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Abstract. We modify the transchromatic character maps of [Sta13] to land in a faith-

fully flat extension of Morava E-theory. Our construction makes use of the interac-

tion between topological and algebraic localization and completion. As an application
we prove that centralizers of tuples of commuting prime-power order elements in good

groups are good and we compute a new example.

1. Introduction and outline

The character maps of [Sta13] suggest the intriguing possibility of approximating height
n Morava E-theory by Morava E-theory of lower height. In particular, it is easy to imagine
that a character map from En to p-adic K-theory could have many applications because it
could reduce height n problems to representation theory in the same way that the character
map of [HKR00] reduces height n problems to combinatorial problems. However, the maps
produced in [Sta13] have codomain an extension of the K(t)-localization of En for t < n.
This cohomology theory is less familiar and presents some computational difficulties because
its coefficients are not a complete local ring. In this paper, we present a modification of the
character maps that, for good groups, land in a faithfully flat extension of Et. This work
grew out of work of the second author with Tomer Schlank on Strickland’s theorem in [SS]
where this modified character map from height n to height 1 plays a critical role.

A finite group is good (at a prime p) if E∗n(BG) is free and evenly concentrated. There are
a variety of classes of groups that are known to be good. These include finite abelian groups,
symmetric groups, finite general linear groups away from the characteristic, wreath products
and products of these groups, and groups of order p3 (see Theorem E and Proposition 7.10
in [HKR00], [Tan95]). It was a conjecture of Hopkins, Kuhn, and Ravenel that all groups
are good; however this was disproved by Kriz in [Kri97]. A corollary of the construction
of this modified character map is that centralizers of abelian p-groups in good groups are
good. This enlarges the class of groups known to be good in a very different way than the
results above.

Our approach relies on a variety of facts concerning completion and localization of flat
modules in stable homotopy theory. In order to put these into a more abstract context,
we review the relationship between chromatic localization functors on the category of MU -
modules and certain arithmetic localizations and completions (as described in [GM95]). As
an immediate consequence we obtain that the coefficients of the K(t)-localization of a flat
En-module M are given by the simple formula

π∗(LK(t)M) ∼= (π∗M)[u−1
t ]∧(p,...,ut−1).

We also provide a proof of a mild generalization of Hovey’s unpublished theorem that the
In-completion of a flat E∗n-module is flat.

We then use these methods to analyze the spectrum C̄t = LK(t)(Ct ∧ Et), where Ct is

an E∞-ring with coefficients the ring C∗t from [Sta13]. After proving that C̄∗t is faithfully
1
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flat as an E∗t -module we construct the modified character maps. For H the centralizer of a
tuple of commuting elements in G, we show that there is an isomorphism

C̄∗t ⊗LK(t)E∗n
LK(t)E

∗
n(BH) ∼= C̄∗t ⊗E∗t E

∗
t (BH).

Now let L(−) = hom(BZp,−) be the p-adic free loop space functor. The main object of
study is the composite of the character map from [Sta13] with the isomorphism above

E∗n(BG) −→ C̄∗t ⊗LK(t)E∗n
LK(t)E

∗
n(Ln−tBG) ∼= C̄∗t ⊗E∗t E

∗
t (Ln−tBG).

The codomain of this character map is just the Et-cohomology of Ln−tBG base changed to
a faithfully flat extension. Morava Et is certainly more computable and more familiar than
LK(t)En. Our main result gives a condition for when this map induces an isomorphism after

base change to C̄∗t :

Theorem. For a good group G the map above, base changed to C̄∗t , gives an isomorphism

C̄∗t ⊗E∗n E
∗
n(BG)

∼=−→ C̄∗t ⊗E∗t E
∗
t (Ln−tBG).

This allows us to reduce certain height n problems to height t problems without intro-
ducing more exotic cohomology theories. For instance, an argument using faithfully flat
descent for finitely generated projective modules proves Corollary 7.1 (centralizers in good
groups are good) from this result. The paper ends with a brief summary of what is known
about good groups and a new example.

Acknowledgements. We thank Omar Antoĺın Camarena, Mark Behrens, Tyler Lawson,
Eric Peterson, Tomer Schlank, and Björn Schuster for many helpful conversations. The
second author was partially supported by NSF grant DMS-0943787.

2. Arithmetic localization and completion

In this section we summarize the Greenlees–May theory of localization and completion
in topology, as developed in [GM95], using some insights from [Lur].

2.1. Construction of localization and completion. Let R be an E∞-ring spectrum,
so that the category ModR of R-modules has a symmetric monoidal structure, where the
smash product over R will be denoted ∧. Note that most of the arguments work as well for
E2-ring spectra, but we will not need this extra generality here.

Let I ⊆ π∗R be a finitely generated ideal with a minimal set of generators {x1, . . . , xn}.
It is possible to weaken this hypothesis as in [GM92], but for simplicity we will restrict
ourselves to the finitely generated situation.

Definition 2.2. A module M ∈ ModR is called I-nilpotent if I ⊆ supp(m) = {r ∈ π0R |
∃n : rnm = 0} for all m ∈ π∗M . This condition is equivalent to M [1/x] = 0 for all x ∈ I.

If we define the Koszul complex as Kos(I) =
∧n
i=1 Kos(xi) with Kos(xi) = fib(R →

R[1/xi]), then we can construct the fundamental cofiber sequence

Kos(I) −→ R −→ Č(I).

Definition 2.3. The right adjoint to the inclusion functor ModI−nil
R ↪→ ModR is given by

ΓI = −⊗Kos(I).
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It follows easily that ModI−nil
R is compactly generated by

∧n
i=1 cofib(R

xi−→ R). For

example, Mod
(p)−nilp

S0
(p)

' ModQ−acyclic
S0
(p)

is generated as a localizing subcategory by S0/p.

If C is a full stable subcategory of ModR, its left orthogonal is defined as the full subcat-
egory of ModR on those objects N for which Hom(M,N) = 0 for all M ∈ C.

Definition 2.4. ModI−loc
R is the left orthogonal to ModI−nil

R , i.e., M ∈ ModI−loc
R if and

only if HomR(N,M) = 0 for all N ∈ ModI−nil
R .

Lemma 2.5. The inclusion functor ModI−loc
R ↪→ ModR admits a left adjoint, given by

I-localization LI = − ∧ Č(I), also written as (−)[I−1]. In particular, this gives rise to a
fiber sequence of functors

ΓI −→ id −→ LI .

Definition 2.6. ModI−comp
R is left orthogonal to ModI−loc

R .

Equivalently, an R-module M is I-complete if and only if lim(. . .
x−→ M

x−→ M) = 0 for
all x ∈ I, as shown in [Lur, Cor. 4.2.8]

Lemma 2.7. The I-adic completion functor is defined as (−)∧I = HomR(Kos(I),−), and it

is left adjoint to the inclusion functor ModI−comp
R ↪→ ModR.

As a special case, (−)∧(x) ' lims(−/xs), which coincides with the familiar construction of

completion.
The following diagram summarizes our discussion of arithmetic localization and comple-

tion,

ModI−loc
R

��

��

ModR

LI

OO

ΓIxx

(−)∧I

&&

ModI−nil
R

88

∼
//

77

ModI−comp
R

ff

where the dotted arrows indicate left orthogonality. This reduces to the usual derived
functors of localization and completion upon specialization to Eilenberg–Mac Lane spectra.

2.8. Bousfield localization. Following [EKMM97], we will work in the category of ModR
of modules over an E∞-ring spectrum R. Let E be an R-module.

Definition 2.9. An R-module X is called E-acyclic if X ∧E = 0, and Y ∈ ModR is called
E-local if Hom(X,Y ) = 0 for all E-acyclic X. A morphism f is an E-equivalence if f ∧ E
is an equivalence.

The following fundamental result was proven by Bousfield [Bou79].

Theorem 2.10. There exists a functor LE : ModR → ModR together with a natural trans-
formation id→ LE such that X → LEX is an E-equivalence with E-local target for all X.
Equivalently, X → LEX is the initial map into an E-local object.

Recall also that a localization functor L is called smashing if, for all M ∈ ModR, LM =
M ∧LR. As in [GM95], we now identify the arithmetic localization and completion functors
encountered earlier as special cases of Bousfield localization.
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Proposition 2.11. Let R be an E∞-ring spectrum with Noetherian coefficients and let I
be an ideal in π∗R, then the following holds.

(1) LI is the smashing Bousfield localization with respect to Č(I).

(2) There is a spectral sequence E2
p,q = ČH−p,−qI (π∗M) ⇒ πp+q(LIM). Here, ČH∗I

denotes Čech cohomology with respect to I as defined in [GM95].

We will be mainly interested in completion. Recall that algebraic I-completion is not
exact on the category of all R∗-modules, but we can consider its left derived functors LIs =
Ls(−)∧I . These will be studied in more detail in Section 3.9.

Proposition 2.12. Let R be a commutative S-algebra with Noetherian coefficients and let
I be an ideal in π∗R, then the following holds.

(1) (−)∧I is Bousfield localization with respect to Kos(I). In general, (−)∧I is not smash-
ing.

(2) There is a spectral sequence E2
s,t = Ls(π∗M)t ⇒ πs+t(M

∧
I ), where Ls denotes the

s-th left derived functor of ordinary I-adic completion.

Remark 2.13. More generally, the E2-term of the above spectral sequence can be identified
with the local homology of groups of π∗M with respect to I, E2

s,t = HI
s,t(π∗M).

3. Localization and completion of MU-modules

The goal of this section is to show that the restrictions of certain Bousfield localization
functors appearing in chromatic homotopy theory to MU -modules can be expressed as
combinations of the arithmetic functors of Section 2. This is certainly well-known to experts,
but since there is no published reference for these results, we include the proofs.

Moreover, the same techniques allow us to study the effect of K(n)-localization on coef-
ficients, which admits an explicit description for flat modules.

3.1. Recollections. Fix a prime p, and let En and K(n) denote Morava E-theory and
Morava K-theory at height n, respectively. Recall that En is a Landweber exact E∞-ring
spectrum with coefficients E∗n = WkJu1, . . . , un−1K[u±1], where Wk is the ring of Witt
vectors of k = Fpn and u has degree 2. The spectrum representing Morava K-theory is a
complex orientable A∞-ring spectrum with K(n)∗ = Fpn [v±1

n ] with vn of degree 2(pn − 1).
These spectra come with associated Bousfield localization functors Ln and LK(n) that

play a fundamental role in the chromatic approach to stable homotopy theory. We recall
two important relations between these functors.

• Ln = L∨n
i=0K(i)

• There is a homotopy pullback square of functors on spectra

Ln //

��

LK(n)

��
Ln−1

// Ln−1LK(n),

usually called the chromatic fracture square.

The n-th monochromatic layer Mn : Sp → Sp is defined as the fiber Mn = fib(Ln →
Ln−1). By the smash product theorem of Hopkins and Ravenel, Ln and hence Mn are
smashing for all n, whereas LK(n) does not have this property. Moreover, Hovey and
Strickland provide a convenient description of K(n)-localization.
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Proposition 3.2. For any spectrum X and n ≥ 0, there is an equivalence

LK(n)X = HomS0(MnS
0, LnX).

3.3. Identification of chromatic functors. In [GM95], Greenlees and May provide the
starting point of a dictionary between arithmetic and chromatic localization and completion
functors on the category of MU -modules. Since BP is known to be E4, we could work with
BP as well.

Proposition 3.4. For N ∈ ModMU and any t ≥ 0:

(1) LtN = N [I−1
t+1] ' N ∧ Č(It+1).

(2) N∧It ' HomS0(colimiMi, N), where the Mi form a cofinal sequence of generalized
type t Moore spectra.

Here, It denotes the ideal (p, v1, . . . , vt−1).

Remark 3.5. The obvious analogue of this result hold for the category of En-modules as
well.

Lemma 3.6. For N ∈ ModMU , Mt(N) ' ΓIt(N [v−1
t ]).

Proof. The following commutative diagram, in which all rows and columns are fiber se-
quences,

Kos(It+1) //

��

MU //

'
��

Č(It+1)

��
Kos(It) //

��

MU //

��

Č(It)

��
Kos(It) ∧ Č(νt) // 0 // ΣKos(It) ∧ Č(νt)

shows that Mt(−) = (−) ∧Kos(It) ∧ Č(νt), since LtN ' N ∧ Č(It+1). �

Proposition 3.7. If N ∈ ModMU , then LK(t)N ' (N [ν−1
t ])∧It .

Proof. By Proposition 3.2 and Proposition 3.4, we have

LK(t)N ' (N [I−1
t+1])∧It ' Hom(Kos(It), N ∧ Č(It+1)).

Consider the following commutative diagram of fiber sequences

Hom(Kos(It), N ∧Kos(It+1)) //

φ

��

Hom(Kos(It), N) //

∼
��

Hom(Kos(It), N ∧ Č(It+1))

��
Hom(Kos(It), N ∧Kos(νt)) // Hom(Kos(It), N) // Hom(Kos(It), N ∧ Č(νt)).

We claim that the first vertical map φ is an equivalence, hence so is the last one and the
result follows. To see the claim, note that φ fits into a cofiber sequence

Hom(Kos(It), N ∧Kos(It) ∧Kos(νt)) // Hom(Kos(It), N ∧Kos(νt))

��
Hom(Kos(It), N ∧ Č(It) ∧Kos(νt))
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where the cofiber is contractible by adjunction, as there are no non-trivial maps from an
It-local module to an It-complete module. �

Remark 3.8. The spectral sequence of Proposition 2.11

E2
s,t = ČH−p,−qIt+1

(π∗N)⇒ πp+q(LtN)

which corresponds to the geometric decomposition induced by the chromatic fracture cube.
It accounts for the existence of odd-dimensional classes in the homotopy of LtEn, 0 < t < n.

The following table summarizes the identifications of the chromatic functors on the cat-
egory of MU -modules.

Chromatic functor Arithmetic functor

Lt(−) (−)[I−1
t+1]

Ct(−) ΓIt+1(−)

Mt(−) ΓIt(−)[ν−1
t ]

LK(t)(−) (−)[ν−1
t ]∧It

In particular, we have a commutative diagram

ModMU

[ν−1
t ]

��
Mt

��

LK(t)

��

Modν−1
t MU

ΓItxx

(−)∧It

&&

ModIt−nil

ν−1
t MU

88

∼
// ModIt−comp

ν−1
t MU

ff

where the bottom horizontal equivalence is the well-known equivalence between the height
t monochromatic category and the K(t)-local category when restricted to MU -modules.

3.9. K(n)-localization and flatness. Proposition 3.7 can be used to compute the homo-
topy groups of localizations. Recall that a module spectrum M over an E1-ring spectrum
R is said to be flat if and only if π∗M is flat as a graded module over π∗R.

Corollary 3.10. If N ∈ ModEn
is flat, then π∗LK(t)N ∼= ((π∗N)[ν−1

t ])∧It .

Proof. By Proposition 3.7, LK(t)N ' (N [ν−1
t ])∧It . Since N is flat, so is N [ν−1

t ], hence the
spectral sequence of Proposition 2.12 computing the completion collapses. Therefore, we
get

π∗(N [ν−1
t ])∧It

∼= ((π∗N)[ν−1
t ])∧It ,

since π∗ preserves filtered colimits. �

More generally, Proposition 2.12 gives a natural, strongly convergent spectral sequence

E2
s,t = (Lsπ∗M)t ⇒ πs+tLK(n)M

with E2
s,∗ = 0 if s > n and differentials dr : Ers,t → Ers−r,t+r−1. Using this spectral sequence,

it is not hard to see [BF, Cor. 3.14] that M ∈ ModEn is K(n)-local if and only if π∗M is
isomorphic to L0(π∗M). In fact this holds more generally for any completion functor over
a connective ring spectrum, see [Lur, Thm. 4.2.13].



CENTRALIZERS IN GOOD GROUPS ARE GOOD 7

Remark 3.11. This corollary complements Hovey’s result for ring spectra, [Hov97, Thm.
1.5.4.].

For the rest of this section, let R be a regular complete local Noetherian commutative
ring of dimension n, and let I = (x1, . . . , xt) be an ideal in R with a chosen minimal regular
sequence of generators. The main example of interest to us is E0

n = WkJu1, . . . un−1K with
its maximal ideal m = (p, u1, . . . , un−1).

By the Artin-Rees lemma, the algebraic completion functor (−)∧I is exact when restricted
to finitely generated modules, but it is neither left nor right exact in general. Therefore, for
general R-modules, we have to consider the left derived functors Ls of I-adic completion.
However, L0 coincides with ordinary I-adic completion for flat modules, so we may restrict
ourselves to this case here. An overview of the construction and properties of these functors
relevant to topology can be found in [HS99, BF, Rez].

Remark 3.12. The assumption that R is Noetherian can be weakened. In particular, the
theory applies as well to the non-Noetherian but coherent ring BP∗ = Z(p)[v1, v2, . . .], see
[GM92].

The following result was proven in the special case of R = En∗ and I = m by Hovey
[Hov]; the arguments easily generalize to give the following flatness criterion.

Proposition 3.13. If M is a flat R-module such that M/I is projective over R/I, then
M∧I is also flat over R.

Sketch of proof. By [Sta14, Tag 05D3], the hypotheses imply that M∧I is a retract of a pro-
free module, i.e., a module of the form F∧I with F ∈ ModR free. Since pro-free objects are
retracts of products of R by [HS99, Prop. A.13]1, hence flat as R is Noetherian, it follows
that M∧I is also flat over R. �

Remark 3.14. In fact, in case R is local and I = m is the maximal ideal, the class of
pro-free objects coincides with the collection of flat R-modules which are I-complete. This
characterization does not generalize to arbitrary finitely generated ideals I, as the example
I = (0) shows.

4. A short digression on Landweber exact theories

We include a short digression on Landweber exact cohomology theories. This is partly to
set up some technicalities that will be of use later and partly to clarify the relation between
Landweber exactness and Brown representability.

Assume that E is a Landweber exact spectrum and R is a flat E-module. Landweber
exactness implies that

R∗(X) ∼= R∗ ⊗E∗ E∗(X)

defines a homology theory for all spaces X, since homology commutes with filtered colimits.
However, we prefer to work cohomologically so that our theories are naturally ring-valued;
here, things are a bit more complicated cohomologically. Base change provides a cohomology
theory defined on finite spaces (spaces equivalent to finite CW-complexes) R∗ ⊗E∗ E∗(X)
and on these spaces this is the same as R∗(X).

We may extend this to finite G-CW complexes Borel equivariantly: R∗⊗E∗E∗(EG×GX),
but there can be a large difference between R∗(Y ) and R∗ ⊗E∗ E∗(Y ) for infinite Y .

1Note that the proof of Prop. A.13 in [HS99] generalizes to any finitely generated ideal I.
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Example 4.1. Let E = En, R = p−1En, and Y = BZ/p. Then E∗n(BZ/p) is a free E∗n-
module of rank pn. Thus we see that p−1E∗n⊗E∗n E

∗
n(BZ/p) is a free module of rank pn over

p−1E∗n. However, (p−1En)∗(BZ/p) ∼= p−1E∗n as p−1En is a rational cohomology theory.

The key observation is that, in general, R∗⊗E∗ E∗(−) does not satisfy the infinite wedge
axiom. However, Brown representability (in the form of [Ada71]) applied to this theory
defined on finite spaces produces a spectrum R′.

Lemma 4.2. With the above notation, R ' R′.

Proof. The cohomology theory associated to R′ must take the same value as the cohomology
theory associated to R on finite spaces. Now this lemma is an immediate consequence
of [HS99, Thm. 2.8], which says that Landweber exact spectra are determined by their
coefficients. �

In the following, we will also need the fact that the smash product of even Landweber
exact theories is again even. Note that this fails for general spectra, as the example HFp ∧
HFp shows.

Lemma 4.3. Suppose that E and F are Landweber exact theories, then so is E ∧ F .
Additionally, if E and F are even, then E ∧ F is even as well.

Proof. The first part of the claim follows from Hopkins discussion in [Hop]. Indeed, there
is a pullback diagram

Spec(π∗E ∧ F ) //

��

Spec(F∗)

v

��
Spec(E∗) u

//MFG

where Mfg denotes the stack of one-dimensional formal groups. Since u and v are flat, the
composite Spec(π∗E ∧F )→Mfg is flat by base-change. To show that E ∧F is even, recall
that

π∗(E ∧ F ) ∼= E∗ ⊗MU∗ MU∗MU ⊗MU∗ F∗

so the claim follows since MU∗MU is concentrated in even degrees. �

5. Some spectra related to character theory

5.1. Recollections. We recall the character maps of [Sta13]. For the rest of the paper fix
a prime p. Let En be Morava E-theory and Lt,n = LK(t)En be the localization of En by
Morava K(t). By Corollary 3.10 there is an isomorphism

π0Lt,n ∼= WkJu1, . . . , un−1K[u−1
t ]∧It .

Let GEn
be the p-divisible group associated to En and GLt,n

the p-divisible group associated
to Lt,n. In [Sta13] a flat extension C∗t of L∗t,n is constructed with the following property:

Let G := L0
t,n ⊗ GEn

so that GLt,n
is the connected component of the identity of G

(Proposition 2.4 of [Sta13]). Recall the following proposition.

Proposition 5.2. (Proposition 2.17 in [Sta13]) The functor from L0
t,n-algebras to sets given

by

IsoGLt,n/
(GLt,n

⊕Qp/Zn−tp ,G) : R 7→ IsoGLt,n/
(R⊗GLt,n

⊕Qp/Zn−tp , R⊗G)

is representable by C0
t .
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The ring C∗t is constructed as a localization of the ring colim
k

L∗t,n ⊗E∗n E
∗
n(B(Z/pk)n−t).

The following result should be compared to Proposition 6.5 of [HKR00].

Proposition 5.3. The ring C0
t is a faithfully flat L0

t,n-algebra.

Proof. Note that C0
t is a flat L0

t,n-algebra since it is constructed as a colimit of algebras
each of which is a localization of a finitely generated free module.

We now show that it is surjective on Spec(−). Let P ⊂ L0
t,n be a prime ideal. Let i be

the smallest natural number such that ui /∈ P . Note that i ≤ t. Now consider

K := (L0
t,n/P )

(0)

the algebraic closure of the fraction field. There is an isomorphism (pg. 34, [Dem86])

K ⊗G ∼= Gfor ⊕Qp/Zn−ip .

The formal part has height i because ui has been inverted. Now since

Gfor ⊕Qp/Zn−ip
∼= Gfor ⊕Qp/Zt−ip ⊕Qp/Zn−tp ,

Proposition 5.2 implies that this is classified by a map C0
t

q−→ K that extends the canonical
map L0

t,n −→ K. Now the kernel of q must restrict to P . �

The ring C∗t is used in the construction of the transchromatic generalized character maps
of [Sta13]. For a finite G-CW complex X, let

Fixh(X) =
∐

α∈hom(Zh
p ,G)

X imα.

This is a finite G-CW complex with G-action given by x ∈ X imα 7→ gx ∈ X im gαg−1

. The
character map is a map E∗n(EG×GX) −→ C∗t ⊗L∗t,nL

∗
t,n(EG×GFixn−tX) with the following

property:

Theorem 5.4. [Sta13] The character map has the property that the map induced by
tensoring the domain up to Ct

C∗t ⊗E∗n E
∗
n(EG×G X)

∼=−→ C∗t ⊗L∗t,n L
∗
t,n(EG×G Fixn−tX)

is an isomorphism.

5.5. Some spectra related to character theory. Let Ct be the spectrum

S−1colim
k

Lt,n ∧En
EBΛk
n .

It is clear that the coefficients of Ct is the ring C∗t from the previous section.

Proposition 5.6. The spectrum Ct is E(t)-local.

Proof. Note that Lt,n ∧En E
BΛk
n is E(t)-local. In fact, it is K(t)-local as it is equivalent

to LK(t)(E
BΛk
n ). This follows from the fact that EBΛk

n is a free En-module spectrum.
Now colimits in the E(t)-local category may be computed in the category of spectra (since
localization with respect to E(t) is smashing) so Ct is E(t)-local. �

While Ct ∧ Et is E(t)-local and flat as a Ct-module and as an Et-module, it is not
K(t)-local and thus the argument of Proposition 6.2 cannot be used. For that reason we
introduce a variant C̄t, which allows us to exploit the good finiteness properties of the
K(t)-local category.

Definition 5.7. We define C̄t := LK(t)(Ct ∧ Et).
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Proposition 5.8. The spectrum C̄t is even periodic and C̄∗t is faithfully flat as an E∗t -
module.

Proof. As seen in Lemma 4.3, the smash product of even periodic Landweber exact spectra is
even periodic and this cannot be changed by completion (which is all that K(t)-localization
is for E(t)-local BP -modules). By even periodicity it suffices to prove that C̄0

t is faithfully
flat over E0

t . Note that π0(Ct∧Et) is flat as a C0
t -module and as an E0

t -module by Hopkins’
result in [Hop]. By Proposition 3.13, the completion of a flat E0

t -module at It is flat. Thus
C̄0
t is flat as an E0

t -module. For faithful flatness it suffices to prove that C̄0
t /It is non-zero.

But Hovey-Strickland implies that it is π0(K(t)∧Ct) and since C0
t /It is nonzero (Proposition

2.17 in [Sta13]) we know that the K(t)-localization of Ct is nonzero. �

6. From E-theory to E-theory

In this section we present a modification of the character maps of [Sta13]. We begin by
recalling the character maps. An upshot of the presentation here is that the character map
is a map of E∞-rings. We then analyze the modification of the character map applied to
good groups and use this to show that centralizers of tuples of commuting elements in good
groups are good.

6.1. Character maps written spectrally. The character maps of [Sta13] admit an ob-
vious spectral interpretation. For a finite group G and a finite G-CW complex X we may
consider the evaluation map BΛk×EG×GFixn−t(X) −→ EG×GX. This induces the map
of spectra

EEG×GX
n −→ EBΛk

n ∧En
EEG×GFixn−t(X)
n .

Now the canonical map EBΛk
n −→ Ct and the map En −→ Lt,n induces

EBΛk
n ∧En

EEG×GFixn−t(X)
n −→ Ct ∧Lt,n

L
EG×GFixn−t(X)
t,n .

After extending coefficients in the domain the composite induces an equivalence

Ct ∧En
EEG×GX
n

'−→ Ct ∧Lt,n
L
EG×GFixn−t(X)
t,n .

In all of this discussion we are merely using the flatness of C∗t over E∗n and L∗t,n to translate
the algebraic results of [Sta13] to these spectral statements. It is worth noting that all of
the maps above are E∞ (after choosing an E∞-inverse to the Künneth map). Thus it is
clear that the character map is an equivalence of E∞-rings.

Now we present a modification of the above map that has some desirable properties. In
particular, the codomain is related to Et in the same way that the above map is related to
Lt,n. It seems to suffer in two respects though. It does not seem to induce an equivalence
for all spaces after base change of the domain to C̄t and it is not as computable as the above
map.

The modification is the composite of two maps. The first is the character map above.
The second is the canonical map of E∞-rings

Ct ∧Lt,n
L
EG×GFixn−t(X)
t,n −→ C̄

EG×GFixn−t(X)
t .

Proposition 6.2. For any finite G-CW complex X the canonical map C̄t∧Et
EEG×GX
t

'−→
C̄EG×GX
t is an equivalence.

Proof. Because C̄∗t is faithfully flat over E∗t there is an isomorphism

C̄∗t ⊗E∗t E
∗
t (EG×G X) ∼= π−∗(C̄t ∧Et

EEG×GX
t ).
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It is clear that C̄t ∧Et E
EG×GX
t is E(t)-local. However, since E∗t (EG ×G X) is finitely

generated and E∗t is Noetherian, the above isomorphism implies that

C̄∗t ⊗E∗t E
∗
t (EG×G X)

is It-complete and thus C̄t ∧Et E
EG×GX
t is K(t)-local. Let D(EG ×G X) = F (EG ×G

X,LK(t)S). Now we have equivalences

C̄t ∧Et E
EG×GX
t ' LK(t)(C̄t ∧Et E

EG×GX
t )

' LK(t)(C̄t ∧Et
LK(t)(Et ∧ (D(EG×G X))))

' LK(t)(C̄t ∧Et
Et ∧ (D(EG×G X)))

' LK(t)(C̄t ∧ (D(EG×G X)))

' C̄EG×GX
t .

The second and fifth equivalences follow from the K(t)-local duality of spaces of the form
EG×G X (Corollary 8.7 in [HS99]). �

Thus in the category of E∞-rings we have the map

EEG×GX
n −→ C̄t ∧Et E

EG×GFixn−t(X)
t

that factors

EEG×GX
n → Ct ∧Lt,n L

EG×GFixn−t(X)
t,n → C̄

EG×GFixn−t(X)
t

'← C̄t ∧Et E
EG×GFixn−t(X)
t .

The middle map is the most mysterious. The reason for this is that it is not clear at all
that C̄0

t is a flat L0
t,n-module.

Proposition 6.3. Let G be a finite group and let X be a finite G-CW complex with the
property L∗t,n(EG×G X) finitely generated and projective as an L∗t,n-module, then there is
an isomorphism

C̄∗t ⊗L∗t,n L
∗
t,n(EG×G X) ∼= C̄∗t (EG×G X).

Proof. This proof is essentially the same as the proof of Proposition 6.2. Since L∗t,n(EG×G
X) is projective we have an isomorphism

C̄∗t ⊗L∗t,n L
∗
t,n(EG×G X) ∼= π−∗(C̄t ∧Lt,n

LEG×GX
t,n ).

Since L∗t,n(EG ×G X) is finitely generated and L∗t,n is Noetherian the smash product is
K(t)-local. Now we have the same set of equivalences as in Proposition 6.2 with Et replaced
by Lt,n. �

Remark 6.4. When G = Z/pk we recover the anticipated result that C̄0
t ⊗ GLt,n

[pk] ∼=
C̄0
t ⊗GEt [p

k].

Definition 6.5. A finite group G is good (at the fixed prime p) if E∗n(BG) is even and free
for all n.

Remark 6.6. Our definition of a good group differs somewhat from the original in Definition
7.1 in [HKR00]. They observe that their definition implies the definition of a good group
used here.

Remark 6.7. Because the En-cohomology of a good group is even it admits an algebro-
geometric interpretation. Because the En-cohomology of a good group is free the character
map of [HKR00] is an embedding and so the ring can be attacked using character theoretic
methods.
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Corollary 6.8. Let G be a good group and let α : Zhp −→ G, then

C̄∗t ⊗L∗t,n L
∗
t,n(BC(imα)) ∼= C̄∗t (BC(imα)).

Proof. We show that L∗t,n(BC(imα)) is finitely generated and projective. The character
map of Theorem 5.4 gives a factorization

C∗t ⊗E∗n E
∗
n(BG) ∼=

∏
[α]∈hom(Zn−t

p ,G)/∼

C∗t ⊗L∗t,n L
∗
t,n(BC(imα)).

For a fixed α, this implies that C∗t ⊗L∗t,nL
∗
t,n(BC(imα)) is projective because it is a summand

of a free module and finitely generated because there is a retract to the inclusion as a
summand. Now since C∗t is faithfully flat as an L∗t,n-module, faithfully flat descent for
finitely generated projective modules implies that L∗t,n(BC(imα)) is finitely generated and
projective. �

Together these results give the theorem.

Theorem 6.9. For a good group G we have an equivalence

C̄t ∧En
EBGn

'−→ C̄L
n−tBG

t
'←− C̄t ∧Et

EL
n−tBG

t ,

where LhBG = hom(BZhp , BG) = EG×G Fixh(∗).

Remark 6.10. When n = 1 we obtain a map from E-theory to p-adic K-theory. This seems
like a useful tool. It allows one to reduce certain computations at height n to computations
in representation theory. This is used by the Tomer Schlank and the second author in [SS]
to give a new proof and generalization of Strickland’s theorem regarding the E-theory of
symmetric groups.

7. Examples of good groups

A comprehensive list of finite groups that are known to be good at a fixed prime p can
be found in the habilitation thesis [Sch] of Björn Schuster, to which we refer for the original
references; these include:

(1) abelian groups
(2) symmetric groups
(3) GLn(Fq) with p - q
(4) all groups of order p3 and of order 32
(5) metacyclic groups
(6) the Mathieu group M12, see [Sch14].

The collection G of good groups is closed under products and also under wreath products
with Z/p; moreover, a group is good if its Sylow p-subgroup is good. If G = H1 ×H2, then
H1 is good if both G and H2 are good because there is a Künneth isomorphism for good
groups. Furthermore, given an extension of the form

∗ // H // G // Z/p // ∗,

Kriz [Kri97] gives conditions for when H good implies G is good, and conversely. In partic-
ular, semi-direct products of elementary abelian p-groups and Z/p are good.

The methods of the previous section allow us to deduce a new closure property of G.

Corollary 7.1. Let G be a good group and let α : Zhp −→ G, then E∗n(BC(imα)) is finitely
generated, free, and evenly generated as an E∗n-module.
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Proof. Corollary 6.8 implies that C̄∗t (BC(imα)) is finitely generated, projective, and even.
Proposition 6.2 implies that

C̄∗t (BC(imα)) ∼= C̄∗t ⊗E∗t E
∗
t (BC(imα))

and Proposition 5.3 implies that C∗t is faithfully flat as an E∗t -modules. Faithfully flat
descent for finitely generated projective modules implies that E∗t (BC(imα)) is finitely gen-
erated, even, and projective. But now since E∗t is complete local, projective implies free. �

Remark 7.2. Calling a group En-good if its En-cohomology is concentrated in even degrees
and free, Corollary 7.1 applied to the identity element shows that En+1-good implies En-
good. This is compatible with Minami’s result in [Min02].

Using GAP, we can thus construct new examples of good groups.

Example 7.3. Let p = 2 and consider G = GL2(F3) o C2, a good group of order 4608.
There exists an element g ∈ G of order 4 with centralizer

CG(g) = H o C2,

where H the binary octahedral group, i.e., a non-split extension of S4 by C2. The GAP-Id
of CG(g) in the Small Groups Library is [96, 192]. Since the Sylow 2-subgroup of CG(g) has
order 32, [Sch11] independently shows that this group has to be good.

However, the group K = CG(g) o C2 contains an element k of order 8 whose centralizer

CK(k) = (((C8 × C2) o C2) o C3) o C2

has GAP-Id [192, 963] and Sylow 2-subgroup (C8×C4)oC2, which is therefore not covered
by the previous list of examples. This process can be iterated, giving rise to other new
examples.

For an odd prime p, [KL00] implies that the unipotent radical in GL4(Fp) is not good.
So, as a curious consequence, we see that it cannot be obtained by iteratively applying the
constructions G is closed under to the above list of known good groups. We do not know
how to show this using only algebraic methods.
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