]  6.005193  31.36757 
[2,] 31.367567 194.02219 
 
$code 
[1] 2 
 
$iterations 
 
[1] 338 
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Logistic Example: Solution using nlm() and  symbolic derivatives obtained from 
deriv3() 
 
The following statement returns a function loglik(b, x , y, nn)  with “gradient” and 
“hessian” attributes 
 
> loglik=deriv3(y~(nn*log(1+exp(b0+b1*x))  yy*(b0+b1*x)),c("b0","b1"), 
 +   function(b,x,y,nn){}) 
 
 
Save the function in you working directory as a text file by the name loglik.R 
 
> dump("loglik","loglik.R") 
 
Now edit this file by inserting  the hi-lited stuff: 
 
loglik <-function (b, x, y, nn)  
{ 
    b0 = b[1] 
    b1 = b[2] 
    .expr2 <- b0 + b1 * x 
    .expr3 <- exp(.expr2) 
    .expr4 <- 1 + .expr3 
    .expr9 <- .expr3/.expr4 
    .expr13 <- .expr4^2 
    .expr17 <- .expr3 * x 
    .expr18 <- .expr17/.expr4 
    .value <- sum(nn * log(.expr4) - y * .expr2) 
    .grad <- array(0, c(length(.value), 2), list(NULL, c("b0",  
        "b1"))) 
    .hessian <- array(0, c(length(.value), 2, 2), list(NULL,  
        c("b0", "b1"), c("b0", "b1"))) 
    .grad[, "b0"] <- sum(nn * .expr9 - y) 
    .hessian[, "b0", "b0"] <- sum(nn * (.expr9 - .expr3 * .expr3/.expr13)) 
    .hessian[, "b0", "b1"] <- .hessian[, "b1", "b0"] <- sum(nn *  
        (.expr18 - .expr3 * .expr17/.expr13)) 
    .grad[, "b1"] <- sum(nn * .expr18 - y * x) 
    .hessian[, "b1", "b1"] <- sum(nn * (.expr17 * x/.expr4 - .expr17 *  
        .expr17/.expr13)) 
    attr(.value, "gradient") <- .grad 
    attr(.value, "hessian") <- .hessian 
    .value 
} 
 
 
 



 23

 
 
> xx 
[1] 10.2  7.7  5.1  3.8  2.6 
> yy 
[1] 9 8 3 2 1 
> nn 
[1] 10  9  6  8 10 
> 
 
 
The number of iterations recquired for convergence by nlm() is determined by the 
quantities specified for the parameters ndigit, gradtol, stepmax, steptol, and iterlim. 
Here, using the defaults it required 338 iterations to converge. 
 
> nlm(loglik,c(-3.9,.64), hessian=T, iterlim=500 ,x=xx, y=yy, nn=nn) 
$minimum 
[1] 18.87678 
 
$estimate 
[1] -3.5054619  0.6452664 
 
$gradient 
[1] -5.751168e-05 -1.252451e-05 
 
$hessian 
          [,1]      [,2] 
[1,]  6.005383  31.35395 
[2,] 31.353953 193.75950 
 
$code 
[1] 2 
 
$iterations 
[1] 338 
 
 



Concentrated or Profile Likelihood Function

The most commonly used simplification in maximum likelihood estimation is the use of a concentrated

or profile likelihood function. The parameter vector is first partitioned into two subsets α and β (say, of

dimensions p and q, respectively) and then the log-likelihood function is rewritten with two arguments,

`(θ) = `(α, β). Now suppose that, for a given value of β, the MLEs for the subset α could be found as

a function of β; that is, α̂ = α̂(β). Then the profile likelihood function is a function only of β,

`c(β) = ` [α̂(β), β] . (1)

Clearly, maximizing `c for β will maximize `(α, β) with respect to both α and β. The main advantage

is a reduction in the dimension of the optimization problem. The greatest simplifications occur when α̂

does not functionally depend on β.

For the first example, consider the basic problem Yi ∼ IIDN(µ, σ2
) for i = 1, . . . , n. Then µ̂ = Ȳ and

is independent of σ2
and we have

`c(σ) = −(n/2) log σ2 −
∑

(Yi − Ȳ )
2/(2σ2

)

This needs to be maximized only with respect to σ2
, which simplifies the problem substantially, because

it is a univariate problem. For another example, consider a modification of the simple linear regression

model

yi = α1 + α2x
β
i + ei, ei ∼ IID N(0, α3). (2)

Given β = b, the usual regression estimates can be found for α1, α2, α3, but these will all be explicit

functions of b. In fact, `c(β) will depend only on an error sum of squares, since α̂3 = SSE/n. Hence the

concentrated likelihood function becomes simply

`c(β) = constant −
n

2
log

(

SSE(β)

n

)

. (3)

The gain is that the dimension of an unconstrained (or even constrained) search has been reduced from

three (or four) dimensions to only one, and 1-dimensional searches are markedly simpler than those in

any higher dimension.

Examples:

Bates and Watts (1988, p.41) gave an example of a rather simple nonlinear regression problem with two

parameters:

yi = θ1 (1 − exp {−θ2xi}) + ei.

Given θ2, the problem becomes regression through the origin. The estimator of θ1 is simply

θ̂1 =

n
∑

i=1

ziyi

/

n
∑

i=1

z2

i where zi = 1 − exp {−θ2xi} ,

and the concentrated likelihood function is as in (3) with

SSE(θ2) =

n
∑

i=1

[

yi − θ̂1(θ2)

]2

.

Finding mle’s of a two-parameter gamma distribution

f(y |α, β) =
1

βα Γ(α)
yα−1

exp (−y/β), for α, β, and, y > 0
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provides another example. For a sample size n, the log likelihood is

`(α, β) = −nα log(β) − n log Γ(α) − (1 − α)

n
∑

i=1

log(yi) −
n
∑

i=1

yi

β
.

For a fixed value of α, the mle of β is easily found to be β̂(α) =
∑n

i=1 yi/nα. Thus the profile likelihood

is

`c(α) = −nα(log(

n
∑

i=1

yi) − log(nα)) − n log Γ(α) − (1 − α)

n
∑

i=1

log(yi) − nα

A contour plot of the 2-dimensional log likelihood surface corresponding to the cardiac data, and the

1-dimensional plot of the profile likelihood are produced below.
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