MA 514 Assignment 3. Due Friday October 13 at 12:50pm.

Problem X2.4. The breadth-first search algorithm provides a method for finding a shortest path between two vertices of G. If T is a tree rooted at the vertex v_0 , then the *level* of a vertex $v \in V(T)$ is the length of the unique path between v_0 and v in T. In the following, let G be a finite connected graph. Let T be a breadth-first search tree for G, rooted at v_0 .

- (a) Prove that the vertices of G enter T in non-decreasing order of level.
- (b) Prove that each non-tree edge of G joins vertices that are at most one level apart in T.
- (c) Let $v \in V(G)$. Prove that the path from v_0 to v in T is a shortest path from v_0 to v in G.

Problem 3C. Show that equality cannot hold in

 $N(p,q;2) \le N(p-1,q;2) + N(p,q-1;2)$

if both terms on the right-hand side are even.

Problem 3D. Prove that N(4, 4; 2) = 18.

Problem 3F. Apply Ramsey's Theorem to prove that for all $r \in \mathbb{N}$ there is a minimal number N(r) with the following property. If $n \geq N(r)$ and the integers in $\{1, 2, \ldots, n\}$ are coloured with r colours, then there are three integers x, y, z (not necessarily distinct) with the same colour and x + y = z. Determine the exact value of N(2).

Problem 3I. Construct an edge-colouring of K_{16} with the three colours $\{0, 1, 2\}$ so that there are no monochromatic triangles, by doing the following.

The finite field of order sixteen can be explicitly constructed as $\mathbb{F}_{16} = \mathbb{F}_2[x]/(x^4 + x + 1) \cong \mathbb{F}_2[\alpha]$, where $\alpha^4 = \alpha + 1$. Label the vertices of K_{16} by the elements of $\mathbb{F}_{16} = \{0, \alpha, \alpha^2, \ldots, \alpha^{14}, \alpha^{15} = 1\}$. If β and γ are two vertices and $\beta + \gamma = \alpha^{\nu}$, assign the colour ν mod 3 to the edge $\{\beta, \gamma\}$.

- (a) Show that the sum of two cubes in \mathbb{F}_{16} cannot be a cube.
- (b) Deduce that there cannot be a monochromatic triangle of colour 0.
- (c) Deduce that there cannot be a monochromatic triangle of colour 1 or 2.
- (d) Conclude that N(3, 3, 3; 2) = 17.