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The cumulative hazard function Λ(t) is defined by

Λ(t) =
∫

[0,t)

dF (s)
1− F (s−)

where F (·) is a CDF on the positive half line. Pan and Zhou (2002) studied the empirical

likelihood ratio in terms of of hazard for right censored data subject to the constraint of the

type
∫

g(t)dΛ(t) = θ. Here g is a given function, (later we can see that g can be predictable).

We outline a proof.

Suppose that X1, X2, . . . , Xn are i.i.d. nonnegative random variables denoting the lifetimes

with a continuous distribution function F0. Independent of the lifetimes there are censoring

times C1, C2, . . . , Cn which are i.i.d. with a distribution G0. Only the censored observations,

(Ti, δi), are available to us:

Ti = min(Xi, Ci) and δi = I[Xi ≤ Ci] for i = 1, 2, . . . n.

For the empirical likelihood in terms of hazard, we use the Poisson extension of the likeli-

hood (Murphy 1995), and it is defined as

EL(Λ) =
n∏

i=1

[∆Λ(Ti))]δi exp{−Λ(Ti)}

=
n∏

i=1

[∆Λ(Ti))]δi exp{−
∑

j:Tj≤Ti

∆Λ(Tj)}
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where ∆Λ(t) = Λ(t+)−Λ(t−) is the jump of Λ at t. (the second line assumes a discrete Λ(·)).

Let wi = ∆Λ(Ti) for i = 1, 2, . . . , n, where we notice wn = δn because the last jump of a

discrete cumulative hazard function must be one. The likelihood at this Λ can be written in

term of the jumps

EL =
n∏

i=1

[wi]δi exp{−
n∑

j=1

wjI[Tj ≤ Ti]} ,

and the log likelihood is

log EL =
n∑

i=1

δi log wi −
n∑

j=1

wjI[Tj ≤ Ti]

 .

If we max the log EL above (without constraint) we see that wi = δi
Ri

, where Ri =∑
j I[Tj ≥ Ti]. This is the well known Nelson-Aalen estimator: ∆Λ̂NA(Ti) = δi

Ri
.

The first step in our analysis is to find a (discrete) cumulative hazard function that maxi-

mizes the log EL(Λ) under the constraint∫ ∞

0
g(t)dΛ(t) = θ (1)

where g(t) is a given function satisfy some moment conditions, and θ is a given constant. The

constraint (1) can be written as (for discrete hazard)

n−1∑
i=1

δig(Ti)wi + g(Tn)δn = θ . (2)

Theorem 1 If the constraint (2) is feasible (which means the maximum problem has a solu-

tion), then the maximum of EL(Λ) under the constraint is obtained when

wi =
δi

Ri + nλg(Ti)δi

=
δi

Ri
× 1

1 + λ(δig(Ti)/(Ri/n))

= ∆Λ̂NA(Ti)
1

1 + λZi

where

Zi =
δig(Ti)
Ri/n

for i = 1, 2, . . . , n.

and λ is the solution of the following equation

n−1∑
i=1

1
n

Zi

1 + λZi
+ g(Tn)δn = θ . (3)
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Proof. Use Lagrange Multiplier to find the constrained maximum of log EL. See Pan and Zhou

(2002) for details.

In the paper, it is also showed the following Wilks theorem.

Theorem 2 Let (T1, δ1), . . . , (Tn, δn) be n pairs of random variables as defined above. Suppose

g is a left continuous function and

0 <

∫
|g(x)|m

(1− F0(x))(1−G0(x−))
dΛ(x) < ∞, m = 1, 2.

Then, θ0 =
∫

g(t)dΛ(t) will be a feasible value with probability approaching one as n →∞ and

−2 log ELR(θ0)
D−→ χ2

(1) as n →∞

where log ELR(θ0) = max log EL(with constraint(2))− log EL(Λ̂NA).

Proof. Here we briefly outline the proof. For the complete proof, see Pan and Zhou (2002).

First, we proof the following two lemmas. They are the LLN and CLT for Nelson-Aalen

estimator via counting processes technique.

Lemma 1 Under the assumption of Theorem 2, we have

1
n

n∑
i=1

Z2
i =

∫
g2(t)

R(t)/n
dΛ̂NA(t) P−→

∫
g2(x)

(1− F0(x))(1−G0(x−))
dΛ0(x)

where

R(t) =
∑

I[Ti≥t].

Lemma 2 Under the assumption of Theorem 2, we have

√
n(

1
n

n∑
i=1

Zi − θ0) =
√

n(
n∑

i=1

g(Ti)∆Λ̂NA(Ti)− θ0)
D−→ N(0, σ2

Λ(g)).

where

σ2
Λ(g) =

∫
g2(x)

(1− F0(x))(1−G0(x−))
dΛ0(x) and θ0 =

∫
g(t)dΛ0(t) .

Next, we show the solution of λ to the constraint equation (3) is

λ = λ∗ =
1
n

∑n
i=1 Zi − θ0

1
n

∑n−1
i=1 Z2

i

+ op(n−1/2) (4)
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This can be proved by an expansion of equation (3).

Define

f(λ) = log EL(wi(λ)) =
n∑

i=1

δi log wi(λ)−
∑

j

wj(λ)I[Tj ≤ Ti]


and the test statistic −2 log ELR(θ0) can be expressed as

−2 log ELR = 2[f(0)− f(λ∗)] = 2[f(0)− f(0)− λ∗f ′(0)− 1/2(λ∗)2f ′′(0) + . . .].

Straight calculation show f ′(0) = 0. Therefore

−2 log ELR = −f ′′(0)(λ∗)2 + . . . (5)

simplify it to the following

−2 log ELR(θ0) = (λ∗)2
n−1∑
i=1

Z2
i + op(1) =

√
n( 1

n

∑n
i=1 Zi − θ0)√

1
n

∑n−1
i=1 Z2

i

2

+ op(1)

Finally, by Lemma 1 and Lemma 2, we get

−2 log ELR(θ0)
D−→ χ2

(1) as n →∞ .

We can easily get more accurate result by keeping more terms in the expansion of (4), and

(5). It seems to me that we also need to get rate of the convergence in Lemma 1 and Lemma

2. Then the convergence rate of −2 log ELR(θ0) to χ2 can be obtained.

Remark: If g is a given function, it seems to me that g do not need to be even left continuous,

it just need to be a measurable function and several integrals of it are well defined.
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