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Abstract. We generalize chain enumeration in graded partially ordered sets by relaxing the graded,
poset and Eulerian requirements. The resulting balanced digraphs, which include the classical Eulerian
posets having an R-labeling, imply the existence of the (non-homogeneous) cd-index, a key invariant
for studying inequalities for the flag vector of polytopes. Mirroring Alexander duality for Eulerian
posets, we show an analogue of Alexander duality for bounded balanced digraphs. For Bruhat graphs
of Coxeter groups, an important family of balanced graphs, our theory gives elementary proofs of
the existence of the complete cd-index and its properties. We also introduce the rising and falling
quasisymmetric functions of a labeled acyclic digraph and show they are Hopf algebra homomorphisms
mapping balanced digraphs to the Stembridge peak algebra. We conjecture non-negativity of the
cd-index for acyclic digraphs having a balanced linear edge labeling.

1. Introduction

The cd-index is an important invariant for studying face incidence data of polytopes, and more
generally, chain enumeration of Eulerian posets. It is a non-commutative polynomial which removes
all the linear redundancies which hold among the flag vector entries [4] as described by the general-
ized Dehn–Sommerville relations [1]. Ehrenborg and Readdy’s discovery of the inherent coalgebraic
structure of the cd-index and the techniques developed in [29] have been applied to settle many
fundamental problems, including giving compact proofs of old results [1, 10], transparent techniques
to compute flag vectors of oriented matroids [9], explicit formulas for the toric h-vector, versions of
Stanley’s Gorenstein* conjecture [8, 10] leading up to a proof of the conjecture itself [26], new non-
trivial inequalities among the face incidence data of polytopes [22, 23] and extending classical subspace
arrangement results to other manifolds [24, 34].

There are two new developments in this area. The first is work of Ehrenborg, Goresky and Readdy,
who extend flag vector enumeration ideas to Whitney stratified spaces and quasi-graded posets [24, 32].
The very notion of enumeration is replaced with the topologically meaningful Euler-enumeration in
the case of Whitney stratified-spaces, and weighted zeta functions in the case of quasi-graded posets.
The Eulerian condition becomes a natural condition involving the Euler characteristic and weighted
zeta function, respectively. Unlike the case of polytopes and regular decompositions of spheres, the
coefficients of the cd-index can be negative, expanding the nature of questions in the field.
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The second development is Billera and Brenti’s work on the “complete” cd-index, a nonhomogeneous
extension of the cd-index [7]. It is known that the (strong) Bruhat order on a Coxeter group forms
an Eulerian poset [53], hence any interval has a cd-index. Using quasisymmetric function theory,
they prove the Bruhat graph, a directed graph which includes the cover relations of the Bruhat order
as well as “algebraic shortcuts” between elements, has a non-homogeneous cd-index. Furthermore,
they show one can compute the Kazhdan–Lusztig polynomials via this complete cd-index of Bruhat
intervals. It is exactly this paper which motivated the present authors to look for a general setting to
guarantee the existence of this non-homogeneous cd-index.

Recall a partially ordered set (poset) is graded if its elements have a well-defined distance from the
minimal element of the poset. Björner and Stanley [12, Theorem 2.7] showed that if a graded poset
has a combinatorial labeling of its cover relations known as an R-labeling, one can determine the flag
f -vector in terms of the labeling inherited by the maximal chains. When the poset is Eulerian, that
is, every interval satisfies the Euler–Poincaré relation, one can reduce this information to the classical
cd-index.

By relaxing the graded, poset and Eulerian requirements, we study a general class of labeled directed
graphs which satisfy a balanced condition. Recall a poset having an R-labeling demands that there be
exactly one rising chain in each interval of the poset and, if the poset is Eulerian, exactly one falling
chain in each interval. Our balanced condition states the number of rising paths of length k must
equal the number of falling paths of length k. This allows us to directly prove the existence of the
cd-index for balanced graphs and capture the results for Bruhat graphs as an important special case.

The presentation we give is self-contained. To underscore the connection with posets, results which
also hold for the ab- and cd-index of graded posets will be stated as separate remarks.

An overview of the paper is as follows. In Section 2 we introduce the notion of a labeled acyclic
digraph in order to model poset structure in this more general setting. An interpretation of its chain
enumeration is given in terms of directed paths in the graph. In Section 3 we then set the coalgebraic
groundwork for flag enumeration in labeled acyclic digraphs. We show the ab-index of a labeled acyclic
digraph is a coalgebra homomorphism from the linear span of bounded labeled acyclic digraphs to the
polynomial ring Z〈a,b〉; see Corollary 3.4.

We introduce the r̃ and f̃ polynomials in Section 4 to q-enumerate the rising and falling chains in
the intervals of a labeled digraph. These polynomials hark back to the theory of Coxeter groups and
Kazhdan–Lusztig polynomials; see [13, Chapter 5] as well as [42, 43]. The main result (Theorem 4.7)
gives three equivalent statements which imply the (non-homogeneous) ab-index of an acyclic digraph
can be written as a (non-homogeneous) cd-index. The key condition is that the number of rising
paths of length k equals the number of falling paths of length k. We include a second proof of one of
the implications in Theorem 4.7 which uses Hochschild cohomology.

A theory that mimics the notion of an Eulerian poset would not be complete without Alexander
duality. Recall that for an Eulerian poset P with decomposition S ∪̇T ∪̇{0̂, 1̂} and rank function ρ, the
celebrated Alexander duality states that the Möbius function values µ(0̂, 1̂) of each of the two posets

S ∪ {0̂, 1̂} and T ∪ {0̂, 1̂} are equal up to the sign (−1)ρ(P )−1. In Section 5 we introduce the notion of
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a restricted digraph. We state Alexander duality where the Möbius function is replaced by a signed
sum over falling chains.

In Section 6 we apply our results to the important family of Bruhat graphs. Using the existence of
a reflection ordering, introduced by Dyer [20], the existence of the cd-index of the Bruhat graph and
its properties follow.

In Section 7 we review the basic set-up surrounding the ring of quasisymmetric functions. For
a bounded labeled digraph we introduce the rising and falling quasisymmetric functions and relate
these with a shift of the aforementioned rising and falling polynomials. We show the rising and falling
quasisymmetric functions are Hopf algebra homomorphisms from the Hopf algebra formed by the
linear span of bounded labeled acyclic digraphs to the quasisymmetric functions. We reformulate
Theorem 4.7 in terms of Stembridge’s peak algebra [51].

Section 8 begins with the result that given any polynomial in the ring Z〈c,d〉 having non-negative
coefficients, we show how to build an Eulerian poset having this cd-polynomial.

Recall that the classical cd-index of the face lattice of a polytope, and more generally, any spherically-
shellable poset, has non-negative coefficients [50]. Non-negativity also holds for Gorenstein* posets [39].
These results form two cornerstones for the research program of classifying all the linear inequalities
satisfied by the cd-index. We conjecture non-negativity for the cd-index of a bounded labeled acyclic
digraph equipped with a balanced edge labeling that is linear; see Conjecture 8.4.

In the concluding remarks we end with open questions and research directions we are pursuing.

2. Labeled graphs

We begin by introducing a class of directed graphs in order to relax the notion of grading in a
graded partially ordered set (poset). For further details about posets, see [49, Chapter 3].

Let G = (V,E) be a directed, acyclic and locally finite graph with multiple edges allowed. Recall
that an acyclic graph does not have any directed cycles and the property of a graph being locally finite
requires that there are a finite number of paths between any two vertices. Each directed edge e has a
tail and a head, denoted respectively by tail(e) and head(e). View each directed edge as an arrow from
its tail to its head. A directed path p of length k from a vertex x to a vertex y is a list of k directed
edges (e1, e2, . . . , ek) such that tail(e1) = x, head(ek) = y and head(ei) = tail(ei+1) for i = 1, . . . , k−1.
We denote the length of a path p by `(p).

Since the graph is acyclic, it does not have any loops. Furthermore, the acyclicity condition implies
there is a natural partial order on the vertices of G by defining the order relation x ≤ y if there is a
directed path from the vertex x to the vertex y. It is straightforward to verify that this relation is
reflexive, antisymmetric and transitive. Furthermore, it allows us to define the interval [x, y] to be

[x, y] = {z ∈ V (G) : there is a directed path from x to z and a directed path from z to y}.
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We view the interval [x, y] as the vertex-induced subgraph of the digraph G, where the edges have
the same labels as in the digraph G. The locally finite condition is now equivalent to that every
interval [x, y] in the graph has finite cardinality.

Example 2.1. Consider a (locally finite) poset P and let the directed edges be the cover relations of
the poset, in other words, the Hasse diagram of P is the digraph. When we draw the Hasse diagram
of a poset we view its edges as being directed upward. Moreover, the fact the poset is locally finite
implies that the associated digraph is locally finite. Hence this is an acyclic digraph.

A relaxed notion of edge labeling is needed which will enable us to define the ab-index, and ulti-
mately, the cd-index. Let Λ be a set with a relation ∼, that is, there is a subset R ⊆ Λ × Λ such
that for i, j ∈ Λ we have i ∼ j if and only if (i, j) ∈ R. A labeling of G is a function λ from the set
of edges of G to the set Λ. Let a and b be two non-commutative variables each of degree one. For a
path p = (e1, . . . , ek) of length k, where k ≥ 1, we define the descent word u(p) to be the ab-monomial
u(p) = u1u2 · · ·uk−1, where

ui =

{
a if λ(ei) ∼ λ(ei+1),

b if λ(ei) 6∼ λ(ei+1).

Observe that the descent word u(p) has degree k − 1, that is, one less than the length of the path p.
The ab-index of an interval [x, y] is defined to be

(2.1) Ψ([x, y]) =
∑
p

u(p),

where the sum is over all directed paths p from x to y.

Example 2.2. In the case when the relation on Λ is a linear order, the digraph is the Hasse diagram
of a graded poset and every interval has a unique rising chain. This condition is the classical notion
of R-labeling introduced by Björner and Stanley [12].

In keeping with the poset motivation, we will continue to use the terminology rising and falling in
our more general setting. See the paper [14], where Björner and Wachs weakened the condition that Λ
is a linear order to a partial order. As a remark, one can further loosen the condition on the relation
on Λ so that the only labels which need to be compared are pairs of elements (λ(e), λ(f)) such that
head(e) = tail(f).

For graded posets with an R-labeling equation (2.1) gives a different definition of the notion of the
ab-index of a poset. See [28, Lemma 3.1] for more details.

Given a labeled directed graph G, define the graph G∗ by reversing all the edges, keeping the edge
labeling the same, and reversing the relation∼ on Λ, that is, for e ∈ E(G) we have headG∗(e) = tailG(e)
and tailG∗(e) = headG(e). The labeling is given by λG∗(e) = λG(e). Finally, the new relation Λ∗ is
given by i ∼∗ j if and only if j ∼ i for i, j ∈ Λ. For an ab-monomial u = u1u2 · · ·uk define the
reverse monomial by u∗ = uk · · ·u2u1 and extend linearly to an involution on the non-commutative
polynomial ring Z〈a,b〉. Observe that a path p from x to y in G corresponds to a path p∗ from y to x
in G∗. Moreover, the descent word of the path satisfies u(p∗) = u(p)∗. Finally this relation extends
to the ab-index of the entire interval [x, y], that is, Ψ([x, y]∗) = Ψ([y, x]) = Ψ([x, y])∗.
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3. Coalgebras

In this section we develop the underlying coalgebraic structure of labeled acyclic digraphs.

Let Z〈a,b〉 be the non-commutative polynomial ring in the degree 1 variables a and b with integer
coefficients. On the ring Z〈a,b〉 define a coproduct ∆ by defining it on an ab-monomial u1u2 · · ·un
by

∆(u1u2 · · ·un) =
n∑
i=1

u1 · · ·ui−1 ⊗ ui+1 · · ·un,

and extend by linearity to Z〈a,b〉. This coproduct, together with the usual multiplication, does not
form a bialgebra. Instead the Newtonian condition is satisfied:

(3.1) ∆(v · w) =
∑
w

v · w(1) ⊗ w(2) +
∑
v

v(1) ⊗ v(2) · w.

Here we use the Sweedler notation for the coproduct [38, 52]. This gives the ring Z〈a,b〉 a Newtonian
coalgebra structure.

Theorem 3.1. For a labeled acyclic digraph G with two vertices x and y, the following holds:

∆(Ψ([x, y])) =
∑
x<z<y

Ψ([x, z])⊗Ψ([z, y]).

Proof. For a path p = (e1, . . . , ek) let i(p) denote the set of interior vertices on the path, that is,
i(p) = {head(e1), . . . ,head(ek−1)}. Furthermore, for a path p from x to y and x ≤ z < w ≤ y, let
p|[z,w] denote the path restricted to the interval [z, w]. Now we have

∆(Ψ([x, y])) =
∑
p

∆(u(p))

=
∑
p

`(p)−1∑
i=1

u1(p) · · ·ui−1(p)⊗ ui+1(p) · · ·u`(p)−1(p)

=
∑
p

∑
z∈i(p)

u(p|[x,z])⊗ u(p|[z,y])

=
∑
x<z<y

∑
p:z∈i(p)

u(p|[x,z])⊗ u(p|[z,y])

=
∑
x<z<y

(∑
p1

u(p1)

)
⊗

(∑
p2

u(p2)

)
=
∑
x<z<y

Ψ([x, z])⊗Ψ([z, y]).

Here we are summing over all maximal paths p in the interval [x, y]. In the second to last equality p1

and p2 are paths in [x, z], respectively [z, y]. �



6 RICHARD EHRENBORG AND MARGARET READDY

Remark 3.2. In the case of Bruhat graphs, Theorem 3.1 was stated in [7, Proposition 2.11].

An acyclic digraph G is bounded if has a unique source and a unique sink. Following poset notation,
we denote the unique source by 0̂ and the unique sink by 1̂. For brevity, we let Ψ(G) denote Ψ([0̂, 1̂]).

For two bounded labeled acyclic digraphs G and H we define the product G ∗ H as follows. We
tacitly assume that V (G), V (H), E(G), E(H),ΛG and ΛH are disjoint. Let the vertex set of G ∗H be
the disjoint union of V (G)−{1̂} and V (H)−{0̂}, that is, V (G∗H) = (V (G)−{1̂G})∪(V (H)−{0̂H}).
Let the edge set be

E(G ∗H) = {e ∈ E(G) : head(e) 6= 1̂G}
∪ {f ∈ E(H) : tail(f) 6= 0̂H}
∪ {(e, f) ∈ E(G)× E(H) : head(e) = 1̂G, tail(f) = 0̂H},

where the new edge (e, f) is defined by tail((e, f)) = tail(e) and head((e, f)) = head(f). Let the label
set Λ be defined by Λ = ΛG ∪ΛH ∪ΛG×ΛH , with the relation on Λ given by the following four cases:

λ ∼ µ if λ, µ ∈ ΛG, λ ∼ΛG
µ,

λ ∼ (µ1, µ2) if λ, µ1 ∈ ΛG, µ2 ∈ ΛH , λ ∼ΛG
µ1,

(λ1, λ2) ∼ µ if λ1 ∈ ΛG, λ2, µ ∈ ΛH , λ2 ∼ΛH
µ,

λ ∼ µ if λ, µ ∈ ΛH , λ ∼ΛH
µ.

Finally, define the labeling λ : E(G ∗H) −→ Λ by the three cases
λ(e) = λG(e) if e ∈ E(G),

λ((e, f)) = (λG(e), λH(f)) if (e, f) ∈ E(G)× E(H),

λ(f) = λH(f) if f ∈ E(H).

This product is the labeled analogue of the Stanley product of posets; see [50].

Theorem 3.3. Let G and H be two bounded labeled acyclic digraphs, where each has a unique source
and unique sink. Then the ab-index satisfies

Ψ(G ∗H) = Ψ(G) ·Ψ(H),

where ∗ is the labeled analogue of the Stanley product of posets.

Proof. Each directed path p from 0̂ to 1̂ in G ∗H has the form p = (e1, . . . , ei−1, (ei, f1), f2, . . . , fj),
which factors into the two paths p1 = (e1, . . . , ei−1, ei) and p2 = (f1, f2, . . . , fj) in G, respectively H.
The descent word also factors as u(p) = u(p1)·u(p2). By summing over all paths, the result follows. �

Let G be the linear span of bounded labeled acyclic digraphs with 0̂ 6= 1̂. The space G is a Newtonian
coalgebra with the product ∗ and the coproduct

∆(G) =
∑

0̂<z<1̂

[0̂, z]⊗ [z, 1̂].

Theorems 3.1 and 3.3 imply the following corollary.
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Corollary 3.4. The ab-index is a coalgebra homomorphism from G, the linear span of bounded labeled
acyclic digraphs with 0̂ 6= 1̂, to the coalgebra Z〈a,b〉.

On the coalgebra Z〈a,b〉 define an involution u 7−→ u by uniformly exchanging a’s and b’s. Observe
this involution is a Newtonian coalgebra automorphism, that is, the product and the coproduct satisfy

u · v = u · v and ∆(u) =
∑
u

u(1) · u(2).

Define c = a + b and d = ab + ba. Observe that deg(c) = 1 and deg(d) = 2. In what follows
we need to consider a linear order on cd-monomials of degree n. Let u and v be two cd-monomials
u = ci0dci1d · · ·dcip and v = cj0dcj1d · · ·dcjq . If u contains fewer occurrences of the variable d
than v (that is, p < q), then set u < v. If u contains the same number of occurrences of the variable d
as v (p = q), and the vector (i0, i1, . . . , ip) <lex (j0, j1, . . . , jp) in lexicographic order <lex, then set
u < v.

Lemma 3.5. Let R be a ring and let S be a subring of R. Then the following intersection holds:

R〈c,d〉 ∩ S〈a,b〉 = S〈c,d〉.

In other words, when any cd-polynomial w with coefficients in R is expanded as an ab-polynomial and
has coefficients in the subring S, then all the coefficients of w, written as a cd-polynomial, already
belong to the subring S.

Proof. The containment R〈c,d〉∩S〈a,b〉 ⊇ S〈c,d〉 is clear. It is enough to prove the reverse contain-
ment for homogeneous cd-polynomials of degree n. To derive a contradiction, assume that there is a
cd-polynomial w belonging to R〈c,d〉∩S〈a,b〉 but not to S〈c,d〉. This means there is a cd-monomial
in w whose coefficient does not lie in the subring S. Let u = ci0dci1d · · ·dcip be the first such cd-
monomial in w with respect to the previously described linear order. Consider the ab-monomial
z = ai0baai1ba · · ·baaip . The ab-monomial z occurs when expanding u into an ab-polynomial. Ob-
serve that any other cd-monomial v that has z occurring in its ab-expansion must satisfy v < u in
the linear order. Note that the coefficient of z in the ab-polynomial w lies in the subring S. This
coefficient is the sum of certain coefficients of the cd-polynomial w where all but one (the coefficient of
u) belong to the subring S. This contradicts the assumption that the coefficient of u does not belong
to the subring. Hence the intersection holds. �

4. The cd-index

It is now natural to ask when the ab-index of a directed graph can be written as a cd-index, that
is, when is it an element of Z〈c,d〉 with c = a + b and d = ab + ba. To do this, we introduce the

rising and falling polynomial of an interval [x, y] of a directed graph, denoted r̃x,y(q) and f̃x,y(q). After
investigating their properties, we relate these polynomials with the aforementioned ability to express
the non-homogeneous ab-index of as a non-homogeneous cd-index.
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A directed path p = (e1, e2, . . . , ek) in a labeled digraph G is called rising if λ(ei) ∼ λ(ei+1) for all
i = 1, . . . , k − 1. Similarly, a path p is called falling if λ(ei) 6∼ λ(ei+1) for all i = 1, . . . , k − 1. For
x < y let r̃x,y(q) be the polynomial

r̃x,y(q) =
∑

p∈R(x,y)

q`(p)−1,

where the sum ranges over all rising paths p from x to y. Similarly, let f̃x,y(q) be the polynomial

f̃x,y(q) =
∑

p∈F(x,y)

q`(p)−1,

where the sum ranges over all falling paths p from x to y.

Define two algebra maps κ and λ on Z〈a,b〉 by letting

κ(a) = a− b, κ(b) = 0, κ(1) = 1,
λ(a) = 0, λ(b) = b− a, λ(1) = 1.

The map κ appeared first in the paper [29, Section 10], whereas the λ map is more recent; see [47,

Section 2.2.2]. Observe these two maps are related by κ(u) = λ(u). The κ and λ maps allows one to

recapture the r̃- and f̃ -polynomials from the ab-index Ψ([x, y]) as follows.

Lemma 4.1. For an interval [x, y] in a labeled digraph G,

κ(Ψ([x, y])) = r̃x,y(a− b),(4.1)

λ(Ψ([x, y])) = f̃x,y(b− a).(4.2)

Proof. Since κ(b) = 0, the algebra map κ applied to an ab-monomial only preserves the pure a-terms,
and then replaces each a with a − b. Hence κ(Ψ([x, y])) enumerates the rising chains. A symmetric
argument proves the second identity. �

Lemma 4.2. For any ab-polynomial u the following two identities hold:

u = κ(u) +
∑
u

κ(u(1)) · b · u(2),(4.3)

u = λ(u) +
∑
u

λ(u(1)) · a · u(2).(4.4)

Proof. Since equation (4.3) is linear in u, it is enough to prove it for ab-monomials. We proceed
by induction on the degree of an ab-monomial. The three base cases u = 1, u = a and u = b are
straightforward to verify. Assume now that equation (4.3) holds for the ab-monomials v and w. Then
it also holds for the product v ·w by the following calculation. The right-hand side of the identity (4.3)
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in the case u = v · w is equal to

κ(v · w) +
∑
w

κ(v · w(1)) · b · w(2) +
∑
v

κ(v(1)) · b · v(2) · w

= κ(v) ·

(
κ(w) +

∑
w

κ(w(1)) · b · w(2)

)
+
∑
v

κ(v(1)) · b · v(2) · w

= κ(v) · w +
∑
v

κ(v(1)) · b · v(2) · w

= v · w.

The second identity (4.4) follows by applying the involution u 7−→ u and the relation κ(u) = λ(u). �

Remark 4.3. Equation (4.3) is really Stanley’s recursion [50] for the ab-index of a graded poset with
rank function ρ, that is,

Ψ([x, y]) = (a− b)ρ(x,y)−1 +
∑
x<z<y

(a− b)ρ(x,z)−1 · b ·Ψ([z, y]).

This recursion follows directly by conditioning on the first non-zero element in a chain. Equation (4.3)

can be proven by using the fact that κ(Ψ([x, y])) = (a − b)ρ(x,y)−1, the ab-index is a coalgebra
homomorphism [29], and the ab-indexes of graded posets span Z〈a,b〉.

Remark 4.4. The coalgebra Z〈a,b〉 does not have a counit. Philosophically speaking, the two
identities (4.3) and (4.4) are a replacement for the defining relation of the counit since they both allow
us to recapture the polynomial u after applying the coproduct ∆.

Recall that the two non-commutative variables c and d are defined by c = a+b and d = a ·b+b ·a,
with c of degree 1 and d of degree 2. The next lemma shows that ab-polynomials of a certain form
are indeed cd-polynomials.

Lemma 4.5. Let p(x) and q(x) be two polynomials in Z[x] such that their odd degree terms agree,
that is, p(x)− p(−x) = q(x)− q(−x). Then

p(a− b) + q(b− a) ∈ Z〈c,d〉,(4.5)

p(a− b) · b + p(b− a) · a ∈ Z〈c,d〉.(4.6)

Proof. First note that (a − b)2·k = (b − a)2·k = (c2 − 2 · d)k and (a − b)2·k+1 + (b − a)2·k+1 = 0.
Hence by linearity it follows that the polynomial in (4.5) is a cd-polynomial for all polynomials
p(x) and q(x) satisfying the condition of the lemma. The fact that the polynomial in (4.6) is a cd-
polynomial follows again by linearity and by considering the parity of the power of the monomial xn.
For even powers we have (a− b)2·k · b + (b− a)2·k · a = (c2 − 2 · d)k · c and for odd powers we have
(a− b)2·k+1 · b + (b− a)2·k+1 · a = −(c2 − 2 · d)k+1. �

Remark 4.6. Equations (4.5) and (4.6) in Lemma 4.5 can be viewed as linearizations of statements
due to Stanley [50].
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Figure 1. Two balanced directed graphs where the relation on the labeled set Λ =
{1, 2, 3} is the natural linear order. Their respective cd-indexes are 2 · c + 3 and 5 · d.
These two examples show that the cd-index of a graph is not necessarily homogeneous
and that the coefficient of the c-power term is not necessarily 1.

We now come to the main result of this section.

Theorem 4.7. For a labeled acyclic digraph G, the following three statements are equivalent:

(i) For every interval [x, y] in the digraph G and for every non-negative integer k, the number
of rising paths from x to y of length k is equal to the number of falling paths from x to y of
length k.

(ii) For every interval [x, y] in the digraph G and for every even positive integer k, the number
of rising paths from x to y of length k is equal to the number of falling paths from x to y of
length k.

(iii) The ab-index of every interval [x, y] in the digraph G, where x < y, is a polynomial in Z〈c,d〉.

Definition 4.8. A labeled acyclic digraph G is said to be balanced if it satisfies condition (i) in
Theorem 4.7. Such a labeling is called a balanced labeling.

A different way to express the balanced condition is that r̃x,y(q) = f̃x,y(q) for all pairs of elements x
and y such that x < y.

Example 4.9. See Figure 1 for two examples of balanced digraphs and their corresponding cd-indexes.
In Figure 2 we give a labeled digraph with two different relations on the underlying label set. Each
yields a balanced digraph. Note the resulting cd-indexes differ, with the second relation yielding a
negative coefficient.

Remark 4.10. Condition (ii), that is, it suffices to check the balanced condition for paths of even
length, has a corresponding statement for graded posets. A graded poset P of odd rank satisfying that
every proper interval of P is Eulerian is also an Eulerian poset. See [49, Chapter 3, Exercise 69(c)].

Remark 4.11. Consider graded posets with an R-labeling. In this case, the balanced condition
implies that the number of rising chains (namely 1) in an interval [x, y] of rank k + 1 is equal to the
number of falling chains, that is, 1 = h∅([x, y]) = h{1,...,k}([x, y]). By Hall’s theorem on the Möbius

function, this can be stated as µ(x, y) = (−1)ρ(x,y). Since this relation holds for all intervals [x, y], this
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r
r
r
r

β

α γ

β Relation (i): α ∼ β ∼ γ
γ 6∼ β 6∼ α

Relation (ii): α ∼ β ∼ α
γ 6∼ β 6∼ γ

Figure 2. A labeled directed graph and two different relations on the label set Λ =
{α, β, γ}. Both relations yield a balanced graph. Relation (i) is the linear order and
the cd-index is ab+ba = d, whereas relation (ii) gives the cd-index aa+bb = c2−d.

implies that the poset is Eulerian and hence the cd-index exists. This result is classical; see [4, 50].
This is reminiscent of the work in [11], where it was shown that if the Euler–Poincaré relation holds
for every interval in a poset then the poset satisfies the generalized Dehn–Sommerville relations and
has a cd-index.

Proof of Theorem 4.7. The implication that (i) =⇒ (ii) is clear. For (iii) =⇒ (i), observe that the
variables c and d are symmetric in a and b. Hence r̃x,y(q) = Ψ([x, y])|a=q,b=0 = Ψ([x, y])|c=q,d=0 =

Ψ([x, y])|a=0,b=q = f̃x,y(q).

Finally, assume that (ii) is true and we will prove the existence of the cd-index (iii). The proof is
by induction on the longest path in the interval [x, y]. The base case is when the length of the longest
path is 1. In this case the cd-index is just the number of edges between x and y. Assume now that
the cd-index exists for all subintervals in [x, y]. Add equations (4.3) and (4.4) to obtain

2 · u = κ(u) + λ(u) +
∑
u

(
κ(u(1)) · b + λ(u(1)) · a

)
· u(2).

Now apply this equation to u = Ψ([x, y]), the ab-index of the entire interval [x, y]. Since the ab-index
is a coalgebra homomorphism, we have that

2 ·Ψ([x, y]) = r̃x,y(a− b) + f̃x,y(b− a) +
∑
x<z<y

(
r̃x,z(a− b) · b + f̃x,z(b− a) · a

)
·Ψ([z, y]).

By the induction hypothesis we know that Ψ([x, z]) and Ψ([z, y]) are both cd-polynomials with integer

coefficients. By the implication (iii) =⇒ (i), we have that r̃x,z(q) = f̃x,z(q). Thus by equation (4.6)
of Lemma 4.5, we know that the term inside the summation sign is a cd-polynomial with integer
coefficients. Similarly, by equation (4.5) of the same lemma, the sum of the two terms outside the
summation sign is a cd-polynomial with integer coefficients. Hence the expression 2 · Ψ([x, y]) is a
cd-polynomial with integer coefficients. By Lemma 3.5 with R = Q and S = Z, we conclude that the
cd-polynomial Ψ([x, y]) has integer coefficients. �

Remark 4.12. The existence of the cd-index for Eulerian posets can be proved in a similar manner.
Observe that for any interval [x, y] in a graded poset we have that λ(Ψ([x, y])) = (−1)ρ(x,y) · µ(x, y) ·
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(b− a)ρ(x,y)−1. Hence for an interval [x, y] which satisfies the Eulerian condition we have that

κ(Ψ([x, y])) = (a− b)ρ(x,y)−1,

λ(Ψ([x, y])) = (b− a)ρ(x,y)−1.

Now proceed as in the proof of Theorem 4.7.

A different way to prove the implication (ii) =⇒ (iii) in Theorem 4.7 is to use the homology
techniques developed in [30]. Let R be a commutative ring with a unit and let A be an R-module

with a coassociative coproduct ∆. Let dn : A⊗n −→ A⊗(n+1) denote the map

dn =
∑

i+j=n−1

(−1)i · id⊗i ·∆ · id⊗j .

The coassociativity of the coproduct ∆ implies that dn ◦ dn+1 = 0, that is, dn is the boundary map of
a chain complex. In [30] the Hochschild cohomology is computed for the chain complex

(4.7) 0 −→ A
d1−→ A⊗2 d2−→ A⊗3 −→ · · ·

when A is the Newtonian coalgebra R〈c,d〉. Theorem 4.1 in [30] states when the ring R has 2 as a
unit, the cohomology vanishes everywhere except in the bottom cohomology. Armed with this result,
we can give a different proof.

Second proof of the implication (ii) =⇒ (iii) in Theorem 4.7. Let R be a ring that contains the inte-
gers and has 2 as a unit. (One such example is R = Q.) The proof is again by induction on the longest
path in the interval [x, y]. Since the ab-index is a coalgebra homomorphism and by the induction
hypothesis, we have that

∆(Ψ([x, y])) =
∑
x<z<y

Ψ([x, z])⊗Ψ([z, y]) ∈ R〈c,d〉 ⊗R〈c,d〉.

Since ∆ is coassociative, we also have d2(∆(Ψ([x, y])) = 0, that is, the element ∆(Ψ([x, y])) =
d1(Ψ([x, y])) lies in the kernel of the map d2. The chain complex (4.7) is exact at this point, so
there is an element w ∈ R〈c,d〉 such that ∆(w) = d1(w) = ∆(Ψ([x, y])). Hence w and Ψ([x, y])) differ
by an element in the kernel of ∆ : R〈a,b〉 −→ R〈a,b〉 ⊗ R〈a,b〉. The kernel of ∆ is R[a− b], so we
have that Ψ([x, y])− w = p(a− b) for some polynomial p(x).

Let n be an odd positive integer. Condition (ii) states that the number of rising paths from x to y
of length n+1 is equal to the number of falling paths from x to y of length n+1. This is equivalent to
the condition that the coefficients of an and bn in Ψ([x, y]) are identical. Since w is a cd-polynomial,
the coefficients of an and bn are also the same. Hence the coefficients of an and bn in p(a − b) are
the same, proving that the polynomial p only has even degree terms, that is, p(a−b) is a polynomial
in the variable (a−b)2 = c2− 2 ·d. Hence Ψ([x, y]) belongs to R〈c,d〉. Again by Lemma 3.5 we have
Ψ([x, y]) ∈ Z〈c,d〉. �
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Figure 3. The Boolean algebra G = B3 with its classical R-labeling λ(I → I ∪̇
{i}) = i, and the two restricted digraphs GS and GT , where S = {{1}, {1, 3}} and
T = {{2}, {3}, {1, 2}, {2, 3}}. Observe that GS has no falling paths, whereas GT has

two falling paths of lengths 2 and 3. We have f̃GS
(q) = 0 and f̃GT

(q) = q+q2, implying

f̃GS
(−1) = 0 and f̃GR

(−1) = 0.

5. Alexander duality

In this section we assume all the digraphs under consideration are bounded with minimal element 0̂
and maximal element 1̂. For a labeled acyclic digraph G with vertex set V , we define the restricted
digraph GS where S is a subset of V − {0̂, 1̂}. The edge label set is given by

Λ+ =
⋃
n≥1

Λn,

and the relation ∼ on Λ+ is (λ1, . . . , λm) ∼ (µ1, . . . , µn) if and only if λm ∼ µ1. The vertex set
of GS is S ∪ {0̂, 1̂}. For every rising path p = (e1, . . . , ek) in the digraph G which starts and ends in
S ∪ {0̂, 1̂} but none of the intermediate vertices are in S, that is, tail(e1), head(ek) ∈ S ∪ {0̂, 1̂} but
head(e2), . . . ,head(ek−1) 6∈ S, let there be a directed edge in GS from tail(e1) to head(ek) with the
label (λ(e1), . . . , λ(ek)) in Λ+.

For two vertices x and y in the restricted graph GS observe that the number of rising paths from x
to y is the same as the number of rising paths in the graph G. This follows since a path in GS
corresponds to a path in G as follows. Let p′ = (e′1, . . . , e

′
j) be a path in GS . We obtain a path p in G

by concatenating the rising paths that are associated with the edges e′i. Furthermore the condition
that the path p′ is rising in GS is exactly that the path p is rising in G, since the only condition that
needs to be verified is that p is rising at the gluing vertices head(e′1), . . . ,head(e′j−1).

Let `(G) denote the length of the longest path in the digraph G. We say that an acyclic digraph
has the parity condition if the length of every path from the source 0̂ to the sink 1̂ has the same parity.
Then in a digraph which has the parity condition, the length of any path from 0̂ to 1̂ is congruent
to `(G) modulo 2.
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We can now formulate Alexander duality for balanced digraphs. See Figure 3 for an illustration of
this theorem.

Theorem 5.1 (Alexander duality for balanced digraphs). Let G be a balanced acyclic digraph that
satisfies the parity condition. Let the vertex set have the partition V = S ∪̇T ∪̇ {0̂, 1̂}. Then the falling
paths in the two restricted digraph GS and GT satisfy the identity

f̃GS
(−1) = (−1)`(G)−1 · f̃GT

(−1).

Before proving this theorem, we must establish one more result. For a path p = (e1, . . . , ek)
in the digraph G, recall that i(p) is the set of all interior vertices of the path, that is, i(p) =
{head(e1), . . . ,head(ek−1)}. Note that |i(p)| = `(p) − 1. Furthermore, let Asc(p) and Des(p) denote
the set of vertices where the path p has ascents, respectively, descents, that is,

Asc(p) = {head(ei) : λ(ei) ∼ λ(ei+1)},
Des(p) = {head(ei) : λ(ei) 6∼ λ(ei+1)}.

Directly i(p) is the disjoint union of Asc(p) and Des(p).

Proposition 5.2. Let G be a bounded labeled acyclic digraph such that in every interval the number
of rising paths equals the number of falling paths. Let the vertex set of G have the partition V =
S ∪̇ T ∪̇ {0̂, 1̂}. Then the following two sums are equal:

∑
p

Asc(p)⊆T
Des(p)⊆S

(−1)|i(p)∩S| =
∑
p

Asc(p)⊆S
Des(p)⊆T

(−1)|i(p)∩S|.

Proof. Let A(S) and B(S) denoted the left-hand side of the identity, respectively, the right-hand side.
The proof is by double induction. First we induct over the longest path in the digraph. Here the
induction base is `(G) = 1, that is, the graph consists only of the source and the sink. Each path has
length 1 and is both rising and falling. Thus the statement is immediate.

Now assume that the statement holds for all digraphs of length less than `(G). We induct on
the set S. The induction basis is when S is empty. Then A(∅) and B(∅) are the number of rising,
respectively, falling chains in the graph G. The balanced condition implies that they are equal,
completing the induction basis.
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For the induction step, assume that A(S) = B(S) for a set S. We will prove it for S ∪ {x} where x
is an element not in S. Observe that

A(S ∪ {x})−A(S) =
∑
p

Asc(p)⊆T−{x}
x∈Des(p)⊆S∪{x}

(−1)|i(p)∩(S∪{x})| −
∑
p

x∈Asc(p)⊆T
Des(p)⊆S

(−1)|i(p)∩S|

= −
∑
p

Asc(p)⊆T−{x}
x∈Des(p)⊆S∪{x}

(−1)|i(p)∩S| −
∑
p

x∈Asc(p)⊆T
Des(p)⊆S

(−1)|i(p)∩S|.

Combining these two sums we obtain a sum over all paths p through the vertex x such that Asc(p)−
{x} ⊆ T and Des(p)−{x} ⊆ S. That is, there is no condition on the path at the vertex x. Hence any
such path is the concatenation of a path p1 in [0̂, x] and a path p2 in [x, 1̂]. Using that |i(p) ∩ S| =
|i(p1) ∩ S|+ |i(p2) ∩ S|, the difference A(S ∪ {x})−A(S) is given by

A(S ∪ {x})−A(S) = −
∑
p1

Asc(p1)⊆T
Des(p1)⊆S

(−1)|i(p1)∩S| ·
∑
p2

Asc(p2)⊆T
Des(p2)⊆S

(−1)|i(p2)∩S|

= −A[0̂,x](S ∩ (0̂, x)) ·A[x,1̂](S ∩ (x, 1̂)),

where the first sum is over paths p1 in [0̂, x] and the second sum is over paths p2 in [x, 1̂]. By applying
the first induction hypothesis to the smaller digraphs [0̂, x] and [x, 1̂] we have

A(S ∪ {x})−A(S) = −B[0̂,x](S ∩ (0̂, x)) ·B[x,1̂](S ∩ (x, 1̂))

= −
∑
p1

a(p1)⊆S
d(p1)⊆T

(−1)|i(p1)∩S| ·
∑
p2

a(p2)⊆S
d(p2)⊆T

(−1)|i(p2)∩S|

= −
∑
p

x∈i(p)
Asc(p)−{x}⊆S
Des(p)−{x}⊆T

(−1)|i(p)∩S|

=
∑
p

x∈Asc(p)⊆S∪{x}
Des(p)⊆T−{x}

(−1)|i(p)∩(S∪{x})| −
∑
p

Asc(p)⊆S
x∈Des(p)⊆T

(−1)|i(p)∩S|

= B(S ∪ {x})−B(S).

Hence A(S ∪ {x}) = B(S ∪ {x}) completing the induction. �

The statement of Proposition 5.2 is not symmetric in S as the following corollary illustrates. Also
note the assumptions in Proposition 5.2 are not as strict as the balanced condition.
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Corollary 5.3. Let G be a labeled acyclic digraph such that in every interval the number of rising
paths equals the number of falling paths. Then following two alternating sums agree:∑

p rising

(−1)`(p) =
∑

p falling

(−1)`(p).

Proof. Take T = ∅ in Proposition 5.2. �

Proof of Theorem 5.1. Expanding f̃GS
(−1) we have

f̃GS
(−1) =

∑
p′

(−1)`(p
′)−1,

where the sum is over all falling paths p′ in GS . By replacing each edge in the path p′ with the
associated rising path in G, we obtain a path p in the digraph G such that Asc(p) ⊆ T and Des(p) ⊆ S.
Hence

f̃GS
(−1) =

∑
p

Asc(p)⊆T
Des(p)⊆S

(−1)|i(p)∩S|.

By a symmetric argument we have

(−1)`(G)−1 · f̃GT
(−1) = (−1)`(G)−1 ·

∑
p

Asc(p)⊆S
Des(p)⊆T

(−1)|i(p)∩T | =
∑
p

Asc(p)⊆S
Des(p)⊆T

(−1)|i(p)∩S|,

where we used the parity condition that |i(p) ∩ S|+ |i(p) ∩ T | = i(p) ≡ `(G)− 1 mod 2. The duality
result now follows from Proposition 5.2. �

6. Application to Bruhat graphs

An important application of balanced labeled graphs is to the family of Bruhat graphs. In this
section we give a brief overview of Bruhat graphs. For a more complete description of Coxeter systems,
we refer the reader to the book of Björner and Brenti [13].

Let (W,S) be a Coxeter system, where W denotes a (finite or infinite) Coxeter group with gener-
ators S and `(u) denotes the length of a group element u. Let T be the set of reflections, that is,
T = {w · s · w−1 : s ∈ S,w ∈ W}. The Bruhat graph has the group W as its vertex set and its set
of labels Λ is the set of reflections T . The edges and their labeling are defined as follows. There is a
directed edge from u to v labeled t if u · t = v and `(u) < `(v). The underlying poset of the Bruhat
graph is called the (strong) Bruhat order. It is important to note that every interval of the Bruhat

order is Eulerian, that is, every interval [x, y] has Möbius function given by µ(x, y) = (−1)ρ(y)−ρ(x),
where ρ denotes the rank function.
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The motivation for studying the cd-index of Bruhat graphs is that the cd-index of the interval [u, v]
determines the Kazhdan–Lusztig polynomial Pu,v(q). See [7, Section 3]. The first step is to define the
R-polynomials Ru,v(q). See [13, Theorem 5.1.1] for further details.

Theorem 6.1. There is a unique family of polynomials {Ru,v(q)}u,v∈W with integer coefficients sat-
isfying the following conditions:

(i) Ru,v = 0 if u 6≤ v,
(ii) Ru,v = 1 if u = v, and
(iii) If s ∈ S and `(v · s) < `(v) then

Ru,v(q) =

{
Rus,vs(q) if `(u · s) < `(u),

q ·Rus,vs(q) + (q − 1) ·Ru,vs(q) if `(u · s) > `(u).

A combinatorial interpretation of the R-polynomials is given by Dyer [20]. See also [13, Proposi-
tion 5.3.1 and Theorem 5.3.4]. On the set of reflections there exist conditions for a total ordering. An
ordering satisfying these conditions is called a reflection ordering. The fact that a reflection ordering
exists follows from [13, Proposition 5.2.1]. Dyer’s interpretation is

Ru,v(q) = q`(u,v)/2 · R̃u,v
(
q1/2 − q−1/2

)
,

where the R̃-polynomials are defined in equation (7.2) with respect to a reflection ordering of the set
of reflections T .

We can now state and give a concise proof of the first main result from [7], namely the existence of
the complete cd-index of the Bruhat order. We prefer to call it the cd-index of the Bruhat graph to
distinguish it from the cd-index of the Bruhat order.

Theorem 6.2 (Billera–Brenti). For an interval [u, v] in the Bruhat order, where u < v, the following
three conditions hold:

(i) The interval [u, v] in the Bruhat graph has a cd-index Ψ([u, v]).
(ii) Restricting the cd-index Ψ([u, v]) to those terms of degree `(v)− `(u)− 1 equals the cd-index

of the graded poset [u, v].
(iii) The degree of a term in the cd-index Ψ([u, v]) is less than or equal to `(v)− `(u)− 1 and has

the same parity as `(v)− `(u)− 1.

Proof. The reverse of a reflection ordering is also reflection ordering. Hence the number of rising
chains of length k is equal to the number of falling chains of the same length. Thus part (i) follows
from Theorem 4.7. Part (ii) follows from the fact that when one restricts the labeling to the poset
structure of one interval [u, v], that is, only considering the cover relations, the reflection ordering is
an R-labeling. Part (iii) follows from the fact that the Bruhat graph is bipartite. �
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7. Quasisymmetric functions

In this section we review the basic set-up surrounding the ring of quasisymmetric functions. For
a bounded labeled digraph we introduce the rising and falling quasisymmetric functions and relate
these with a shift of the aforementioned rising and falling polynomials. We show the rising and falling
quasisymmetric functions are Hopf algebra homomorphisms from the Hopf algebra formed by the
linear span of bounded labeled acyclic digraphs to the quasisymmetric functions. We then reformulate
Theorem 4.7 in terms of the peak algebra.

The connection between flag f -vectors of graded posets and quasisymmetric functions was developed
by Ehrenborg [21]. The companion theory for edge labeled posets and quasisymmetric functions is due
to Bergeron and Sottile [6]. The peak algebra was introduced by Stembridge [51]. The link between the
peak algebra and the quasisymmetric functions of Eulerian posets was made by Bergeron, Mykytiuk,
Sottile and van Willigenburg in [5].

Let Σn denote the set of all compositions of n, that is, all sequences α = (α1, α2, . . . , αm) of
positive integers such that α1 + α2 + · · · + αm = n. We form Σn into a poset by defining the cover
relation (α1, . . . , αi + αi+1, . . . , αm) ≺ (α1, . . . , αi, αi+1, . . . , αm). Observe that the minimal element
is the composition (n) and the maximal element is the composition (1, 1, . . . , 1). In fact, for n ≥ 1,
the poset Σn is isomorphic to the Boolean algebra Bn−1. Note also that Σ0 consists of the unique
composition of the integer 0. Especially, note that each composition α in the poset Σn has a unique
complement that we denote by αc. To find the complement, write the composition using commas,
plus signs and 1’s, and exchange the commas and plus signs. As an example, the complement of
(3, 1, 2) = (1 + 1 + 1, 1, 1 + 1) is (1, 1, 1 + 1 + 1, 1) = (1, 1, 3, 1). Finally, let Σ = ∪n≥0Σn.

A function f in the ring Z[[w1, w2, . . .]] of power series with bounded degree is called quasisymmetric
if for any sequence of positive integers α1, α2, . . . , αm we have[

wα1
i1
· · ·wαm

ik

]
f =

[
wα1
j1
· · ·wαm

jk

]
f

whenever i1 < · · · < im and j1 < · · · < jm, and where [wα]f denotes the coefficient of wα in f . Denote
by QSym ⊆ Z[[w1, w2, . . .]] the ring of quasisymmetric functions.

For a composition α = (α1, . . . , αm) the monomial quasisymmetric function Mα is given by

Mα =
∑

i1<···<im

wα1
i1
· · ·wαm

im
.

The monomial quasisymmetric functions Mα indexed by the compositions α in Σ form a basis for the
quasisymmetric functions. A different basis is given by the fundamental quasisymmetric functions Lα.
For fixed composition α, the quasisymmetric function Lα is defined by the sum

Lα =
∑
α≤β

Mβ.
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The quasisymmetric functions also form a Hopf algebra where the coproduct is given by

∆(M(α1,...,αm)) =
m∑
i=0

M(α1,...,αi) ⊗M(αi+1,...,αm).

A different way to view this coproduct is that it is equivalent to the substitution

∆(f(w1, w2, . . .)) = f(w1 ⊗ 1, w2 ⊗ 1, . . . , 1⊗ w1, 1⊗ w2, . . .).

Malvenuto and Reutenauer [44] defined an automorphism ω on quasisymmetric functions by the
relation

ω(Lα) = Lαc .

The involution ω on QSym corresponds to the involution u 7−→ u in Z〈a,b〉. The antipode on the
Hopf algebra on quasisymmetric functions is given by

S(Mα) = (−1)n · ω(Mα∗),

where α = (α1, . . . , αm) is a composition of n and α∗ denotes the reverse composition (αm, . . . , α1).

For a sequence of labels λ = (λ1, λ2, . . . , λn) of length n, we define two compositions ρR(λ) and ρF (λ)
of n. The composition ρR(λ) records the rising runs in the sequence λ, that is, ρR(λ) = (ρ1, ρ2, . . . , ρm)
if

λ1 ∼ · · · ∼ λρ1 6∼ λρ1+1 ∼ · · · ∼ λρ1+ρ2

6∼ λρ1+ρ2+1 ∼ · · · ∼ λρ1+···+ρm−1

6∼ λρ1+···+ρm−1+1 ∼ · · · ∼ λn,

where
∑m

i=1 ρi = n. Similarly, let ρF (λ) record the falling runs in the sequence, that is, if ρF =
(ρ1, ρ2, . . . , ρm) we have

λ1 6∼ · · · 6∼ λρ1 ∼ λρ1+1 6∼ · · · 6∼ λρ1+ρ2

∼ λρ1+ρ2+1 6∼ · · · 6∼ λρ1+···+ρm−1

∼ λρ1+···+ρm−1+1 6∼ · · · 6∼ λn.

Observe that in the poset Σn the two compositions ρR(λ) and ρF (λ) are complements of each other,
that is, (ρR(λ))c = ρF (λ).

For a bounded labeled digraph G define the rising and falling quasisymmetric functions by

(7.1) FR(G) =
∑
p

LρR(λ(p)) and FF (G) =
∑
p

LρF (λ(p)),

where each sum is over all paths p from 0̂ to 1̂ in the digraph G. Since the two compositions ρR(λ)
and ρF (λ) are complements, directly we have that the two quasisymmetric functions are related by
the automorphism ω, that is,

ω(FR(G)) = FF (G)).
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Similar to the notion of the two polynomials r̃x,y(q) and f̃x,y(q), for x ≤ y define the two polynomials

R̃x,y(q) and F̃x,y(q) by

(7.2) R̃x,y(q) =
∑
p

q`(p) and F̃x,y(q) =
∑
p

q`(p),

where the sum ranges over all rising, respectively falling, paths from x to y. Directly we have the

relations R̃x,y(q) = q · r̃x,y(q) and F̃x,y(q) = q · f̃x,y(q) for x < y.

Proposition 7.1. For a bounded labeled digraph G the two identities hold:

FR(G)wm+1=wm+2=···=0 =
∑
c

R̃x0,x1(w1) · R̃x1,x2(w2) · · · R̃xm−1,xm(wm),(7.3)

FF (G)wm+1=wm+2=···=0 =
∑
c

F̃x0,x1(w1) · F̃x1,x2(w2) · · · F̃xm−1,xm(wm),(7.4)

where each sum is over all multichains c = {0̂ = x0 ≤ x1 ≤ · · · ≤ xm = 1̂} of length m in the
digraph G.

Proof. Each side of equation (7.3) is a polynomial in w1, w2, . . . , wn, where n is the length of the
longest chain in the digraph G. Consider the coefficient of the monomial wα1

i1
· wα2

i2
· · ·wαm

im
on the

right-hand side of equation (7.3), where α = (α1, α2, . . . , αm) is a composition with m ≤ n and
1 ≤ i1 < i2 < · · · < im ≤ n. This counts the number of paths p = (e1, e2, . . . , em) in the digraph G
such that α1 + α2 + · · ·+ αm = n and

λ(e1) ∼ · · · ∼ λ(eα1),

λ(eα1+1) ∼ · · · ∼ λ(eα1+α2),

...

λ(eα1+···+αm−1+1) ∼ · · · ∼ λ(eα1+···+αm),

and where the relation between λ(eα1+···+αi) and λ(eα1+···+αi+1) is not known. In other words, this
coefficient enumerates the number of paths p such that ρR(λ(p)) ≤ α.

The coefficient of wα1
i1
· wα2

i2
· · ·wαm

im
in the left-hand side of equation (7.3) is the coefficient of Mα

in FR(G). This coefficient is given by

[Mα]FR(G) = [Mα]
∑
p

LρR(λ(p))

= [Mα]
∑
p

∑
ρR(λ(p))≤α

Mα.

This is the number of paths p such that ρR(λ(p)) ≤ α, proving the first identity. The second iden-
tity (7.4) follows by a symmetric argument. �

Proposition 7.1 can be reformulated as follows.
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Proposition 7.2. For a bounded labeled digraph G the two identities hold:

FR(G) = lim
m−→∞

∑
c

R̃x0,x1(w1) · R̃x1,x2(w2) · · · R̃xm−1,xm(wm),(7.5)

FF (G) = lim
m−→∞

∑
c

F̃x0,x1(w1) · F̃x1,x2(w2) · · · F̃xm−1,xm(wm).(7.6)

Define the Cartesian product G × H of two digraphs G and H to be the digraph with vertex set
V (G×H) = V (G)× V (H) and edge set E(G×H) = V (G)×E(H)∪E(G)× V (H), where the edges
are defined by tailG×H((e, y)) = (tailG(e), y), headG×H((e, y)) = (headG(e), y), tailG×H((x, e)) =
(x, tailH(e)) and headG×H((x, e)) = (x, headH(e)). Furthermore, for the Cartesian product of labeled
digraphs, set ΛG×H = ΛG ∪ ΛH , where the relation is defined by λ ∼ µ if and only if one of the
following cases hold: (i) λ, µ ∈ ΛG, λ ∼ΛG

µ, (ii) λ ∈ ΛG, µ ∈ ΛH , (iii) λ, µ ∈ ΛH , λ ∼ΛH
µ. Finally,

the labels of the Cartesian product are defined by λG×H((e, y)) = λG(e) and λG×H((x, e)) = λH(e).

Observe that if both of the digraphs G and H are acyclic then their Cartesian product is acyclic.
Similarly, if both digraphs are locally finite, then so is their product.

Lemma 7.3. For two labeled acyclic digraphs G and H, the R̃- and F̃ -polynomials of the Cartesian
product G×H are given by

R̃(x,z),(y,w)(q) = R̃x,y(q) · R̃z,w(q),

F̃(x,z),(y,w)(q) = F̃x,y(q) · F̃z,w(q).

Proof. A rising chain in G × H must first have labels from ΛG and then labels from ΛH . Thus
the only way to have a rising chain in the interval [(x, z), (y, w)] is to first have a rising chain in
[(x, z), (y, z)] ∼= [x, y] and then a rising chain in [(y, z), (y, w)] ∼= [z, w]. Similarly, a falling chain must
have the labels from ΛH first and then from ΛG. �

Proposition 7.4. For two labeled acyclic digraphs G and H, the FR and FF quasisymmetric functions
of the interval [(x, z), (y, w)]) in the Cartesian product G×H are given by

FR([(x, z), (y, w)]) = FR([x, y]) · FR([z, w]),

FF ([(x, z), (y, w)]) = FF ([x, y]) · FF ([z, w]).
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Proof. By equation (7.5) we have

FR([(x, z), (y, w)]) = lim
m−→∞

∑
R̃(x0,z0),(x1,z1)(w1) · · · R̃(xm−1,zm−1),(xm,zm)(wm)

= lim
m−→∞

∑
R̃x0,x1(w1) · · · R̃xm−1,xm(wm)

· R̃z0,z1(w1) · · · R̃zm−1,zm(wm)

= lim
m−→∞

(∑
R̃x0,x1(w1) · · · R̃xm−1,xm(wm)

)
·
(∑

R̃z0,z1(w1) · · · R̃zm−1,zm(wm)
)

=
(

lim
m−→∞

∑
R̃x0,x1(w1) · · · R̃xm−1,xm(wm)

)
·
(

lim
m−→∞

∑
R̃z0,z1(w1) · · · R̃zm−1,zm(wm)

)
= FR([x, y]) · FR([z, w]),

where the two first sums are over all multichains (x, z) = (x0, z0) ≤ (x1, z1) ≤ (x2, z2) ≤ · · · ≤
(xm, zm) = (y, w) and the remaining sums are over the multichains x = x0 ≤ x1 ≤ x2 ≤ · · · ≤ xm = y
and z = z0 ≤ z1 ≤ z2 ≤ · · · ≤ zm = w. The dual argument gives the second identity. �

Proposition 7.5. For [x, y] an interval in a labeled acyclic digraph G,

∆(FR([x, y])) =
∑
x≤z≤y

FR([x, z]))⊗ FR([z, y])),

∆(FF ([x, y])) =
∑
x≤z≤y

FF ([x, z]))⊗ FF ([z, y])).
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Proof. Using equation (7.5) we have

∆(FR([x, y])) = lim
m−→∞

∑
c

R̃x0,x1(w1 ⊗ 1) · · · R̃xm−1,xm(wm ⊗ 1)

· R̃xm,xm+1(1⊗ w1) · · · R̃x2m−1,x2m(1⊗ wm)

= lim
m−→∞

∑
x≤z≤y

(∑
c1

R̃x0,x1(w1 ⊗ 1) · · · R̃xm−1,xm(wm ⊗ 1)

)

·

(∑
c2

R̃xm,xm+1(1⊗ w1) · · · R̃x2m−1,x2m(1⊗ wm)

)

= lim
m−→∞

∑
x≤z≤y

(∑
c1

R̃x0,x1(w1) · · · R̃xm−1,xm(wm)

)

⊗

(∑
c2

R̃xm,xm+1(w1) · · · R̃x2m−1,x2m(wm)

)
=
∑
x≤z≤y

FR([x, z]))⊗ FR([z, y])),

where in the first sum the chain c is {x = x0 ≤ x1 ≤ · · · ≤ xm ≤ · · · ≤ x2m = y}, z is the element xm
in the chain c and the chains c1 and c2 are the two chains {x = x0 ≤ x1 ≤ · · · ≤ xm = z}, respectively
{z = xm ≤ · · · ≤ x2m = y}. A symmetric argument gives the second identity. �

Let H be the linear span of bounded labeled acyclic digraphs. The space H is a Hopf algebra with
the product given by the Cartesian product and the coproduct given by

∆(G) =
∑

0̂≤z≤1̂

[0̂, z]⊗ [z, 1̂].

We have the following corollary.

Corollary 7.6. The two quasisymmetric functions FR and FF are Hopf algebra homomorphisms
from H to the quasisymmetric functions QSym.

Proof. Follows directly from Proposition 7.5. �

Generalizing [27, Lemma 5.1], we have the following lemma.

Lemma 7.7. For a labeled acyclic graph G,∑
x≤z≤y

R̃x,z(q) · F̃z,y(−q) = δx,y.



24 RICHARD EHRENBORG AND MARGARET READDY

Proof. Using the defining relation for the antipode S, we have that

δx,y =
∑
x≤z≤y

FR([x, z]) · S(FR([z, y]))

=
∑
x≤z≤y

FR([x, z]) ·
(
ω(FR([y, z]∗))

∣∣
w1=−w1,w2=−w2,...

)
=
∑
x≤z≤y

FR([x, z]) ·
(
FF ([y, z]∗)

∣∣
w1=−w1,w2=−w2,...

)
.

Setting w1 = q and w2 = w3 = · · · = 0 the result follows by Proposition 7.1. �

This lemma also has a direct bijective proof.

Second proof of Lemma 7.7. LetRx,y and Fx,y be the set of all rising, respectively falling, paths from x
to y. Consider the disjoint union

Ux,y =
⋃

x≤z≤y
Rx,z · Fz,y.

In other words, Ux,y is the set of all pair of paths (p1, p2) such that p1 is rising, p2 is falling, and p1

ends where p2 starts. We would like to prove that∑
(p1,p2)∈Ux,y

(−1)`(p2) · q`(p1)+`(p2) = δx,y.

When x = y the result is immediate. We prove the case when x < y by a sign-reversing involution σ.

Given a pair of paths (p1, p2) in Ux,y with p1 = (e1, . . . , ei), p2 = (f1, . . . , fj) and i and j not both
equal to 0, define another pair of paths σ(p1, p2) = (q1, q2) by the following four cases. Case (i): if
i = 0, that is, x = z, let q1 = (f1) and q2 = (f2, . . . , fj). Case (ii): if j = 0, that is, z = y, let
q1 = (e1, . . . , ei−1) and q2 = (ei). Cases (iii) and (iv) are both when i and j are greater than 0.
Compare the two labels λ(ei) and λ(f1) with the relation on Λ. Case (iii): if λ(ei) ∼ λ(f1) let the pair
of paths be q1 = (e1, . . . , ei, f1) and q2 = (f2, . . . , fj). Case (iv): otherwise, that is, λ(ei) 6∼ λ(f1) let
the pair of paths be q1 = (e1, . . . , ei−1) and q2 = (ei, f1, . . . , fj).

It is direct to verify that σ is an involution. Furthermore, one has that `(p1) + `(p2) = `(q1) + `(q2)
and that the lengths of p2 and q2 have different parity. Hence σ is a sign-reversing involution, proving
the lemma. �

As corollary to Lemma 7.7 we have the following result. Compare with Exercise 5.11 in [13].

Corollary 7.8. For a balanced labeled acyclic graph G,∑
x≤z≤y

R̃x,z(q) · R̃z,y(−q) = δx,y.
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For a bipartite balanced labeled acyclic graph G,∑
x≤z≤y

(−1)`(z,y) · R̃x,z(q) · R̃z,y(−q) = δx,y.

The quasi-symmetric functions FR encode the same information of the labeled digraph G as the
ab-index Ψ(G). To make this more explicit, define the linear map γ : Z〈a,b〉 −→ QSym by

γ
(
(a− b)α1−1 · b · (a− b)α2−1 · b · · ·b · (a− b)αk−1

)
= Mα;

see [33, Section 3]. The map γ is a vector space isomorphism between Z〈a,b〉 and the quasisymmetric
function without a constant term. Now we have for a digraph G the identity γ(Ψ(G)) = FR(G).

Stembridge [51] introduced a sub-Hopf algebra of the quasisymmetric functions QSym known as
the peak algebra Π. It plays the same role as the subalgebra Z〈c,d〉 of Z〈a,b〉. Concretely, the peak
algebra is the span of the constant quasisymmetric function 1 with the image of Z〈c,d〉 under the
map γ. Hence Theorem 4.7 can be reformulated as follows.

Theorem 7.9. For a labeled acyclic digraph G, the following are equivalent:

(i) For every interval [x, y] in the digraph G and for every non-negative integer k, the number
of rising paths from x to y of length k is equal to the number of falling paths from x to y of
length k.

(ii) For every interval [x, y] in the digraph G and for every even positive integer k, the number
of rising paths from x to y of length k is equal to the number of falling paths from x to y of
length k.

(iii) The FR quasisymmetric function of every interval [x, y] in the digraph G belongs to the peak
algebra Π.

8. Balanced linear edge labelings

We call an edge labeling linear if the underlying relation (Λ,∼) is that of a linear order.

Theorem 8.1. Let u be a non-zero cd-polynomial with non-negative coefficients. Then there exists a
bounded balanced labeled acyclic digraph G with linear edge labeling which satisfies Ψ(G) = u.

In order to prove this theorem, we first need the following two lemmas.

Lemma 8.2. Let G1 and G2 be two bounded digraphs with balanced linear edge labeling. Let the
underlying label sets be Λ1, respectively Λ2. Define a new bounded labeled digraph H by

V (H) = V (G1) ∪ V (G2),

E(H) = E(G1) ∪ E(G2) ∪ {h1, h2}

where the new edges are tail(hi) = 1̂1 and head(hi) = 0̂2. Let the new label set be Λ = Λ1∪Λ2∪{µ1, µ2}
and the linear order be any shuffling of Λ1 and Λ2 with the condition that the new labels µ1 and µ2

are the minimal, respectively the maximal, element of the linear order Λ. Finally, let the labels of the
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new edges be λ(hi) = µi. Then the digraph H has a balanced labeling which is linear, and its cd-index
is given by

Ψ(H) = Ψ(G1) · d ·Ψ(G2).

Proof. Every path p from 0̂G1 = 0̂H to 1̂G2 = 1̂H breaks into a path in G1, a path in G2 and one of
the new edges h1 or h2. Observe that

u(p) = u(p|G1) · v · u(p|G2),

where v = ba if the new edge is h1 and v = ab if the new edge is h2. Hence summing over all paths
we have

Ψ(H) = Ψ(G1) · (ba + ab) ·Ψ(G2).

A similar argument shows that every interval of H has a cd-index and hence the labeling is balanced.
�

Lemma 8.3. Let G1 and G2 be two bounded digraphs with balanced linear edge labelings. Let H be the
bounded digraph obtained by the disjoint union of G1 and G2 and identifying the minimal elements 0̂G1

and 0̂G2, and the maximal elements 1̂G1 and 1̂G2. Then H has a balanced linear edge labeling and its
cd-index is the sum

Ψ(H) = Ψ(G1) + Ψ(G2).

Proof of Theorem 8.1. The strong Bruhat order on the dihedral group is the butterfly poset and hence
its cd-index is cn. Hence by Lemma 8.2 for any cd-monomial v we can construct a bounded labeled
acyclic digraph G with a balanced linear order such that Ψ(G) = v. By Lemma 8.3 this can be
extended to any non-negative cd-polynomial. �

As a remark, Bayer and Hetyei’s work on the cone spanned by Eulerian posets shows one can
obtain a limiting poset which has cd-index 2k ·w, where w is a cd monomial with exactly k d’s; see [3,
Proposition 2.9].

Theorem 8.1 motivates us to make the following conjecture.

Conjecture 8.4. The cd-index of a bounded labeled acyclic digraph G with a balanced linear edge
labeling is non-negative.

This conjecture implies the non-negativity of the cd-index of Bruhat graphs; see [7, Conjecture 6.1].

Conjecture 8.5 (Billera–Brenti). Let (W,S) be a Coxeter system with u, v ∈ W and u < v. Then
the cd-index of the interval [u, v] is non-negative.
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9. Concluding remarks

As was mentioned in the previous section, verifying Conjecture 8.4 would imply the non-negativity
of the cd-index of Bruhat graphs [7]. In the case of Bruhat graphs of infinite Coxeter groups, recent
work of the Ehrenborg, Hetyei and Readdy [25] on level Eulerian posets, that is, infinite Eulerian
posets with a local regularity condition, may provide some insight. Blanco [16] has studied instances
of non-negativity for the poset of shortest paths in the Bruhat order. Shellability arguments have
been used by Stanley to prove the non-negativity of the cd-index of S-shellable spheres [48], in Karu’s
argument for the non-negativity of the toric g-vector of non-rational polytopes [39], as well as Karu’s
argument for the non-negativity of cd-index of Gorenstein∗ posets [40].

Recent work of Fan and He [36] have applied Karu’s flip condition [41] to show the coefficient of
dcidcj is non-negative in the cd-index of any Bruhat graph. See also [35]. Perhaps an analogous
result can be established for digraphs having a balanced linear order.

Another research direction is to develop Kazhdan–Lusztig polynomials for directed graphs. In order
to do this, one must require the graph to be bipartite, just as the bipartite condition holds for Bruhat
graphs. Brenti, Caselli and Marietti’s theory of special matchings of a Hasse diagram of a poset
parallels the notion of perfect matchings in the Bruhat graph [19]. Can this be extended to balanced
graphs? Morel [45] has given a geometric interpretation of Brenti’s [17] non-recursive lattice path
formulation of the Kazhdan–Lusztig polynomials in the case of Weyl groups. This may give some
insight into Kazhdan–Lusztig polynomials of directed graphs.

In Billera and Brenti’s original paper, restricting the cd-index of Bruhat graphs to the highest
degree terms yields the cd-index of the Eulerian poset [u, v]. Understanding the degree restricted cd-
index may suggest a natural decomposition of the paths in the Bruhat graph. For dihedral Coxeter
systems Blanco showed the cd-index is given by the Fibonacci polynomials [15]. This gives evidence
for non-negativity of the cd-index for Bruhat graphs.

Billera and Brenti’s [7] expression for the Kazhdan–Lusztig polynomial Pu,v(q) in terms of the
cd-index Ψ([u, v]) was based upon showing the generalized Dehn–Sommerville relations hold for co-
efficients of polynomials arising in Kazhdan–Lusztig polynomials [17, Theorem 8.4], quasisymmetric
functions, and the peak algebra. Their expression is

(9.1) Pu,v(q) =

bn/2c∑
i=0

ai · qi · Bn−2i(−q),

where Bk(q) is the kth ballot polynomial Bk(q) = 1/(k + 1) ·
∑bk/2c

i=0

(
k+1
i

)
· (k + 1 − 2i) · qi and the

coefficients ai arise out of a nontrivial computation from the coefficients of Ψ([u, v]). Although a
remarkable identity, it does not reveal why Pu,v(q) is non-negative for Coxeter groups.

As was noted in [7], restricting the identity (9.1) for the coefficients ai to the highest degree cd-
monomials yields the Bayer–Ehrenborg [2] expression for the g-polynomial of Ψ([u, v])∗, implying
the difference Pu,v(q) − g([u, v]∗, q) is a function of lower degree cd-coefficients; see [7, Remark 4.2].
Brenti and Caselli [18] have a new identity for the Kazhdan–Lusztig polynomials in terms of signed
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polynomials arising from an index set of what they call “slalom paths” associated to a sparse subset
T ⊆ {1, . . . , n−1}. This may be related to the Bayer–Ehrenborg S-diagram approach; see [2, Section 7].
Other recent papers describing the cd-index as weighted sum of lattice paths include that of Slone [47]
for the cd-index of the mixing operator, and B. Fox [37] for the the cd-index of the diamond product
of two Eulerian posets. On the polytope level, these poset operations correspond to taking the join of
polytopes and the Cartesian product of polytopes, respectively. We expect these ideas to be fruitful
for developing the Kazhdan–Lusztig polynomial of certain balanced graphs.

Reading [46] provided a recursive method to compute cd-index of any interval in the Bruhat order.
Can his methods be extended to any interval in the Bruhat graph? Do they generalize to balanced
graphs?

Returning our attention to graded posets and especially Eulerian posets, when do these posets
possess a labeling? There are Eulerian posets which do not have an R-labeling; see [31]. What more
can be said about Eulerian posets that have an R-labeling? Conjecture 8.4 implies that Eulerian
posets with an R-labeling have a non-negative cd-index.
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