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Abstract. We study complex hyperplane arrangements whose intersection lattices, known
as the Dowling lattices, are a natural generalization of the partition lattice. We give a
combinatorial description of the Dowling lattice via enriched partitions to obtain an explicit
EL-labeling and then find a recursion for the flagh-vector in terms of weighted derivations.
When the hyperplane arrangements are real they correspond to the braid arrangementsAn

andBn. By applying a result due to Billera and the authors, we obtain a recursive formula
for thecd-index of the lattice of regions of the braid arrangementsAn andBn.

1. Introduction

The cd-index is a noncommutative polynomial which gives an efficient encoding of
the flag f -vector, equivalently the flagh-vector, of an Eulerian poset. The generalized
Dehn–Sommerville equations [2] describe all of the linear relations that hold among the
entries of the flagf -vector, while thecd-index removes the linear redundancies. The
cd-index has been a very successful tool to answer questions about convex polytopes,
including showing the flagf -vectors of zonotopes satisfy precisely the same affine re-
lations as the flagf -vectors of all polytopes and settling the zonotopal analogue of
a conjecture of Stanley, that among all zonotopes the cubical lattice has the smallest
cd-index coefficientwise; see [6]. It is believed that thecd-index will be a useful in-
variant in determining linear inequalities in the flagf -vector of convex polytopes, and,
more generally, Gorenstein∗ lattices. For the known inequalities in dimension 4, see [1,
Theorem 3.10], [4], and [19].

Given its usefulness, one would naturally like to be able to compute thecd-index.
The first recursion formulas for thecd-index were given by Purtill [21] for the Boolean
algebra and the cubical lattice, that is, the face lattice of then-simplex and then-cube.
In [16] the authors gave shorter recursions using derivations, as well as determined how
the cd-index changes under the pyramid and prism operations. Thecd-index is also
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understood for simplicial polytopes, and, more generally, Eulerian simplicial posets.
Stanley [25] expressed thecd-index of a simplicial polytope in terms of itsh-vector
and certaincd-polynomials8̌n

i and conjectured a combinatorial interpretation for the
8̌n

i . This conjecture was proved by Hetyei [17], whereas a short recursion for these
polynomials in terms of a derivation was found in [16]. Cubical polytopes, more generally
Eulerian cubical posets, have been studied in [14].

In this paper we study thecd-index of the braid arrangementsAn andBn. In order to
do this we consider a more general hyperplane arrangement in complex space. Letk be
a positive integer and letζ be a primitivekth root of unity. LetHn,k be the following
hyperplane arrangement inn-dimensional complex space:

zi = ζ h · zj for 1≤ i < j ≤ n and 0≤ h ≤ k− 1,
zi = 0 for 1≤ i ≤ n.

This hyperplane arrangement has been studied earlier in [18] and [20, Section 6.4].
The braid arrangementsAn and Bn correspond to the casesk = 1 andk = 2. The
intersection latticeLn,k of the arrangementHn,k is called theDowling latticeand is a
natural generalization of the partition lattice [11], [12].

We give a combinatorial description of the Dowling lattice via enriched partitions.
Since the Dowling lattice is a geometric lattice, it has manyEL-labelings. Using enriched
partitions, we obtain an explicitEL-labeling and determine the set of lists of labels
of maximal chains. By understanding the structure of these lists of labels, we find a
recursion for the flagh-vector of the Dowling lattice in terms of weighted derivations.
As a corollary, the characteristic polynomial and M¨obius function are determined. This,
together with theEL-labeling, yields topological information about the order complex
of this family of lattices.

When the parameterk is equal to one or two, the complex hyperplane arrangement
Hn,k is a hyperplane arrangement in real space. A real hyperplane arrangement has two
lattices associated with it, namely the intersection lattice and the lattice of regions. In [7]
the authors, together with Billera, completely determine how to compute thecd-index
of the lattice of regions in terms of the intersection lattice. By applying this result to the
Dowling lattice recursion, we obtain a recursive formula for thecd-index of the lattice
of regions of the braid arrangementsAn andBn.

2. Definitions

All the posets we consider will be graded of rank greater than or equal to one, that
is, posetsP having a minimal element̂0 and a maximal element̂1 so that0̂ 6= 1̂.
The associated rank function will be denoted byρ and satisfyρ(0̂) = 0. For x ≤ y
defineρ(x, y) to be equal toρ(y) − ρ(x) and define theinterval from x to y to be set
{z : x ≤ z≤ y}, denoted [x, y]. Observe that [x, y] is a graded poset of rankρ(x, y).

A posetL is alatticeif every two elementsx andy has a unique greatest lower bound or
meet, denoted byx∧y, and a unique least upper bound orjoin, denoted byx∨y. A ranked
latticeL is semimodularif it satisfies the inequalityρ(x)+ρ(y) ≥ ρ(x∧ y)+ρ(x∨ y),
for all x, y ∈ L, andatomic if all of its elements can be written as a join of atoms. A
lattice which is both semimodular and atomic is ageometric lattice.
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Let P be a graded poset of rankn + 1. For S a subset of{1, . . . ,n}, let PS be the
subposet ofP defined asPS = {x ∈ P : ρ(x) ∈ S, x = 0̂, or x = 1̂}. Let α(S) be
the number of maximal chains inPS, that is,α(S) is the number of chains inP whose
ranks correspond to the setS. Defineβ(S) by the equation

β(S) =
∑
T⊆S

(−1)|S−T | · α(T). (2.1)

The 2n entries of theflag f -vectorandflag h-vectorcorrespond to the values ofα(S)
andβ(S).

Let a andb be two noncommuting variables. For a subsetSof {1, . . . ,n}, defineuS

to be theab-monomialu1 · · ·un whereui = a if i 6∈ Sandui = b if i ∈ S. Theab-index
of a posetP of rankn+ 1,9(P), is defined by

9(P) =
∑

S

β(S) · uS,

where the sum ranges over all subsetsS of {1, . . . ,n}. Observe theab-index encodes
exactly the same information as the flagh-vector. Moreover,9(P) is a homogeneous
polynomial of degreen.

TheMöbius functionµ(x, y) is defined forx, y ∈ P byµ(x, x) = 1 and forx < y in
P by

∑
x≤z≤y µ(x, z) = 0. We denoteµ(0̂, 1̂)byµ(P). Then we haveβ(S) = (−1)|S|+1·

µ(PS). A posetP is calledEulerianif the Möbius function satisfiesµ(x, y) = (−1)ρ(x,y).
Fine [3] observed that whenP is Eulerian theab-index of P can be written in terms of
the noncommuting variablesc= a+ b andd = a · b+ b · a. The resulting polynomial
is called thecd-index. An elementary proof of this fact appears in [25]. In the case
when P is the lattice of regions of a hyperplane arrangement (or more generally, of an
oriented matroidM), theab-index of P can be written as a polynomial with integer
coefficients in the noncommuting variablescand 2·d. The resulting polynomial is called
thec-2d-index; see [6].

LetZ〈a,b〉 be the ring of polynomials in the variablesa andb, and let the degree ofa
andb be 1. LetZ〈c,2d〉 denote the subring ofZ〈a,b〉 spanned by the elementsc= a+b
and 2d = 2ab+2ba. Thuschas degree 1 and 2d has degree 2. For a posetP, let P∗ denote
thedualposet. The posetP∗ has the same underlying set asP but with the order relation
x ≤P∗ y if x ≥P y. Similarly, for anab-monomialv = v1v2 · · · vn, let v∗ = vn · · · v2v1.
By linearity we extend this operation to be an involution onZ〈a,b〉. Sincec∗ = c and
2d∗ = 2d, the involution restricts toZ〈c,2d〉 by reading thec-2d-monomials backwards.
Observe for a graded posetP we have9(P∗) = 9(P)∗.

3. Techniques for Computing the ab- and cd-Indexes

When a posetP has anR-labeling, there is a known method to compute theab-index of
P. This method will be extended so that one can compute thecd-index of the lattice of
regions of hyperplane arrangements.

Recall anedge-labelingλ of a locally finite posetP is a map which assigns to each
edge in the Hasse diagram ofP an element from some poset3. For us3 will always
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be a linearly ordered set. Ify coversx in P, then we denote the label on the edge(x, y)
by λ(x, y). A maximal chainx = x0 ≺ x1 ≺ · · · ≺ xk = y in an interval [x, y] in P
is calledrising if the labels are weakly increasing with respect to the order of the poset
3, that is,λ(x0, x1) ≤3 λ(x1, x2) ≤3 · · · ≤3 λ(xk−1, xk). An edge-labeling is called
an R-labelingif for every interval [x, y] in P there is a unique rising maximal chain in
[x, y].

Let P be a poset of rankn + 1 with R-labelingλ. For a maximal chainc = {0̂ =
x0 ≺ x1 ≺ · · · ≺ xn+1 = 1̂}, thedescent set D(c) is the setD(c) = {i : λ(xi−1, xi ) >3
λ(xi , xi+1)}. Observe thatD(c) is a subset of the set{1, . . . ,n}. Our interest inR-
labelings stems from the following result of Bj¨orner and Stanley (see Theorem 2.7 of
[9]):

Proposition 3.1. Let P be a graded poset that admits an R-labeling. Thenβ(S) is
equal to the number of maximal chains c with descent set S.

From this result we obtain the following corollary, which was observed in [15].

Corollary 3.2. Let P be a graded poset of rank n+ 1. Let λ be an R-labeling of P.
Then theab-index of P is given by

9(P) =
∑

c

uD(c),

where the sum is over all maximal chains c of the poset P.

An EL-labelingof a graded posetP is anR-labeling such that in each interval [x, y]
the unique rising chain is lexicographically least among all chains in the interval [x, y].
If a poset possesses anEL-labeling, then it is known that the chain complex of the poset
P is shellable [9]. Moreover, the chain complex is homotopy equivalent to a wedge of
spheres.

An EL-labeling of a geometric latticeL can be obtained as follows; see Example 3.13.5
of [24]. Let3 denote the set of atoms ofL and let there be a total ordering on the atoms.
The label on the edgex ≺ y may be described by

λ(x, y) = min{a ∈ 3 : x ∨ a = y}.

Observe that with thisEL-labeling two different chains will have two different lists of
labels.

We now turn our attention to hyperplane arrangements. LetH be a hyperplane ar-
rangement inRn. We assume thatH = {He : e∈ E} is essential, that is,

⋂
e∈E He = {0}.

Associated with a hyperplane arrangement are two lattices. Theintersection latticeofH
is the lattice on the set of subspaces{⋂e∈S He : S⊆ E} ordered by reverse inclusion.
ThusRn is the minimal element,{0} is the maximal element, and the hyperplanes in the
arrangement are the atoms. Each hyperplaneH inH cutsRn into three pieces, namely,
the hyperplane itself and two open half-spaces. Together all the hyperplanes inH cutRn

into relative open cones, which we callregions. Let R be the set of regions. The setR
forms a poset by the order relationC ≤ C′ if the closure of the regionC is contained in
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the topological closure of the regionC′. We adjoin a maximal element toR to obtain a
lattice, called thelattice of regionsof the hyperplane arrangementH.

Bayer and Sturmfels [5, Theorem 3.4] showed that the flagf -vector of the lattice of
regionsR depends only on the intersection latticeL. This dependency was showed in
an explicit manner in [7].

The lattice of regions is an Eulerian poset, hence it has acd-index. In fact it has a
c-2d-index, that is, thecd-index may be written as a polynomial inc and 2d with integer
coefficients. Theorem 3.4 shows how to compute thec-2d-index of the lattice of regions.

Definition 3.3. Define a linear functionω: Z〈a,b〉 → Z〈c,2d〉 as follows: For anab-
monomialv computeω(v) by replacing each occurrence ofab in the monomialv with
2d, then replacing the remaining letters withc’s. Extend this definition by linearity to
ab-polynomials.

Theorem 3.4[7]. LetH be a hyperplane arrangement, let R be the lattice of regions
ofH, and let L be the intersection lattice ofH. Then thec-2d-index of R is given by

9(R) = ω(a ·9(L))∗.

For instance, the intersection lattice of the braid arrangementA3 has theab-index
aa+ 5 · ba + 6 · ab + 6 · bb. Hence thec-2d-index of the lattice of regions of the
arrangementA3 is given by

ω(aaa+ 5 · aba+ 6 · aab+ 6 · abb)∗ = (c3+ 11 · 2d · c+ 6 · c · 2d)∗

= c3+ 11 · c · 2d+ 6 · 2d · c.

By combining Stanley’sEL-labeling of geometric lattices with Corollary 3.2 and
Theorem 3.4, we have the following corollary.

Corollary 3.5. Thec-2d-index of the lattice of regions R is given by

9(R) =
∑

c

ω(a · uD(c))
∗,

where the sum ranges over all maximal chains c in the intersection lattice L.

4. The Dowling Lattice

The Dowling latticeLn,k is the intersection lattice of the complex hyperplane arrangement
Hn,k. Since it is an intersection lattice, it follows that the Dowling lattice is a geometric
lattice of rankn. ObserveLn,1 is isomorphic to5n+1, the partition lattice of rankn.
Each of the hyperplanes inHn,k is an atom in the Dowling latticeLn,k, henceLn,k has
k · (n2)+ n atoms.

The Dowling latticeLn,k has the following combinatorial description. Define an
enriched blockB̃ = (B, f ) to be a nonempty subsetB of {1, . . . ,n} and a function
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f : B→ Zk. We say two enriched blocks̃B = (B, f ) andC̃ = (C, g) are equivalent if
B = C and the functionsf andg differ only by a constant. Hence there are onlyk|B|−1

possible ways to enrich the nonempty setB, up to equivalence. Whenk = 1 there is
exactly one way to enrich a block, that is, there is no enrichment. LetB̃ andC̃ be two
disjoint enriched blocks and leti be an element inZk. We can define a functionh on the
block B ∪ C by

h(b) =
{

f (b) if b ∈ B,
g(b)+ i if b ∈ C.

Sincei can be chosen ink possible ways, there arek possible ways to merge two enriched
blocks.

For E a subset of{1, . . . ,n}, anenriched partitioñπ = {B̃1, . . . , B̃m} on the setE is
a partitionπ = {B1, . . . , Bm} of E, where each blockBi is enriched with a functionfi .
Observe that on the empty set there is exactly one enriched partition, namely the empty
partition.

Define the latticeL ′n,k to be the set

L ′n,k = {(π̃, Z) : Z ⊆ {1, . . . ,n} andπ̃ is an enriched partition ofZ = {1, . . . ,n}−Z}.

We call the setZ thezero set. Define the order relation onL ′n,k by the following two re-
lations:({B̃1, B̃2, . . . , B̃m}, Z) < ({B̃2, . . . , B̃m}, Z∪ B1) and({B̃1, B̃2, . . . , B̃m}, Z) <
({B̃1∪ B̃2, . . . , B̃m}, Z). The first relation says that a block is allowed to merge with the
zero set. The second relation says that two blocks are allowed to be merged together.

Given(π̃, Z) ∈ L ′n,k, construct the corresponding subspace by

ζ f (i ) · zi = ζ f ( j ) · zj for i, j ∈ B and B̃ = (B, f ) ∈ π̃ ,
zi = 0 for i ∈ Z.

It is straightforward to see that this is an isomorphism betweenLn,k andL ′n,k.

Proposition 4.1. The two lattices Ln,k and L′n,k are isomorphic.

By the compositional exponential formula, see for instance, Chapter 5 of [27], we
obtain the next lemma.

Lemma 4.2. Let an be the number of elements in the Dowling lattice Ln,k. Then the
exponential generating function for the sequence an is given by

∑
n≥0

an · xn

n!
= exp(x) · exp

(
1

k
· (exp(k · x)− 1)

)
.

SinceLn,k is a geometric lattice, anR-labeling of Ln,k is found by giving a linear
order3 to the atoms ofLn,k. First, denote the atom corresponding the hyperplanezi = 0
by i . Similarly, describe the atom corresponding to the hyperplanezi = ζ h · zj by the
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triple (i, j, h), where 1≤ i < j ≤ n andh ∈ Zk. On the set of atoms ofLn,k consider
the following linear order3:

• j <3 j ′ if 1 ≤ j < j ′ ≤ n,
• j <3 (i ′, j ′, h′) if 1 ≤ j ≤ j ′ ≤ n,
• (i, j, h) <3 j ′ if 2 ≤ j < j ′ ≤ n,
• (i, j, h) <3 (i ′, j ′, h′) if one of the following three conditions holds:
• 2≤ j < j ′ ≤ n,
• j = j ′ andi < i ′, or
• j = j ′, i = i ′, andh < h′.

Let Mn,k be the set of lists of labels of maximal chains inLn,k, that is,

Mn,k = {(λ(x0, x1), . . . , λ(xn−1, xn)) : (x0, x1, . . . , xn) is a maximal chain inLn,k}.
To characterize the setMn,k, we need the following two notions. For an atoma of Ln,k

we define its supportσ by

σ(a) =
{{i, j } if a = (i, j, h),
{i } if a = i .

For an elementx in Ln,k defineM(x) to be set

M(x) = {min(B̃i ) : 1≤ i ≤ m},
wherex as an element inL ′n,k is the element(π̃, Z)with π̃ = {B̃1, . . . , B̃m} and min(B̃i )

denotes the smallest element contained in the blockBi . Observe that ifx ≤ y, then
M(y) ⊆ M(x). Moreover,n− |M(x)| is the rank of the elementx.

Lemma 4.3. Let x≺ y be a cover relation in the Dowling lattice Ln,k. If the element
y is formed by merging two blocks̃B1 and B̃2 of x, then the labelλ(x, y) is of the form
(i, j, h)where{i, j } = {min(B̃1),min(B̃2)}. If the element y is formed by joining a block
B̃1 to the zero set, then the labelλ(x, y) is of the form i where i= min(B̃1).

Proof. We prove the lemma in the first case. The second case follows by a similar
argument. Henceforth assume the elementy is obtained by merging the two blocks̃B1

and B̃2 of x. Let i be the smallest element in the block̃B1 and let j be the smallest
element in the block̃B2. We may assume thati < j . Let h be the unique element inZk

such that joining the atom(i, j, h)with the elementx gives the elementy. We claim that
the labelλ(x, y) is given by(i, j, h).

Assume thata is an atom such thata∨x = y. Then the atoma has the form(i ′, j ′, h′),
wherei ′ < j ′. Moreover, eitheri ′ ∈ B̃1 and j ′ ∈ B̃2 or i ′ ∈ B̃2 and j ′ ∈ B̃1. Using the
fact thati and j are the smallest elements in their respective blocks, we obtain in the first
case that(i, j, h) <3 a or (i, j, h) = a. In the second case we havei < j ≤ i ′ < j ′, so
we get(i, j, h) <3 a.

Corollary 4.4. Let x ≺ y be a cover relation in the Dowling lattice Ln,k. Then
σ(λ(x, y)) ⊆ M(x).
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Proof. The labelλ(x, y) is either equal to(i, j, h) or i . Consider the first case. Then
σ(λ(x, y)) = {i, j }. By Lemma 4.3, the elementsi and j are the smallest elements from
their respective blocks. Hence{i, j } ⊆ M(x). Similarly, in the second case we obtain
σ(λ(x, y)) = {i } ⊆ M(x).

Lemma 4.5. Let x≺ y be a cover relation in the Dowling lattice Ln,k and assume that
y ≤ z. Then the elementmax(σ (λ(x, y))) does not belong to M(z).

Proof. If the atoma is the labelλ(x, y) for the cover relationx ≺ y, then the element
max(σ (a)) is not a smallest element in any block of the elementy. That is, max(σ (a)) 6∈
M(y). SinceM(z) ⊆ M(y), the result follows.

Proposition 4.6. The list(a1, . . . ,an) belongs to Mn,k if and only if for all indices p,
1 ≤ p ≤ n, the valuemax(σ (ap)) does not appear among the support of the elements
ap+1, . . . ,an. That is, max(σ (ap)) 6∈ σ(ap+1) ∪ · · · ∪ σ(an).

Proof. Let c = {0̂ = x0 < x1 < · · · < xn = 1̂} be a maximal chain in the lattice
Ln,k so that, forp < q, ap = λ(xp−1, xp) andaq = λ(xq−1, xq). Sincexp ≤ xq−1,
by Lemma 4.5 we have max(σ (ap)) 6∈ M(xq−1). However, by Corollary 4.4 we know
σ(aq) ⊆ M(xq−1). Hence we have max(σ (ap)) 6∈ σ(aq), so the labels of the chainc
satisfy the condition of the lemma.

Let (a1, . . . ,an) be a list of atoms which satisfies the condition in the lemma. For
0 ≤ p ≤ n, let xp = a1 ∨ · · · ∨ ap. We know that̂0 = x0 ≤ x1 ≤ · · · ≤ xn is a weakly
increasing chain inLn,k. We would like to prove that it is a maximal chain.

Since the entries max(σ (a1)), . . . ,max(σ (an)) are all distinct, we have thatM(xp−1)

is the disjoint union ofM(xp) and{max(σ (ap))}. SinceM(x0) = {1, . . . ,n}, we obtain
|M(xp)| = n− p, so the elementxp has rankp. Hence the chain̂0= x0 < x1 < · · · < xn

is a maximal chain inLn,k. The elements inσ(ap) lie in M(xp−1), so they are smallest
elements in their respective blocks. Hence the edge(xp−1, xp) is labeled by the atomap.
So we have that the list(a1, . . . ,an) belongs to the setMn,k.

In order to state our main result, we need the notion of a weighted derivation. HereP
denotes the positive integers.

Definition 4.7. Let R be a graded algebra. Aright weighted derivation Dis a function
from R× P to R such that

D(α · u+ β · v, p) = α · D(u, p)+ β · D(v, p), (4.1)

D(1, p) = 0, (4.2)

D(u · v, p) = D(u, |v| + p) · v + u · D(v, p), (4.3)

whereα andβ are scalars and|u| denotes the degree of the elementu.

Let K (v, p) be the right weighted derivation onZ〈a,b〉 such thatK (a, p) =
K (b, p) = (1 + k · p) · ab. By induction on the degree ofv, we may show the
following result.
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Lemma 4.8. Letv = v1 · · · vn−1 be anab-monomial. Then K(v,1) is given by the sum

K (v,1) =
n−1∑
m=1

(1+ k · (n−m)) · v1 · · · vm−1 · ab · vm+1 · · · vn−1.

Using the weighted derivationK we now obtain an expression for theab-index of
the Dowling lattice.

Theorem 4.9. The ab-index of the Dowling lattice Ln,k satisfies the following
recursion:

9(Ln+1,k) = 9(Ln,k) · a+ K (9(Ln,k),1)+ (1+ k · n) · b ·9(Ln,k).

Proof. Consider a listλ in the setMn+1,k. There will be exactly one entryλm in
the list λ = (λ1, . . . , λn+1) so that max(σ (λi )) = n + 1. Now observe that the list
(λ1, . . . , λm−1, λm+1, . . . , λn+1) belongs toMn,k.

Let λ = (λ1, . . . , λn) be a list in Mn,k. Assume theab-monomialu(λ) is equal
to u1 · · ·un−1. Let m be an integer so that 0≤ m ≤ n. We determine how many
elementsa can be inserted in themth position ofλ so that we obtain a list inMn+1,k.
By Proposition 4.6 we have max(σ (a)) must ben + 1. Moreover, by Proposition 4.6
we have that max(σ (λj )) does not belong toσ(a) for 1 ≤ j ≤ m. These are the only
conditions ona. Hence eithera is the atom labeledn+1 or it is of the form(i,n+1, h),
whereh can be chosen ink possible ways andi can be chosen inn−m possible ways.
Thusa can be chosen in 1+ k · (n−m) possible ways.

The ab-monomial for the new list(λ1, . . . , λm−1,a, λm+1, . . . , λn) is u1 · · ·um−1 ·
ab · um+1 · · ·un−1 if 0 < m < n. If m = 0 theab-monomial isb · u1 · · ·un−1 = b · u,
while if m = n theab-monomial isu1 · · ·un−1 · a = u · a. Summing over all positions
m we obtain

u(λ) · a+
n−1∑
m=1

(1+ k · (n−m)) · u1 · · ·um−1 · ab

·um+1 · · ·un−1+ (1+ k · n) · b · u(λ).

By Lemma 4.8 the summation can be expressed in terms of the weighted derivationK .
Hence we obtain the expression

u(λ) · a+ K (u(λ),1)+ (1+ k · n) · b · u(λ).

Summing over allλ in Mn,k we obtain the desired recursion for9(Ln,k).

Recall thecharacteristic polynomialof a graded posetP is defined asχ(P) =∑
0̂≤x≤1̂µ(0̂, x) · qρ(x,1̂). The characteristic polynomial of the Dowling lattice was first

obtained in Proposition 7 of [11].
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Corollary 4.10 [11]. The characteristic polynomial of the Dowling lattice Ln,k is

χ(Ln,k) =
n−1∏
i=0

(q − 1− k · i ).

Proof. Let E be the linear map fromZ〈a,b〉 toZ[q] defined by

E(v) =
{
(−1)m · qk if v = bmak for some m, k ≥ 0,
0 otherwise.

Then the characteristic polynomial is given byχ(P) = (q − 1) · E(9(P)); see Propo-
sition 5.3 of [7].

Apply the linear mapE to Theorem 4.9. Observe thatE(K (v,1)) = 0 since all the
terms inK (v,1) contain the monomialab. Hence we obtain

E(9(Ln+1,k)) = E(9(Ln,k) · a)+ (1+ k · n) · E(b ·9(Ln,k))

= (q − 1− k · n) · E(9(Ln,k)).

Multiplying this identity withq − 1, we have the recursionχ(Ln+1,k) = (q − 1− k ·
n) · χ(Ln,k). Observingχ(L1,k) = q − 1, we obtain the result.

By settingq equal to zero in Corollary 4.10 we get Corollary 1 in [11].

Corollary 4.11 [11]. The M̈obius function of the Dowling lattice Ln,k is given by

µ(Ln,k) = (−1)n ·
n−1∏
i=0

(1+ k · i ).

Since the Dowling lattice isE L-shellable, its chain complex is shellable. Hence we
obtain:

Corollary 4.12. The chain complex of the Dowling lattice Ln,k is homotopy equivalent
to a wedge of spheres and only the highest homology is nontrivial. The dimension of the
highest homology is given by

∏n−1
i=0 (1+ k · i ).

5. The Braid Arrangements An and Bn

We now restrict our attention to the braid arrangementsAn andBn. These arrangements
correspond to the casesk = 1 andk = 2 inHn,k, that is, when the arrangementHn,k

can be considered as a real arrangement.
The arrangementAn is most often described by the hyperplanesxi = xj for 1≤ i <

j ≤ n+1 in(n+1)-dimensional Euclidean space. This arrangement is not essential since
each hyperplane contains the linex1 = · · · = xn+1. We obtain an essential hyperplane
arrangement by setting the last variablexn+1 equal to zero, yielding the arrangement
corresponding toHn,1.
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For k equal to 1 and 2 letRn,k be the lattice of regions of the arrangementHn,k.
Moreover, letRn,0 denote the lattice of regions of the coordinate hyperplanes, that is,
Rn,0 is the face lattice of then-dimensional crosspolytope. By Theorem 3.4 the lattices
Rn,0, Rn,1, andRn,2 have ac-2d-index. Using Theorem 4.9 we give an explicit recursion
for thec-2d-index of these three lattices.

Recall the definition of a right weighted derivation given in Definition 4.7. We have
a similar notion of a left weighted derivation.

Definition 5.1. Let R be a graded algebra. Aleft weighted derivation Dis a function
from R× P to R such thatD satisfies (4.1) and (4.2), and

D(u · v, p) = D(u, p) · v + u · D(v, |u| + p). (5.1)

We consider the weighted derivationW onZ〈c,2d〉 that is defined by

W(c, p) = (1+ kp) · 2d,

W(2d, p) = (1+ kp) · 2d · c+ (1+ k(p+ 1)) · c · 2d.

In our notation we suppress the fact thatW depends on the integerk. Observe that when
k = 0 the weighted derivationW reduces to a derivation.

Theorem 5.2. Thec-2d-index of Rn,k, k = 0,1,2, satisfies the following recursion:

9(Rn+1,k) = c ·9(Rn,k)+W(9(Rn,k),1).

The case whenk = 0 was obtained in [16]. Hence it is enough to prove this theorem for
k = 1 andk = 2.

The two weighted derivationsW andK are related by the following identity.

Lemma 5.3. For any elementv in Z〈a,b〉 and any positive integer p

W(ω(v)∗, p) = ω(K (v, p))∗.

Proof. Since both sides are linear inv, it is enough to prove the statement forab-
monomials. The proof is by induction on the degree ofv. There are four base cases
which are easy to verify, namelyv = 1, v = a, v = b, andv = ab.

Consider now anab-monomialv different from the four base cases. We can write
v = u · u′ such thatu,u′ 6= 1 andu does not end witha or u′ does not begin withb.
That is,u andu′ have degrees smaller than|v| and we haveω(v) = ω(u) · ω(u′). Also
note that ifu ends witha, then all monomials inK (u′, p) will begin with a. Hence we
know thatω(u · K (u′, p)) = ω(u) ·ω(K (u′, p)). Similarly, if u′ begins withb, then all
monomials inK (u, p) will end with b. That is,ω(K (u, p) · u′) = ω(K (u, p)) · ω(u′).
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Now we have

W(ω(u · u′)∗, p) = W(ω(u′)∗ · ω(u)∗, p)

= W(ω(u′)∗, p) · ω(u)∗ + ω(u′)∗ ·W(ω(u)∗, |u′| + p)

= ω(K (u′, p))∗ · ω(u)∗ + ω(u′)∗ · ω(K (u, |u′| + p))∗

= [ω(u) · ω(K (u′, p))+ ω(K (u, |u′| + p)) · ω(u′)]∗
= ω(u · K (u′, p)+ K (u, |u′| + p) · u′)∗
= ω(K (u · u′, p))∗.

This completes the induction.

We are now ready to give the proof of Theorem 5.2.

Proof of Theorem5.2. By applying the mapv 7−→ ω(a·v)∗ to Theorem 4.9 we obtain

9(Rn+1,k) = ω(a ·9(Ln+1,k))
∗

= ω
(
a ·9(Ln,k) · a

)∗ + ω (a · K (9(Ln,k),1)+ (1+ k · n) · ab ·9(Ln,k)
)∗

= c · ω (a ·9(Ln,k)
)∗ + ω (K (a ·9(Ln,k),1)

)∗
= c · ω (a ·9(Ln,k)

)∗ +W
(
ω(a ·9(Ln,k))

∗,1
)

= c ·9(Rn,k)+W
(
9(Rn,k),1

)
,

where the fourth step is by Lemma 5.3.

It is now straightforward to compute the following table:

n 9(Rn,1) 9(Rn,2)

0 1 1
1 c c
2 c2+ 2 · 2d c2+ 3 · 2d
3 c3+ 11 · c · 2d+ 6 · 2d · c c3+ 23 · c · 2d+ 12 · 2d · c
4 c4+ 59 · c2 · 2d+ 60 · c · 2d · c c4+ 191· c2 · 2d+ 186· c · 2d · c

+ 14 · 2d · c2+ 46 · (2d)2 + 36 · 2d · c2+ 146· (2d)2

For instance, to compute9(R3,1) we have

9(R3,1) = c ·9(R2,1)+W(9(R2,1),1)

= c · (c2+ 2 · 2d)+W(c2+ 2 · 2d,1)

= c3+ 2 · c · 2d+W(c,1) · c+ c ·W(c,2)+ 2 ·W(2d,1)

= c3+ 2 · c · 2d+ 2 · 2d · c+ 3 · c · 2d+ 4 · 2d · c+ 6 · c · 2d

= c3+ 11 · c · 2d+ 6 · 2d · c.

6. Concluding Remarks

The permutahedron Pn is then-dimensional polytope whose vertices are the(n + 1)!
permutations in the symmetric group onn+ 1 elements. In other words,Pn lies in the
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hyperplanex1+· · ·+xn+1 =
(n+2

2

)
and has vertices(π(1), . . . , π(n+1)), whereπ ranges

over all permutations onn+ 1 elements. Similarly, let thesigned permutahedron P±n be
the convex hull of the points(±π(1), . . . ,±π(n)), whereπ ranges over all permutations
on n elements. Examples of these polytopes include the line segmentsP1 and P±1 , the
hexagonP2, the octagonP±2 , the truncated octahedronP3, and the rhombitruncated
cuboctahedronP±3 .

It is well known that the face lattice of the permutahedronL(Pn) is given by the
dual poset ofRn,1. Moreover, the latticeRn,1 has a combinatorial interpretation as the
ordered partition lattice; see for instance [8]. Similarly, the face lattice of the signed
permutahedronL(P±n ) is the dual poset ofRn,2. We present the following combinatorial
description of the latticeRn,2.

A signed block̃B is a nonempty setB with a function f : B→ {−1,1}. This notion
differs from that of an enriched block which was defined in Section 4 since we now
consider the two signed blocks(B, f ) and(B,− f ) to be different. Anordered signed
partition π̃ is an ordered partitionπ = (B1, . . . , Bm), where each blockBi is signed by
a function fi . If B̃ andC̃ are two signed blocks, then we may consider their union as a
signed block. Define the latticeR′n,2 to be the set

R′n,2 = {(π̃, Z) : Z ⊆ {1, . . . ,n}
andπ̃ is an ordered signed partition ofZ = {1, . . . ,n} − Z}.

The order relation onR′n,2 is given by

(Z, (B̃1, B̃2, . . . , B̃m)) < (Z ∪ B1, (B̃2, . . . , B̃m)),

(Z, (B̃1, . . . , B̃i , B̃i+1, . . . , B̃m)) < (Z, (B̃1, . . . , B̃i ∪ B̃i+1, . . . , B̃m)).

The first relation says that the first block is allowed to merge with the zero set. The
second relation says that two adjacent blocks are allowed to be merged together.

Given (Z, π̃) ∈ R′n,2, where the zero set contains the elementsj0,1, . . . , j0,m0 and
the i th block contains the elementsji,1, . . . , ji,mi , the corresponding region ofBn is
constructed by

0 = xj0,1 = · · · = xj0,m0

< f1( j1,1) · xj1,1 = · · · = f1( j1,m1) · xj1,m1

< · · ·
< fm( jm,1) · xjm,1 = · · · = fm( jm,mm) · xjm,mm

.

For k = 0, 1, or 2, the lattice of regionsRn,k corresponds to a root system. The set
of exponents of the root system is 1,1+ k, . . . ,1+ k · (n− 1). These numbers appear
as weights in the weighted derivationsW andK . This suggests that a similar recursion
should hold for other root systems in general. Hence a good question to consider is what
is thec-2d-index of the lattice of regions for the simple sporadic root systems.

An interesting challenge is to find a recursion for the root systemDn. Recall that the
corresponding hyperplane arrangement is

xi = ±xj for 1≤ i < j ≤ n,
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for n ≥ 4. What can be said about theab-index of the complexDn arrangement

zi = ζ h · zj for 1≤ i < j ≤ n and 0≤ h ≤ k− 1,

whereζ is akth primitive root of unity?
The homology of the partition lattice5n+1 = Ln,1 has been extensively studied in

order to find representations of the symmetric group; see [23] and [28]. In the same
spirit, Wachs has studied the signed partition latticeLn,2; see [29]. What can be said
about the representations of the symmetric group arising from the Dowling latticeLn,k?
A related question is to find an explicit basis for the highest homology group of the
Dowling lattice, the dimension of which is given in Corollary 4.12.
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