A Poset View of the Major Index

Richard Ehrenborg*and Margaret Readdy'

Abstract

We introduce the Major MacMahon map from Z{a,b) to Z[g], and show how this map
commutes with the pyramid and bipyramid operators. When the Major MacMahon map is
applied to the ab-index of a simplicial poset, it yields the g-analogue of n! times the h-polynomial
of the polytope. Applying the map to the Boolean algebra gives the distribution of the major
index on the symmetric group, a seminal result due to MacMahon. Similarly, when applied
to the cross-polytope we obtain the distribution of one of the major indexes on the signed
permutations, due to Reiner.

2010 Mathematics Subject Classification. Primary 06A07; Secondary 05A05, 52B05.

Key words and phrases. The major index; permutations and signed permutations; the Boolean
algebra and the face lattice of a cross-polytope; simplicial posets; and principal specialization.

1 Introduction

One hundred and one years ago in 1913 Major Percy Alexander MacMahon [9] (see also his collected
works [11]) introduced the major index of a permutation @ = mmy---m, of the multiset M =

{190,222 .k} of size n to be the sum of the elements of its descent set, that is,
maj(m) = Z i.
T >Ti4-1

He showed that the distribution of this permutation statistic is given by the g-analogue of the
multinomial Gaussian coefficient, that is, the following identity holds:

maj(m) __ [n]' _|n
2 = T el el [a] (1)

where 7 ranges over all permutations of the multiset M. Here [n]! = [n] - [n — 1]---[1] denotes the
g-analogue of n!, where [n] =1+ ¢+ -+ ¢" L.

Many properties of the descent set of a permutation m, that is, Des(w) = {i : m > mit1},
have been studied by encoding the set by its ab-word; see for instance [6, 12]. For a multiset
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permutation m € &) the ab-word is given by u(m) = ujug - - - up—1, where u; = b if m; > m;11 and
u; = a otherwise.

Inspired by this definition, we introduce the Major MacMahon map © on the ring Z(a,b) of
non-commutative polynomials in the variables a and b to Z[g], polynomials in the variable ¢, by

ow)= ] 4.
b

1 U=

for a monomial w = wjuy - --u, and extend © to all of Z(a,b) by linearity. In short, the map ©
sends each variable a to 1 and the variables b to ¢ to the power of its position, read from left to
right. A Swedish example is ©(abba) = ¢°.

2 Chain enumeration and products of posets

Let P be a graded poset of rank n + 1 with minimal element 6, maximal element 1 and rank
function p. Let the rank difference be defined by p(x,y) = p(y) — p(x). The flag f-vector entry fg,
for S = {s1 < sg < -+ < s} a subset {1,2,...,n}, is the number of chains ¢ = {0 = zg < 71 <
Ty < o0 < Ty = T} such that the rank of the element x; is s;, that is, p(z;) = s; for 1 < i < k.
The flag h-vector is defined by the invertible relation

hs =Y (—=D)IST1 fp.

TCS

For a subset S of {1,2,...,n} define two ab-polynomials of degree n by ug = ujusg---u, and
Vg = v1v2 - - - Uy by

v — a ifi¢gs, and v — a—b ifi¢s,
b ifies, b ifies.

The ab-index of the poset P is defined by the two equivalent expressions:
U(P) =) fs-vs=>Y hs-us,
S S

where the two sums range over all subsets S of {1,2,...,n}. For more details on the ab-index
see [7] or the book [16, Section 3.17].

Recall that a graded poset P is Eulerian if every non-trivial interval has the same number of
elements of even as odd rank. Equivalently, a poset is Eulerian if its Mobius function satisfies
w(z,y) = (=1)P@Y) for all < y in P. When the graded poset P is Eulerian then the ab-index
U(P) can be written in terms of the non-commuting variables ¢ = a+ b and d = ab + ba and it
is called the cd-index; see [2]. For an n-dimensional convex polytope P its face lattice £(P) is an
Eulerian poset of rank n+ 1. In this case we write W(P) for the ab-index (cd-index) instead of the
cumbersome V(L (P)).

There are also two products on posets that we will study. The first is the Cartesian product,
defined by P x Q = {(z,y) : « € P,y € Q} with the order relation (z,y) <pxq (z,w) if z <p z



and y <g w. Note that the rank of the Cartesian product of two graded posets of ranks m and n
is m+n. As a special case we define Pyr(P) = P x By, where By is the Boolean algebra of rank 1.
The geometric reason is that this operation corresponds to the geometric operation of taking the
pyramid of a polytope, that is, L(Pyr(P)) = Pyr(L(P)) for a polytope P.

The second product is the dual diamond product, defined by

Po*Q=(P—{1p}) x (@~ {Io}) u{l}.

The rank of the product P ¢* @ is the sum of the ranks of P and ) minus one. This is the
dual to the diamond product ¢ defined by removing the minimal elements of the posets, taking
the Cartesian product and adjoining a new minimal element. The product ¢ behaves well with
the quasi-symmetric functions of type B. (See Sections 5 and 6.) However, we will dualize our
presentation and keep working with the product o*.

Yet again, we have an important special case. We define Bipyr(P) = P ¢* By. The geometric
motivation is the connection to the bipyramid of a polytope, that is, £(Bipyr(P)) = Bipyr(L(P))
for a polytope P.

3 Pyramids and bipyramids

Define on the ring Z(a,b) of non-commutative polynomials in the variables a and b the two

derivations G and D by
G(1) =0, G(a)=Dba, G(b)=ab,
D(1) =0, D(a)= D(b)=ab + ba.

Extend these two derivations to all of Z{a, b) by linearity. The pyramid and the bipyramid operators
are given by
Pyr(w) = G(w)+w-c and Bipyr(w) = D(w)+c-w.

These two operators are suitably named, since for a poset P we have
U(Pyr(P)) = Pyr(¥(P)) and  W(Bipyr(P)) = Bipyr(¥(P)).
For further details, see [7].

Theorem 3.1. The Major MacMahon map © commutes with right multiplication by c, the deriva-
tion G, the pyramid and the bipyramid operators as follows:

O(w-c) = (1+¢") - O(w), (3.1)
O(G(w)) = ¢ [n] - O(w), (3:2)
O(Pyr(w)) = [n+2] - O(w), (3.3)
O©(Bipyr(w)) = [2] - [n + 1] - O(w), (3.4)

where w is a homogeneous ab-polynomial of degree n.

Proof. 1t is enough to prove the four identities for an ab-monomial w of degree n. Directly we have
that O(w-a) = O(w) and O(w-b) = ¢"*1-O(w). Adding these two identities yields equation (3.1).



Assume that w consists of k b’s. We will label the n letters of w as follows: The k b’s are
labeled 1 through k reading from right to left, whereas the n — k a’s are labeled k + 1 through n
reading left to right. As an example, the word w = aababba is written as wiwswswgwowiws.

The theorem is a consequence of the following claim. Applying the derivation G only to the
letter w; and then applying the Major MacMahon map yields ¢' - ©(w), that is,

Ou-Gw;) - v) =q" - O(u-w;-v), (3.5)

where w is factored as u - w; - v. To see this, first consider when 1 <4 < k. There are i b’s to the
right of w; including w; itself. They each are shifted one step to the right when replacing w; = b
with G(b) = ab and hence we gain a factor of ¢*. The second case is when k& +1 < i < n. Then
w; is an a and is replaced by ba under the derivation G. Assume that there are j b’s to the right
of w;. When these j b’s are shifted one step to the right they contribute a factor of ¢/. We also
create a new b. It has i — k — 1 a’s to the left and k£ — j b’s to the left. Hence the position of the
new bis (i —k—1)+ (k—j)+1 =1i—j and thus its contribution is ¢"~7/. Again the factor is given
by ¢/ - ¢~ = ¢', proving the claim. Now by summing over these n cases, identity (3.2) follows.
Identity (3.3) is the sum of identities (3.1) and (3.2) .

To prove identity (3.4), we use a different labeling of the monomial w. This time label the k£ b’s
with the subscripts 0 through k£ —1, rather than 1 through k. That is, in our example w = aababba
is now labeled as wywswowgwiwows. We claim that for w = u - w; - v we have that

O(u- D(w;) -v) = ¢" - [2] - O(w).

The first case is 0 < i < k — 1. Then w; = b has ¢ b’s to its right. Thus when replacing b with ba
there are ¢ b’s that are shifted one step, giving the factor ¢*. Similarly, when replacing w; with ab,

there are 7 + 1 b’s that are shifted one step, giving the factor ¢'*!'. The sum of the two factors is
q" - [2]. The second case is k+ 1 < i < n. It is as the second case above when replacing w; with ba,

yielding the factor ¢*. When replacing w; with ab there is one more shift, giving ¢*t!. Adding
these two subcases completes the proof of the claim.

It is straightforward to observe that
Oc-w) =¢" - [2] - O(w).
Calling this the case i = k, the identity (3.4) follows by summing the n + 1 cases 0 < i < n. O

Iterating equations (3.3) and (3.4) we obtain that the Major MacMahon map of the ab-index
of the n-dimensional simplex A,, and the n-dimensional cross-polytope C}.

Corollary 3.2. The n-dimensional simplex A,, and the n-dimensional cross-polytope C;; satisfy

O(Y(An)) = [n+ 1]\,
e(w(Cy)) = [2]" - [n]t.

4 Simplicial posets

A graded poset P is simplicial if all of its lower order intervals are Boolean, that is, for all elements
r < 1 the interval [0,z] is isomorphic to the Boolean algebra B,y. It is well-known that all the
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flag information of a simplicial poset of rank n + 1 is contained in the f-vector (fo, fi,...,fn),
where fo = 1 and f; = f; for 1 <@ < n. The h-vector, equivalently, the h-polynomial h(P) =
ho+hi-q+- -4+ hy-q", is defined by the polynomial relation

n

hg) =Y fi-(g—1)""

=0
See for instance [19, Section 8.3]. The h-polynomial and the bipyramid operation commutes as
follows
h(Bipyr(P)) = (14 q) - h(P).
We can now evaluate the Major MacMahon map on the ab-index of a simplicial poset.

Theorem 4.1. For a simplicial poset P of rank n + 1 the following identity holds:
O(Y(P)) = [n]!- h(P). (4.1)

Proof. Let B, U{1} denote the Boolean algebra B,, with a new maximal element added. Note that
B, U{1} is indeed a simplicial poset and its h-polynomial is 1. Furthermore, equation (4.1) holds
for B, U {1} since

O(¥(B, U{1})) = ©(¥(By) - a) = O(¥(By)) = [n]! = [n]! - h(B, U {1}).
Also, if (4.1) holds for a poset P then it also holds for Bipyr(P), since we have

O(¥(Bipyr(P))) = [2] - [n + 1] - ©(¥(P)) = [2] - [n + 1] - [n]! - h(P) = [n + 1]! - h(Bipyr(P)).

Observe that both sides of (4.1) are linear in the h-polynomial. Hence to prove it for any
simplicial poset P it is enough to prove it for a basis of the span of all simplicial posets of rank n—+1.
Such a basis is given by the posets

By = {Bipyr' (B, U{Ih} .

2= {Bipw' (B U]

This is a basis since the polynomials h(Bipyr*(B,_; U {1})) = (1 + ¢)¢, for 0 < i < n, are a basis
for polynomials of degree at most n.

Finally, since every element in the basis is built up by iterating bipyramids of the posets BnU{T},
the theorem holds for all simplicial posets. O

Observe that the poset Bipyr!(B,_; U{1}) is the face lattice of the simplicial complex consisting
of the 2* facets of the n-dimensional cross-polytope in the cone z1,...,z,—; > 0.

For an Eulerian simplicial poset P, the h-vector is symmetric, that is, h; = h,,_;. In other words,
the h-polynomial is palindromic. Stanley [15] introduced the simplicial shelling components, that
is, the cd-polynomials (i)n,i such that the cd-index of an Eulerian simplicial poset P of rank n + 1
is given by

U(P) = Zn: hi - ®p. (4.2)
=0

These cd-polynomials satisfies the recursion ‘i)n,o = U(B,) - ¢ and Ci)n,i = G(én,lﬂ-,l); see [7,
Section 8]. The Major MacMahon map of these polynomials is described by the next result.



Corollary 4.2. The Major MacMahon map of the simplicial shelling components is given by
O(Pn;) =q" - [2(n —14)] - [n — 1)L

Proof. When i = 0 we have ©(®,,0) = O(¥(B,) -c) = (1 +¢") - [n]! = [2n] - [n — 1]!. Also when
i > 1 we obtain ©(®,,;) = O(G(®y-1,-1) =¢-[n—1]-O(Pp_1,-1) =¢" - [2(n —3)] - [n—1].. O

We end with the following observation.

Theorem 4.3. For an Eulerian poset P of rank n + 1, the polynomial [2]/"/? divides ©(¥(P)).

Proof. 1t is enough to show this result for a cd-monomial w of degree n. A ¢ in an odd position ¢
of w yields a factor of 1 + ¢*. A d that covers an odd position i of w yields either ¢"~! + ¢’ or
¢" + ¢"t'. Each of these polynomials contributes a factor of 1 4+ ¢q. The result follows since there
are [n/2] odd positions. O

5 The Cartesian product of posets

We now study how the Major MacMahon map behaves under the Cartesian product. Recall that
for a poset P the ab-index W(P) encodes the flag f-vector information of the poset P. There is
another encoding of this information as a quasi-symmetric function. For further information about
quasi-symmetric functions, see [17, Section 7.19].

A composition a of n is a list of positive integers (aq, g, ..., ay) such that ag+ag+- - -+ = n.
Let Comp(n) denote the set of compositions of n. There are three natural bijections between ab-
monomials u of degree n, subsets S of the set {1,2,...,n} and compositions of n + 1. Given a
composition o € Comp,,,; we have the subset S,, the ab-monomial u, and the ab-polynomial v,
defined by

So ={a, a1 +ag,...,01 + -+ a1},
Ug=a%"1t.b-a?2l.p...b-a% !
Vo =(a—b)* L. b.(a—b)*?'.b...b-(a—b)*
For S a subset of {1,2,...,n} let co(S) denote associated composition.
The monomial quasi-symmetric function M, is defined as the sum
11 <t <---<ip

A second basis is given by the fundamental quasi-symmetric function L, defined as

L, = Z MCO(T)'

Sang{17277n}

Following [8] define an injective linear map v : Z{a,b) — QSym by

’Y (UOL> = MOM



for a composition a of n > 1. The image of « is all quasi-symmetric functions without constant
term. Moreover, the image of the ab-monomial u, under 7 is the fundamental quasi-symmetric
function L, that is,

V(ta) = La-

Another way to encode the flag vectors of a poset P is by the quasi-symmetric function of the
poset. It is quickly defined as F'(P) = (¥ (P)). A more poset-oriented definition is the following
limit of sums over multichains

F(P)= lim Z tﬁf(:ﬁo,m) . t/29($1,$2) .. .tz(xkﬂ@k)‘

k—o0 _ .
O=zo<z1<--<z)=1

For more on the quasi-symmetric function of a poset, see [5].

The stable principal specialization of a quasi-symmetric function is the substitution ps(f) =
f(1,q,¢% ...). Note that this is a homeomorphism, that is, ps(f - g) = ps(f) - ps(g).

For a composition o = (a, 9, ...,q) let a* denote the reverse composition, that is, o* =
(... a2,a1). This involution extends to an anti-automorphism on QSym by M} —— Mg-«.
Define ps* by the relation ps*(f) = ps(f*). Informally speaking, this corresponds to the substitution

ps*(f) = f(....¢% q,1).

Theorem 5.1. For a homogeneous ab-polynomial w of degree n — 1 the Major MacMahon map is
given by
O(w) = (1 —q)" - [n]! - ps*(v(w)). (5.1)

For a poset P of rank n this identity is
O(¥(P)) = (1—q)"-[n]!- ps*(F(P)). (5.2)

Proof. 1t is enough to prove identity (5.1) for an ab-monomial w of degree n — 1. Let « be the
composition of n corresponding to the reverse monomial w*. Furthermore, let e(«) be the sum
> ies, (n — ). Note that e(a) is in fact the sum »_, g, where S is the subset associated with
the ab-monomial w. That is, we have ¢*®) = @(w). Equation (5.1) follows from Lemma 7.19.10
in [17]. By applying the first identity to ¥(P), we obtain identity (5.2). O

Since the quasi-symmetric function is multiplicative under the Cartesian product, we have the
next result.

Theorem 5.2. For two posets P and Q) of ranks m, respectively n, the following identity holds:

O(U(P x Q)) = [m”ﬂ O(u(P)) - O(¥(Q)). (5:3)

n



Proof. The proof is a direct verification as follows:

O(E(P x Q)) = (1~ q)"™" - [m -+ nll - ps(F(P* x @)
Tl () (@)

m-+n
m

} O(u(P)) - O(W(Q)). =

6 The dual diamond product

Define the quasi-symmetric function of type B* of a poset P to be the expression

Fg-(P) = Z F([0, xD.SP(x,T)*l_

6§1<T

This is an element of the algebra QSym ®Z[s] which we view as the quasi-symmetric functions of
type B*. We view QSymp. as an subalgebra of Z[t1,t,...;s|, which is quasi-symmetric in the
variables t1,ts, . ... For instance, a basis for QSym . is given by a M, - s' where o ranges over all
compositions and ¢ over all non-negative integers.

Furthermore, the type B* quasi-symmetric function Fg+ is multiplicative respect to the prod-
uct o*, that is, Fp«(P o* Q) = Fp«(P) - Fp+«(Q); see [8, Theorem 13.3].

Let f be a homogeneous quasi-symmetric function such that f-s’ is a quasi-symmetric function
of type B*. We define the stable principal specialization of the quasi-symmetric function f - s7 of
type B* to be psg«(f - s7) = q4%8() . ps*(f). This is the substitution s = 1, t;, = ¢, t,_1 = ¢°, ...as
k tends to infinity, since f(...,q¢>, ¢% q) = qdes(s) -f(...,4% q,1). Especially, for a poset P we have

psp-(Fp=(P)) = Y ¢ - ps*(F([0,2])). (6.1)
6§m<T

Theorem 6.1. For a poset P of rank n + 1 the relationship between the Major MacMahon map
and the stable principal specialization of type B* is given by

O(¥(P)) = (1—q)" - [n]! psp-(Fp-(P)). (6.2)
Especially, for a homogeneous ab-polynomial w of degree n the Major MacMahon map is given by

O(w) = (1 —q)" - [n]! - psg«(vB+ (w")). (6.3)



Proof. For the poset P we have

ps*(F(P)) = Jim. Z (Qk—1>p($°’x1) . (qz)”(xk'*?”xk*?) P @h-23k-1) | 1P(@k-1.2k)
O=zo<a1 < <ap=1
_ klggo Z (qk_1>P(:co,:61) . (q2)p($k—3:$k—2) ) qp(xk—%xk—l)
6:20§x1§~~§2sz
p(zo,x1)
= lim Z qp(xk—l) . (gk_Q) ...qp(xk—37$k—2) 1@k -2,k —1)
k—oo __

= 3 @ ps*(F(D,2) + ¢ psT(F(P)).

6§z<f

Rearranging terms yields

Yo "D ps (F(0,a]) = (1— ") - ps*(F(P))

0<az<1
= (1—¢"*") - ps(F(P*))
=1-q"" 1- ggl(]-)[)g 1!
O(Y(P))
S -9l
Combining the last identity with (6.1) yields the desired result. O

Theorem 6.2. For two posets P and Q of ranks m + 1, respectively n + 1, the identity holds:

ow(pe Q)= |" "] -ow(r) 0@ (6.9

Proof. The proof is a direct verification as follows:

O(T(Po" Q) = (1— )™ [m+n]! psp.(Fp+ (P" 0" Q"))

_ [m;— n] (1= @)™ [m]! - [n]! - psg (Fp+(P*)) - psp- (Fp(Q*))
_ [m; ”} O(L(P)) - O(¥(Q)) -

7 Permutations

One connection between permutations and posets is via the concept of R-labelings. For more
details, see [16, Section 3.14]. Let £(P) be the set of all cover relations of P, that is, £(P) =
{(z,y) € P2 : x <y}. A graded poset P has an R-labeling if there is a map A : £(P) — A, where



A is a linearly ordered set, such that in every interval [z,y] in P there is a unique maximal chain
c={z=x0<w1 <+ <z =y} such that A(zg,z1) < A(z1,22) < -+~ < Mag—1,xp)-

For a maximal chain ¢ in the poset P of rank n, let A(c) denote the list (A(xg,x1), A(z1,22),

.y M@k—1,2)). The Jordan-Hélder set of P, denoted by JH(P), is the set of all the lists A(c)

where ¢ ranges over all maximal chains of P. The descent set of a list of labels A(c) is the set of

positions where there are descents in the list. Similarly, we define the descent word of A(c) to be
Ur(e) = ULU2 -+ - Up—1 Where u; = b if AN(z;—1,2;) > A(z, 741) and u; = a otherwise.

The bridge between posets and permutations is given by the next result.

Theorem 7.1. For an R-labeling A of a graded poset P we have that
U(P) = e,
where the sum is over the Jordan—Hélder set JH(P).

This a reformulation of a result of Bjorner and Stanley [3, Theorem 2.7]. The reformulation
can be found in [6, Lemma 3.1].

As a corollary we obtain MacMahon’s classical result on the major index on a multiset; see [9].
For a composition « of n let &, denote all the permutations of the multiset {141,2%2 ... k% }.

Corollary 7.2 (MacMahon). For a composition o = (a1, g, ...,ax) of n the following identity

holds:
T gt [n]! '
= ]! o]t o]t
Proof. Let P; denote the chain of rank «; for i = 1,..., k. Furthermore, label all the cover relations

in P; with ¢. Let L denote the distributive lattice P; x P, X --- X Py. Furthermore, let L inherit
an R-labeling from its factors, that is, if z = (z1,22,...,2k) < (y1,¥2,...,Yk) = y let the label
A(z,y) be the unique coordinate ¢ such that x; < y;. Observe that the Jordan—-Hoélder set of L
is &,. Direct computation yields ¥(P;) = a%~! so the Major MacMahon map is O(¥(F;)) = 1.
Iterating Theorem 5.2 evaluates the Major MacMahon map on L:

> =6 ( > u(w)) =0 (¥(L) = m 0

71'66(1 WEG&
For a vector r = (r1,r,...,7r,) of positive integers let an r-signed permutation be a list o =
(01,02, y0n+1) = ((J1,71), (J2,72), - -+, (Jn, ™), 0) such that w7y - - - m, is a permutation in the

symmetric group &,, and the sign j; is from the set S, = {—=1}U{2,...,7,}. On the set of labels
A={(,i) : 1 <i<mn,j€S;}U{0} we use the lexicographic order with the extra condition that
0 < (j,7) if and only if 0 < j. Denote the set of r-signed permutations by &F. The descent set of
an r-signed permutation o is the set Des(o) = {i : 0; > 0,41} and the major index is defined as
maj(0) =3 ;cpes(o) ¢ Similar to Corollary 7.2, we have the following result.
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Figure 1: The poset P; with its R-labeling used in the proof of Corollary 7.3.

Corollary 7.3. The distribution of the magjor index for r-signed permutations is given by
n

Z ™) = [p]! . H(l +(ri—1)-q).

ocBr, =1

Proof. The proof is the same as Corollary 7.2 except we replace the chains with the posets P; in
Figure 1. Note that ¥(P;) =a+ (r; — 1) - b. Let L be the lattice L = P} * Py o*---0* P,. Let L
inherit the labels of the cover relations from its factors with the extra condition that the cover
relations attached to the maximal element receive the label 0. This is an R-labeling and the labels
of the maximal chains are exactly the r-signed permutations. O

For signed permutations, that is, r = (2,2,...,2), the above result follows from an identity due
to Reiner [13, Equation (5)].

8 Concluding remarks

We suggest the following g, t-extension of the Major MacMahon map ©. Define ©%¢ : Z(a,b) —
Zlg, ] by
0% (w) = O(w) - Waz1b=g = |[ ¢ 1, (8.1)
i:u;=b
for an ab-monomial w = ujus - - - u,. Applying this map to the ab-index of the Boolean algebra
yields one of the four types of g-Eulerian polynomials:

@q’t(\I/(Bn)) _ A;naj,deS(q’t) _ Z qmaj(w)tdes(ﬂ').
eSS,
The following identity has been attributed to Carlitz [4], but goes back to MacMahon [10, Volume 2,
Chapter 1V, §462],
A?aj,des (q, t)

n 4k _
S e+t Moo=t g (8.2)

k>0

For recent work on the ¢g-Eulerian polynomials, see Shareshian and Wachs [14]. Tt is natural to ask
if there is a poset approach to identity (8.2).

There are several different ways to extend the major index to signed permutations. Two of our
favorites are [1, 18].
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