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Abstract. We show that Sullivan’s model of rational differential
forms on a simplicial set X may be interpreted as a (kind of) 0|1-
dimensional supersymmetric quantum field theory over X, and, as
a consequence, concordance classes of such theories represent the
rational cohomology of X. We introduce the notion of superalge-
braic cartesian sets, a concept of space which should roughly be
thought of as a blend of simplicial sets and generalized superman-
ifolds, but valid over an arbitrary base ring. Every simplicial set
gives rise to a superalgebraic cartesian set and so we can formu-
late the notion of 0|1-dimensional supersymmetric quantum field
theory over X, entirely within the language of such spaces. We
explore several variations in the kind of field theory and discuss
their cohomological interpretations.
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Introduction

Cohomology theories such as real cohomology, K-theory, and cobor-
dism theories have the distinct advantage of a geometric description.
They are built out of geometric cochains such as differential forms, vec-
tor bundles, or cobordism classes of manifolds. This significantly aids
our ability to compute with these theories while also allowing methods
from algebraic topology to be used to solve geometric problems.

Chromatic homotopy theory organizes cohomology theories accord-
ing to their height, which is a measure of the complexity of the theory.
Real cohomology and K-theory are at heights 0 and 1, respectively.
The theory of topological modular forms TMF introduced by Hopkins
and Miller is of height 2, while there are numerous theories, such as
Morava En-theory and K(n)-theory, which exist for arbitrary heights
n.

In contrast to real cohomology and K-theory, there are no known
geometric descriptions of these latter theories. In fact, aside from bor-
dism theories (which are manifestly geometric), to our knowledge the
only known geometric construction of a cohomology theory of com-
plexity greater than K-theory is via the Baas-Dundas-Richter-Rognes
theory of ‘2-vector bundles’ [BDRR13, BDRR11]; it produces K(ku),
the algebraic K-theory of topological K-theory, a theory of telescopic
complexity two.

Nevertheless, several years ago the enticing idea was put forward
that quantum field theories could provide some of the best candidates
for geometric cochains for higher height cohomology theories. This
idea was pioneered by Graeme Segal [Seg88] who proposed to use 2-
dimensional conformal field theories to give geometric cocycles for el-
liptic cohomology. This idea has been further developed in the work of
Stolz-Teichner [ST04, ST11].

While the primary goal of the Stolz-Teichner program has been to
use quantum field theories to construct a geometric model of TMF ,
a goal which has not yet been fully realized, as an offshoot they have
been very successful in constructing new geometric models of K-theory
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and de Rham cohomology based entirely on the formalism of quantum
field theory. See [HKST11] for the latter case.

There are two categories which go into the Atiyah-Segal formulation
of quantum field theories.

• A symmetric monoidal category (or more generally n-category)
Bord of bordisms. Here the objects are manifolds (say of di-
mension d − 1) and the morphisms are isomorphism classes of
bordisms between these. In the context relevant to cohomology
theories these manifolds will typically be equipped with some
geometric structure such as metrics or conformal structures,
though the purely topological case is also of interest.
• A target symmetric monoidal category V . This is often the

category Vect of vector spaces (or Hilbert spaces). In higher
categorical contexts a suitable higher categorical analog of vec-
tor spaces should be used.

A quantum field theory is then defined to be a symmetric monoidal
functor:

Z : Bord→ V .
When there is geometry involved the set of all choices of that geom-

etry (on a given bordism) will form a kind of ‘space’, and our quantum
field theory should restrict to give a function (continuous, smooth, holo-
morphic, etc.) on that space. In certain degenerate cases these ‘spaces’
will actually themselves be represented by manifolds, but more gener-
ally we will need to use ‘generalized manifolds’ (i.e. concrete sheaves)
or stacks.

It is important that quantum field theories respect this structure.
One way to accomplish this (following [ST11, §2]) is to regard Bord
as an internal category, internal to stacks or generalized manifolds.
The target category V will be of the same kind and our field theory is
required to be an internal functor.

There are several other key ideas which play a role in the Stolz-
Teichner program. One of them is the use of supersymmetric quantum
field theories. The theory of supermanifolds and resulting supergeom-
etry are used extensively in their work. Another key idea is that it is
possible to form twisted field theories, and in particular field theories of
a fixed degree n ∈ Z. A third ingredient is that it is possible to consider
field theories over a (super) manifold X, in which the relevant cobor-
disms are equipped with maps to X. This will be (contravariantly)
functorial in X and hence one obtains a series of (pointed) presheaves:

X 7→ 0|1-QFTn(X)
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Here 0|1-QFTn(X) denotes the set of isomorphism classes of degree
n quantum field theories over X. By varying the dimension of the
bordisms, the geometry, and the target category one obtains a plethora
of varieties of quantum field theories. Its flexibility is part of the appeal
of this subject.

Two quantum field theories over X are defined to be concordant if
there exists a quantum field theory over X × R which restricts to the
two given fields theories on X × {i}, i = 0, 1. Concordance induces an
equivalence relation, and we denote the set of concordance classes of
quantum field theories over X by 0|1-QFTn[X]. It is automatically ho-
motopy invariant. In very favorable situations this construction yields a
cohomology theory; this is the case for de Rham cohomology [HKST11],
K-theory [ST], Tate K-theory [Che08], and complexified TMF [BE13].
In the current work we build on these ideas. We were particularly
influenced by the results of Hohnhold-Kreck-Stolz-Teichner [HKST11].

The first major departure from previous results is a move away from
(generalized) supermanifolds. In section 1 we introduce the notion of
superalgebraic cartesian sets. One way to view manifolds, and also more
exotic ‘generalized manifolds’, is as certain sheaves on the category of
smooth cartesian spaces, i.e. the category with objects Rn for n ∈ N≥0

and morphisms hom(Rn,Rm) the set of smooth maps from Rn to Rm.
Similarly generalized supermanifolds may be viewed as certain sheaves
on the category of smooth supercartesian spaces Rn|q.

Superalgebraic cartesian sets are defined analogously but with the
following changes:

• We drop the sheaf requirement, allowing ourselves to consider
arbitrary presheaves (and indeed arbitrary prestacks);
• Instead of all smooth maps between Rn|q and Rm|p, we restrict

to functions which are polynomials in the standard coordinates;
• We allows these polynomials to be defined over an arbitrary

base ring.

Consequently we find it more appropriate to denote the representable
superalgebraic cartesian sets as An|q. The term ‘superalgebraic carte-
sian set’ is supposed to remind us that this notion of space is based
on the polynomial algebra over an arbitrary ring, while also being
evocative of the term ‘simplicial set’. Indeed any simplicial set has
an algebraic realization as a superalgebraic cartesian set, and any su-
peralgebraic cartesian set has a corresponding singular simplicial set
(see Section 1). They also have several aspects reminiscent of schemes
in algebraic geometry, though the theory of superalgebraic cartesian
sets is more simplistic. Everything we do is functorial in the base ring.
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Given this new notion of space, we may then mimic the usual def-
inition of quantum field theory. In this paper we will focus on the
simplest species of supersymmetric quantum field theories, those of su-
perdimension 0|1. The bordisms in this case consist of finite disjoint
unions of the representable superpoint A0|1.

A second departure from previous work is that instead of working
over a supermanifold, we define these quantum field theories over an
arbitrary simplicial set. We consider a variety of geometries on the
superpoint, each of which gives rise to a notion of supersymmetric
0|1-dimensional quantum field theory. We classify the possible global
twists for these theories. In each case there is always a degree n twist
where n ∈ N now takes values in the natural numbers.

When the base ring is the field Q of rational numbers, the supersym-
metric 0|1-dimensional quantum field theories over a simplcial set X
have a familiar interpretation. They coincide precisely with Sullivan’s
model of rational polynomial differential forms on X [Sul77]. More
precisely, the most interesting geometries we consider are: fully-rigid,
Euclidean, and topological (no geometry). In these cases we obtain the
following result:

Theorem. Let R be a rational algebra, and consider the category of
superalgebraic cartesian sets defined over R. Let X be a simplicial set,
regarded as a superalgebraic cartesian set. Then:

(1) For each of the following geometries the set of supersymmetric
0|1-dimensional quantum field theories of degree n over X may
be identified as:
(a) (topological) closed degree n polynomial forms over R

0|1-TFTn(X) ∼= Ωn
R;cl(X);

(b) (Euclidean) closed periodic polynomial forms over R

0|1-EFTn(X) =

{
Ωev
R;cl(X) n even

Ωodd
R;cl(X) n odd

(c) (fully-rigid) all polynomial forms over R

0|1-QFTf-r(X) ∼= Ω∗R(X).

(2) For each of the following geometries the set of concordance
classes of supersymmetric 0|1-dimensional quantum field the-
ories of degree n over X may be identified as:
(a) (topological) 0|1-TFTn[X] ∼= HRn(X) degree n R-cohomology;
(b) (Euclidean) 0|1-EFTn[X] ∼= PHRn(X) periodic R-cohomology.



6 CHRISTOPHER SCHOMMER-PRIES AND NATHANIEL STAPLETON

Moreover in the case of fully-rigid geometry the natural symmetries of
the the supersymmetric quantum field theory recover the commutative
differential graded algebra structure on Ω∗R(X).

Further motivations. One tool that aids in the study of higher height
cohomology theories is a form of character theory [HKR00, Sta13]. It
provides a character map that approximates high height cohomology
theories by a form of rational cohomology. The form of rational coho-
mology has coefficients that are a ring extension of the rationalization
of the coefficients of the high height cohomology theory. These rings
are often algebras over the p-adic rationals.

Many features of these character maps are reminiscent of dimensional
reduction maps between field theories. In fact there is a quantum field
theoretic interpretation of the (Bismut) Chern character map which
arises precisely as a dimensional reduction [Han07]. This geometric
construction yields a character map from K-theory taking values in
periodic de Rham cohomology.

Periodic de Rham cohomology cannot be a suitable target for the
higher height character maps that take place at a prime p. This is
essentially because there is no (interesting) map from the real numbers
R to the p-adic rationals Qp. For example the p-adic Chern character
may be obtained as the completion of the ordinary Chern character,
but only once it is factored through periodic rational cohomology.

This project grew out of a desire to explore the relationship between
higher character theory and quantum field theory, which remains an
ongoing project. This paper achieves a crucial first step, which is to
construct a geometric and quantum field theoretic construction of the
cohomology theories which serve as targets of these higher character
maps.

Review of the literature: supersymmetric field theories and de
Rham cohomology. In this section we give a rapid summary of the
work of Hohnhold-Kreck-Stolz-Teichner [HKST11] relating smooth dif-
ferential forms to 0|1-dimensional supersymmetric quantum field the-
ories. This material serves as a conceptual blueprint for the theory
developed in later sections.

The Atiyah-Segal axioms define quantum field theories as symmetric
monoidal functors from a bordism category, Bord, to a target symmet-
ric monoidal category V , such as the category of Hilbert spaces. This
can be generalized in many ways. One important way is that the theory
can be made to satisfy an enhanced form of locality by replacing ordi-
nary 1-categories with d-categories. Thus Bordd is to be a symmetric
monoidal d-category. The objects are to be 0-dimensional bordisms,
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the morphisms are 1-dimensional bordisms, the 2-morphisms are 2-
dimensional bordisms between bordisms, etc. all the way up through
dimension d. A fully local quantum field theory is then a symmetric
monoidal functor from this symmetric monoidal d-category Bordd to
another target symmetric monoidal d-category V .

The work of HKST [HKST11] considers a degenerate case where
d = 0. Thus the bordism n-category becomes a symmetric monoidal
0-category. That is to say it becomes a commutative monoid. The
target category V will also be replaced by a commutative monoid, and
field theories become commutative monoid homomorphisms.

Furthermore, these theories are supersymmetric. We refer the reader
to [DM99] for the necessary background material on supermanifolds. In
this case the bordisms are (closed) compact1 supermanifolds of dimen-
sion 0|1. Each such bordism is a finite disjoint union of copies of the
superpoint R0|1. Each of these bordisms could also be equipped with
some kind of geometry which defines the kind of quantum field theory,
and HKST consider two possibilities: topological and Euclidean. For
simplicity in the remainder of this section we will focus on the topo-
logical case (with no geometry). However even in the topological case
we will equip the bordisms with a further structure. For each super-
manifold X, HKST consider a category of bordisms over X where each
0|1-dimensional bordism is equipped with the structure of a map to X.

Finally, as mentioned in the introduction, the bordism category

Bord
0|1
X is constructed internally to the category of stacks on the Grothendieck

site of supermanifolds. In this case this means that Bord
0|1
X is a commu-

tative monoid object in stacks on supermanifolds. The easiest way to
describe this object is using the S-point formalism (which is essentially
the same as the fibered category approach to stacks (See [Vis05] for an
excellent introdution to fibered categories and stacks)).

Given an arbitrary test supermanifold S, we will describe the sym-

metric monoidal groupoid of maps from S into Bord
0|1
X . Its objects

consist of S-families of 0|1-dimensional bordisms equipped with a map
to X. More precisely the objects consist of a pair (E, f) where E is a
bundle of 0|1-dimensional supermanifolds over S equipped with a map
f : E → X from the total space to X. There is an obvious notion of
automorphism making this a groupoid, and the symmetric monoidal
structure is given by fiberwise disjoint union over S.

The definition of quantum field theory is incomplete without the tar-
get category, which will be a 0-category analog of the category of vector

1A supermanifold will be considered compact if the underlying reduced manifold
is compact.
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spaces. In this case HKST use the categorical looping of the category
of vector spaces, which is the representable stack R (endomorphisms of
the unit vector space). To indicate that we are thinking of R as a rep-
resentable stack we will write it with an underline R. Multiplication
makes R into a commutative monoid object in supermanifolds (and
hence also in stacks on supermanifolds), and 0|1-dimensional topolog-
ical quantum field theories over X are the defined [HKST11, Def. 5.1]
to be the set

0|1-TFT(X) = Hom(Bord
0|1
X ,R)

of homomorphisms of commutative monoids in stacks over supermani-
folds.

As a commutative monoid Bord
0|1
X is freely generated by the stack

quotient

sMan(R0|1, X)//Aut(R0|1).

Here sMan(R0|1, X) is the internal mapping object from R0|1 into X,
and Aut(R0|1) is the internal automorphism object; an S-point of sMan(R0|1, X)
is a map S × R0|1 → X and the effect of taking the stack quotient is
that, locally in S, we may glue these trivial R0|1-bundles together to
form non-trivial bundles. Both sMan(R0|1, X) and Aut(R0|1) turn out
to be representable by supermanifolds. The former is given by

sMan(R0|1, X) ∼= πTX

and the latter is a super Lie group R× nR0|1 [HKST11, Prop. 3.1 and
Lma. 3.5]. The supermanifold πTX has the surprising property that
its algebra of functions is the superalgebra of differential forms on X.

With this description of the bordism category, it is straightforward
to calculate the topological field theories explicitly. Since the com-

mutative monoid Bord
0|1
X is freely generated by πTX//Aut(R0|1), the

commutative monoid homomorphisms from Bord
0|1
X into R are exactly

the same as the maps from πTX//Aut(R0|1) into R. These in turn
may be identified with the even functions on πTX (i.e. even differen-
tial forms) which are Aut(R0|1)-invariant. These are exactly the locally
constant functions on X (i.e. the closed degree zero differential forms
on X) [HKST11, Prop. 5.5].

Twisted quantum field theories generalize the quantum field theories
just described. For a given geometry there is a symmetric monoidal
category of twists, and for each twist, τ , there is a corresponding notion
of τ -twisted quantum field theory over X. Let 0|1-QFTτ (X) denote
the set of these. In the above situation there is a natural family of
degree n twists parametrized by the integers (with the untwisted case
corresponding to degree zero).
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A similar calculation to the above [HKST11, Prop. 6.3] yields

0|1-TFTn(X) ∼= Ωn
cl(X),

that is 0|1-dimensional degree n supersymmetric topological field the-
ories over X are in natural bijection with closed smooth differential
forms of degree n on X. As a consequence concordance classes of these
degree n topological field theories are in bijection with de Rham coho-
mology classes on X. More generally the category of twists depends
on the manifold X and twisted quantum field theories give a model of
twisted cohomology [SPST]. We will make the definition of twist more
precise in our specific context in Section 7.

Outline of the paper. In Section 1 we define the category of superal-
gebraic cartesian sets. The category is a presheaf topos and we develop
basic properties of the category from that perspective. The category
has a distinguished supercommutative algebra object O. In Section
2 we study the Picard category of invertible modules for O. This is
important when studying twisted field theories in Section 8.

In Sections 3 and 4 we study the mapping space from the superpoint
into a superalgebraic cartesian set and show that under certain condi-
tions the action of the endomorphisms of the superpoint on the map-
ping space produces a cdga structure. In Section 5 we examine more
closely the case where the superalgebraic cartesian set comes from a
simplicial set X, we show that the ring of functions on this mapping
superalgebraic cartesian set is precisely Sullivans rational differential
forms on X, and that the endomorphisms of the superpoint reproduce
the grading and differential on Sullivan’s rational differential forms.

Section 6 explores the structure induced by submonoids of the endo-
morphisms of the superpoint. These are called geometries. In Section
7 we define and study 0|1-dimensional supersymmetric quantum field
theories in the context of superalgebraic cartesian sets. In analogy
to the smooth setting, we define a bordism (0-)category over an arbi-
trary superalgebraic cartesian set X. The bordisms in this case consist
of finite disjoint unions of copies of the superpoint A0|1 and they are
equipped with maps to the superalgebraic cartesian set X. For each
geometry we describe the collection of 0|1-dimensional supersymmetric
quantum field theories over X in terms of Sullivan’s rational differential
forms. In Section 8 we define twisted field theories and describe the
twisted field theories in terms of rational differential forms. Various
natural notions of concordance are defined in Section 9 and we show
that they are all equivalent. This gives the main theorem.
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1. Superalgebraic Cartesian Sets

Let sAlg be the category of Z/2-graded commutative rings and grad-
ing preserving maps. We will refer to objects in this category as super-
commutative rings. In this section we introduce superalgebraic carte-
sian sets. These are a species of space which are a primordial mix-
ture of the concepts of supermanifold, (super)scheme, and simplicial
set. While everything we will explain in this section is super (i.e. Z/2-
graded commutative), one could just as well form an ungraded analogue
called algebraic cartesian sets.

Definition 1.1. Fix a commutative ring R. The superalgebraic carte-

sian category sA has objects An|q
R for n, q ∈ N and morphisms the

polynomial maps

sA(An|q
R ,Am|p

R ) = sAlgop(R[x1, . . . , xn, ε1, . . . , εq], R[x1, . . . , xm, ε1, . . . , εp]).

Remark 1.2. Here and throughout the paper the degree of anything
called ε or δ will be odd. Thus these are square zero elements of the
supercommutative ring.

Hence sA is a full subcategory of the opposite of the category of super-
commutative R-algebras.

Definition 1.3. The category of superalgebraic cartesian sets is the
category of presheaves sCart := Pre(sA). A superalgebraic cartesian
set is an object of sCart.

Example 1.4. We will often abuse notation and write An|q instead

of An|q
R for the representable superalgebraic cartesian sets, however,

everything that we do will be functorial in the ring R. Note that
An|q ∼= (A1)n × (A0|1)q. The superpoint is the superalgebraic cartesian
set A0|1.

1.1. Superalgebraic cartesian sets as a presheaf topos. The cat-
egory of superalgebraic cartesian sets is, by definition, a presheaf topos
and consequently it enjoys the nicest possible categorical properties.
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Example 1.5. The category sCart is cartesian closed. The categorical
product of two superalgebraic cartesian sets X and Y is computed
pointwise, and for each superalgebraic cartesian set X, the right adjoint
to X × (−) is given by the internal mapping functor sCart(X,−). The
internal mapping superalgebraic cartesian set is given as the presheaf

sCart(X, Y ) : sCart −→ Set

mapping

An|q 7→ sCart(An|q ×X, Y ).

The category of superalgebraic cartesian sets is complete and cocom-
plete with both limits and colimits computed pointwise

(colimXα)(Am|p) = colim(Xα(Am|p))

and

(limXα)(Am|p) = lim(Xα(Am|p)).

As a topos, superalgebraic cartesian sets are also a context in which to
carryout mathematics. We can almost effortlessly study the theories
of groups, monoids, commutative rings, modules, categories, and even
supercommutative rings, internally to superalgebraic cartesian sets.

Example 1.6. There is an important supercommutative algebra object
O ∈ sCart. As a superalgebraic cartesian set we have O = A1|1.
Addition is given by

R[x, ε] −→ R[x1, x2, ε1, ε2] : (x 7→ x1 + x2, ε 7→ ε1 + ε2)

and multiplication is given by

R[x, ε] −→ R[x1, x2, ε1, ε2] : (x 7→ x1x2 + ε1ε2, ε 7→ x1ε2 + x2ε1),

where we have used the embedding of sA into sAlgop to write down
these maps.

Every topos has a global sections functor Γ which is given by eval-
uation on the terminal object. In the language of topos theory this is
a geometric morphism to the terminal topos, the category of sets. In
the case at hand, we have even more structure. Since the category sA
has all finite products the category of superalgebraic cartesian sets is
a cohesive topos [Law05, Law07] (just like the category of simplicial
sets). This means that we have a series of adjunctions:

π0 a const a Γ a codis
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and moreover the functor π0 commutes with finite products. In more
detail these functors are given by:

codis : Set→ sCart

S 7→ (Am|p 7→ SR
×p

= SΓ(Am|p))

Γ : sCart→ Set

X 7→ X(A0)

const : Set→ sCart

S 7→
∐
S

A0

π0 : sCart→ Set

X 7→ colim
sAop

X

The functor π0 sends a superalgebraic cartesian set, viewed as diagram
of sets indexed on sAop, to its colimit. The functor Γ evaluates a
superalgebraic cartesian set on the terminal object A0. The functor
const sends a set to the constant presheaf on that set, and codis sends
a set to the codiscrete superalgebraic cartesian set on that set.

These functors allow us to pass back and forth between set based
mathematical concepts and those same concepts developed internally
to superalgebraic cartesian sets. For example every ring object in su-
peralgebraic cartesian sets has, via the functor Γ, an underlying ordi-
nary ring. For example Γ(O) = R is our chosen base ring. Similarly
every ordinary ring may be augmented, via the functor const, to a ring
object internal to superalgebraic cartesian sets. The counit map

const(R)→ O

is automatically a map of ring objects. These observations will be used
in Section 2.

As we mentioned above, all of these considerations are functorial in
the base ring R. A ring homomorphism R′ → R induces a functor
sAR′ → sAR and hence gives rise to a geometric morphism of topoi

f ∗ : sCartR′ � sCartR : f∗

where the restriction of scalars f∗ is given by precomposition with
sAop

R′ → sAop
R . In particular since this is a geometric morphism of topoi

the left-adjoint, which is given by left Kan extension along the Yoneda
embedding, commutes with finite limits. Moreover this morphism of
topoi is local, that is the functor f∗ admits a further right adjoint
f ! : sCartR′ → sCartR.
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1.2. Superalgebraic cartesian sets and superalgebras. Superal-
gebraic cartesian sets have a close connection to superalgebras and
superschemes. The category sA is the multisorted Lawvere theory2

for supercommutative R-algebras, which means that supercommuta-
tive R-algebras in any category C with finite products are the same as
product preserving functors sA → C. The generic object of sA is the
supercommutative R-algebra O from Example 1.6.

Example 1.7. The Yoneda embedding sA → sCart preserves prod-
ucts and corresponds to the supercommutative R-algebra object O in
superalgebraic cartesian sets as in Example 1.6.

Recall that sA is a full subcategory of sAlgop. The embedding of
sA into sAlgop is via the functor O(−) = sCart(−,O). This formula
extends the functor O to all of sCart, and for a superalgebraic cartesian
set X we will refer to O(X) as the ring of global functions on X.

Example 1.8. The functor O : sCart → sAlgop from superalgebraic
cartesian sets to the opposite category of supercommutative R-algebras
is easily seen to commute with colimits. It follows that it is given by
left Kan extension of its restriction to sA along the Yoneda embedding.

sA

sCart

sAlgop

y

O

O

O∗

We obtain an adjunction:

O : sCart � sAlgop : O∗.
The right adjointO∗ is the functor sending a supercommutative algebra
A to the superalgebraic cartesian set defined via

sCart(An|q,O∗(A)) ∼= sAlgop(O(An|q), A) = sAlg(A,O(An|q)).

Thus every supercommutative algebra gives rise to a superalgebraic
cartesian set.

Example 1.9. We define a superalgebraic cartesian set called Ω (pur-
posefully similar to Sullivan’s Ω∗• introduced in Section 5) which sends
An|q to the supercommutative ring O(sCart(A0|1,An|q)). Thus Ω is an-
other supercommutative ring object in superalgebraic cartesian sets.
It is an algebra over the supercommutative ring O, and we will see in
Section 4 that Ω(An|q) is isomorphic to the ring of Kähler differential
forms on O(An|q).

2In fact it is a super Fermat theory [CR12b].
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1.3. Superalgebraic cartesian sets and simplicial sets. Let ∆
be the category of combinatorial simplices (i.e. the category of finite
non-empty totally ordered sets and order preserving maps). There is
an important faithful functor (which factors through the category of
(non-super) algebraic cartesian sets)

i : ∆ −→ sA.

The functor i sends [n] to An = An|0 and we use the isomorphism

O(An) = R[x1, . . . , xn] ∼= R[x0, . . . , xn]/(Σixi − 1)

to see the simplicial maps and identities. The An|0 may be viewed as
extended simplices.

Example 1.10. Let sSet = Pre(∆) be the category of simplicial sets.
We apologize for the use of the letter “s” for both simplicial and super.
Given a simplicial set X, we can form a superalgebraic cartesian set by
left Kan extension. We have the following diagram

∆

sSet

sA sCart

y

i y

i!

i∗

and the superalgebraic cartesian set associated to X is i!X, the left
Kan extension along the Yoneda embedding. We will call this the
algebraic realization of X, in analogy with the geometric realization.
This fits into an adjunction with the restriction functor i∗ that brings
a superalgebraic cartesian set to its underlying simplicial set.

i! : sSet � sCart : i∗

Given a superalgebraic cartesian set Y and a simplicial set X, there is
a natural isomorphism

sSet(X, i∗Y ) ∼= sCart(i!X, Y ).

As a left adjoint, i! commutes with colimits.
Furthermore, i∗ also commutes with colimits, hence it admits a fur-

ther right adjoint i∗, given by right Kan extension. The triple (i!, i
∗, i∗)

constitutes an essential morphism of topoi [Law07] from sSet to sCart.

Proposition 1.11. Recall the functor π0 : sCart → Set introduced
previously. We have the equality π0

∼= π0◦i∗, in other words the functor
π0 applied to a superalgebraic cartesian set may be computed as the path
components of the underlying simplical set. Similarly π0

∼= π0 ◦ i!, the
path components of a simplical set may be computed as the value of π0

applied to its algebraic realization.
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Proof. Recall that π0X = colimsAop X and that π0i
∗(X) = colim∆op X ◦

i. Thus one way to see this is to show directly that ∆op is cofinal in
sAop. Alternatively first observe that i∗ sends discrete simplicial sets∐

S ∆0 to constant superalgebraic cartesian sets
∐

S A0 = const(S).
This follows formally from the observation that i∗Am|p is a connected
simplical set for each m|p. From this the above proposition follows
immediately since for any set S and any superalgebraic cartesian set X
we have

Set(π0X,S) ∼= sCart(X, const(S))

∼= sCart(X, i∗
∐
S

∆0)

∼= sSet(i∗X,
∐
S

∆0)

∼= Set(π0i
∗X,S). �

The second statement is easier:

π0X ∼= π0 colim
i!(∆k→X)

∆k

∼= colim
i!(∆k→X)

π0∆k

∼= colim
i!(∆k→X)

π0i!(∆
k)

∼= π0i! colim
i!(∆k→X)

∆k

∼= π0i!X.

The first and last isomorphisms just rewrite X as a colimit over its
simplices, the second and fourth isomorphisms follow from the fact that
the functors π0 and i! commute with colimits (they are left adjoints),
and the third isomorphism is the fact that π0An|0 ∼= pt ∼= π0∆k.

Example 1.12. The functor i from Example 1.10 factors through the
category F of finite non-empty sets. Thus there is a situation which
is entirely analogous to the previous one with simplicial sets replaced
with the category Pre(F) of presheaves on F. This latter is sometimes
called the category of symmetric simplicial sets.

In fact the category of symmetric simplicial sets should be regarded
as a special case of our notion of superalgebraic cartesian sets; it is
the case where the base ring is F1, the “field with one element”. The
functors corresponding to i! and i∗ above are then just ‘base change’
and ‘restriction of scalars’ between F1 and R.
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These observations suggest that we should regard superalgebraic
cartesian sets as an enhanced version of simplicial sets. They are sym-
metric simplicial sets equipped with additional ‘face’ and ‘degeneracy’
operators which depend on the base ring R.

2. The Picard Category

Recall that we have a series of adjunctions

π0 a const a Γ a codis

which relate the topos of sets to the topos of superalgebraic cartesian
sets. The global sections functor Γ is a left inverse to the constant
presheaf functor, Γ ◦ const ∼= idSet. Hence we can view the category of
sets as consisting of the full subcategory of constant presheaves. For
example, the ground ring R induces a ring object const(R) in sCart, the
constant presheaf with value R, which we will denote by R to simplify
notation.

Recall that the object O is a supercommutative R-algebra in sCart
and that Γ(O) = A1|1(A0) = R. The R-algebra structure may be
viewed as coming from the counit map R = const ◦Γ(O)→ O. In this
section we develop the internal theory of O-modules in order to study
the invertible O-modules.

An O-module will be defined in the usual internal manner: an O-
module is a Z/2Z-graded superalgebraic cartesian abelian group M
with an action by O. Equivalently, M is a superalgebraic cartesian
set such that M(An|q) is an O(An|q)-module for each An|q ∈ sA. Here,
since O is a supercommutative ring, we mean ‘module’ in the Z/2Z-
graded sense.

The category ModO of O-modules is a symmetric monoidal abelian
category with tensor product ⊗O given pointwise:

(M ⊗O N)(An|q) := M(An|q)⊗O(An|q) N(An|q)

for An|q ∈ sA. The forgetful functor from ModO to sCart has a left-
adjoint which takes the superalgebraic cartesian set X to the free
O-module FO(X). The value of FO(X) on An|q ∈ sA is given by
FO(An|q)(X(An|q)), the free O(An|q)-module on the set X(An|q).

In addition ModO has an enrichment in sCart. A map An|q →
HomO(M,N) is defined via

sCart(An|q,HomO(M,N)) ∼= HomO(FO(An|q)⊗OM,N).

This makes ModO into a category enriched in sCart. In fact this enrich-
ment extends to one in the symmetric monoidal category of O-modules;
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ModO is a closed symmetric monoidal category. To distinguish be-
tween the ordinary category of O-modules and the O-linear category
(enriched in O-modules) we will denote the former by ModO and the
latter by ModO.

Let ModR denote the ordinary category of R-modules (in sets). This
is a closed symmetric monoidal category and thus an R-linear category.
Since Γ(O) = R, we obtain an adjunction:

O ⊗R (−) : ModR � ModO : Γ,

where the right-adjoint simply applies Γ to both the module and ring
structure (it is evaluation at A0 ∈ sA). The left-adjoint is given by first
viewing a set theoretical R-module as a constant (discrete) superalge-
braic cartesian set and then tensoring up to obtain an O-module. As
expected, this is a monoidal adjunction with respect to the two symmet-
ric monoidal structures ⊗R and ⊗O, and moreover Γ◦ (O⊗R (−)) ∼= id
is the identity functor.

We can do slightly better. Since the above adjunction is monoidal,
the functor O⊗R (−) may be used to enhance the enrichment of ModR
in itself into an enrichment in ModO. Thus for ordinary R-modules
M and N , there exists an O-module (hence a superalgebraic cartesian
set) of homomorphisms between them, given by:

O ⊗R HomR(M,N).

We will denote this new ModO-enriched category as ModR. It has
the same objects as ModR. The above adjunction now gives rise to a
ModO-enriched functor:

O ⊗R (−) : ModR → ModO,

which sends an R-module M to the O-module O ⊗R const(M). Note
that the functor Γ will not automatically be an enriched functor.

Lemma 2.1. Let Modf.g. proj
R denote the full subcategory of the ModO-

enriched category ModR consisting of those R-modules which are finitely
generated and projective. Then the restricted ModO-enriched functor

O ⊗R (−) : Modf.g. proj
R → ModO

is fully-faithful (in the enriched sense).

Proof. We must show that the canonical map of O-modules

O ⊗R HomR(M,N)→ HomO(O ⊗RM,O ⊗R N)

is an isomorphism if M and N are finitely generated and projective.
Note that this is certainly the case if both M and N are finitely gener-
ated free R-modules. The modules M = M0 and N = N0 are finitely
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generated and projective if and only if there exist R-modules M1 and
N1 such that both M0⊕M1 and N0⊕N1 are finitely generated free R-
modules. Thus the sum of the canonical maps (which is the canonical
map of the sums):⊕

i,j=0,1

O ⊗R HomR(Mi, Nj)→
⊕
i,j=0,1

HomO(O ⊗RMi,O ⊗R Nj)

is an isomorphism. The lemma now follows from the observation that
in an abelian category a finite collection of maps is a collection of
isomorphisms if and only if the direct sum of the collection is an iso-
morphism. �

Let PicO be the Picard category of O. It is the full subcategory of
ModO consisting of the invertible O-modules, those O-modules M such
that there exists an O-module M ′ with the property that M ⊗OM ′ ∼=
M ′ ⊗O M ∼= O. Let PicO denote the corresponding ModO-enriched
subcategory. Similarly PicR will denote the category of invertible R-
modules and PicR the corresponding ModO-enriched category. Since
O⊗R (−) is a monoidal functor, it sends invertible objects to invertible
objects. Hence we have an induced ModO-enriched functor:

O ⊗R (−) : PicR → PicO .

The following theorem is the main result of this section.

Theorem 2.2. The functor O⊗R (−) : PicR → PicO induces an equiv-
alence of ModO-enriched symmetric monoidal categories.

We will prove this theorem after a few lemmas.

Lemma 2.3. The objects of PicR and PicO are finitely generated and
projective.

Proof. This lemma is classical. We will only need the finite generation
in the case of R-modules. A categorical proof of this notes that for an
object M ∈ PicR the functor M ⊗R (−) is an equivalence of categories.
Any equivalence of categories preserves the finitely generated projective
objects (these are characterized by categorical properties) and moreover
the trivial R-module R is a finitely generated projective module. Hence
the image of R under M ⊗R (−), that is to say the module M , is also
a finitely generated projective module. �

Corollary 2.4. The functor O ⊗R (−) : PicR → PicO is fully-faithful.
�

Lemma 2.5. Let f : O → O be any O-module map. Assume that
Γ(f) : Γ(O)→ Γ(O) is the identity map, then f is the identity map.
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Proof. For each S ∈ sA we have a commuting diagram

Γ(O) = R

O(S)

Γ(O) = R

O(S)

id

fS

and thus fS sends 1 ∈ O(S) to 1 ∈ O(S). As this is a generator of O(S)
as an O(S)-module it follows that fS is the identity for all S ∈ sA. �

Proof of Thm. 2.2. The functor O ⊗R (−) : PicR → PicO is monoidal
and, by Corollary 2.4, fully-faithful. It remains to show essential sur-
jectivity, i.e. that every invertible module M ∈ PicO is of the form
O⊗R L for some invertible R-module L. First note that it is sufficient
to prove this under the assumption that Γ(M) ∼= R is the trivial invert-
ible R-module. If M is a general O-module we may instead consider
N = M ⊗O (O ⊗R Γ(M−1)), if N is in the essential image then so is
M .

Thus without loss of generality assume we have chosen an isomor-
phism of R-modules Γ(M) ∼= R. Let M ′ be an inverse to M . We may
also choose an isomorphism Γ(M ′) ∼= R. Next we will make a few ob-
servations. First, from the adjunction O⊗R (−) a Γ, we have canonical
O-module homomorphisms

O ∼= O ⊗R Γ(M)→M

O ∼= O ⊗R Γ(M ′)→M ′.

Applying Γ to either of these yields the identity map of R. Next observe
that we have a canonical map of R-modules in sCart, R = Γ(M)→M
and R = Γ(M ′) → M ′, where the targets of these are viewed as R-
modules via the inclusion R → O. Again these reduce to the identity
maps after applying Γ.

Third, we may tensor together the maps

R −→M ′ and M
id−→M, over R −→ O

to get a map of O-modules

M ⊗R R −→M ⊗OM ′ ∼= O.
Precomposing with the map O −→M gives a map of O-modules

O −→M −→ O.
Since this map reduces to the identity map after applying Γ, Lemma 2.5
implies that this is the identity map of O-modules.
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In particular the map O → M is a monomorphism (injective when
evaluated on each S ∈ sA). Tensoring with M ′ gives a new map

M ′ →M ⊗OM ′ ∼= O

which remains a monomorphism since M ′ is projective (and hence flat).
Again this map reduces to the identity after applying Γ. By symmetry,
there exists a monomorphism M → O of O-modules with the same
property (it reduces to the identity after applying Γ).

Finally we observe that since the O-module map M → O is the iden-
tity after applying Γ, it follows that for each S ∈ sA the component
M(S) → O(S) contains 1 ∈ O(S) in its image. Since 1 is a gener-
ator of O(S) as an O(S)-module, it follows that M(S) → O(S) is a
surjective map of O(S)-modules. Consequently the map M → O is
both an monomorphism and an epimorphism, hence an isomorphism
of O-modules. In particular M ∼= O ⊗R R is in the image of PicR. �

Since sets may be regarded as superalgebraic cartesian sets (via the
functor const), we may try to regard the ModO-enriched category ModO
as a category internal to superalgebraic cartesian sets. However ModO
has a large set (or class) of objects, and so is not technically a superal-
gebraic cartesian set. This problem can be avoided for PicO since it is
essentially small. We will tacitly assume that we have chosen a small
set of representative invertible R-modules to serve as the set of objects
of PicO. In particular we will regard PicO as a symmetric monoidal
category internal to superalgebraic cartesian sets.

3. Tiny Objects And Internal Homs

In this section we explore some of the properties of the internal hom
functor from Example 1.5.

Lemma 3.1. There is a natural isomorphism

sCart(A0|1,An|q) ∼= An+q|n+q.

Proof. Because An|q ∼= (A1)×n× (A0|1)q, we need only check this on A1

and A0|1. There are two functors (−)ev, (−)odd : sAlg −→ Set given by
taking the homogeneous parts. These functors are representable and
in fact represented by O(A1) and O(A0|1) respectively. Now we have

sCart(Am|p, sCart(A0|1,A1)) ∼= sCart(Am|p × A0|1,A1)

∼= O(Am|p × A0|1)ev

∼= O(Am|p) = A1|1(Am|p)
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and

sCart(Am|p, sCart(A0|1,A0|1)) ∼= sCart(Am|p × A0|1,A0|1)

∼= O(Am|p × A0|1)odd

∼= O(Am|p) = A1|1(Am|p). �

Definition 3.2. Let D be a category. An object x ∈ D is called
compact if D(x,−) : D → Set commutes with filtered colimits and
called tiny if D(x,−) : D → Set commutes with all small colimits. Let
D be a cartesian closed category. We call an object x ∈ D cartesian
tiny if D(x,−) : D → D commutes with all small colimits, where
D(x,−) is the internal hom functor.

In a presheaf category the tiny objects are precisely those presheaves
which are retracts of representables [BD86, Prop.2].

Proposition 3.3. If C is a (small) category with finite products, then
every tiny object of Pre(C) is a cartesian tiny object.

Proof. We will show this for representable presheaves. Let a and b be
objects of C (also viewed as representable objects of Pre(C)) and let
I −→ Pre(C) be a small diagram in Pre(C) mapping i ∈ I to xi.

Colimits in Pre(C) are computed objectwise, and so we can show that
the internal hom out of a commutes with arbitrary (small) colimits by
evaluation on an object b:

Pre(C)(a, colim
I

xi)(b) ∼= Pre(C)(a× b, colim
I

xi)

∼= colim
I

xi(a× b)
∼= colim

I
Pre(C)(a× b, xi)

∼= colim
I

Pre(C)(a, xi)(b).

The second isomorphism uses the fact that the object a × b ∈ C is
representable. �

Corollary/Definition 3.4. The internal hom sCart(A0|1,−) functor
admits a further right adjoint, which we denote Ω(−). �

For any superalgebraic cartesian set Y , the superalgebraic cartesian
set ΩY has an elementary description:

sCart(An|q,ΩY ) ∼= sCart(sCart(A0|1,An|q), Y ) ∼= Y (An+q|n+q).

In general we will denote the mapping set sCart(X,ΩY ) =: Ω(X;Y ).
The case Y = O is especially important for this paper and in this case
we will drop the O from our notation; Ω := ΩO (see also Example 1.9).
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Another example that will be important later is Ω(X;M) for M an
invertible O-module. Recall that M may be viewed as an invertible
R-module due to Theorem 2.2. In this case we have the isomorphism

Ω(X;M) ∼= Ω(X;O)⊗RM.

To prove this it suffices to check it on representables for which it is
clear.

Corollary 3.5. For any superalgebraic cartesian set X there is an
isomorphism of supercommutative rings

O(sCart(A0|1, X)) ∼= sCart(X,Ω). �

4. The Action Of The Endomorphisms Of The Super Point

The superalgebraic cartesian set End(A0|1) is an internal monoid and
consequently O(End(A0|1)) is a coalgebra. We begin this section by
describing this coalgebra explicitly with generators and relations. Af-
ter this we describe it qualitatively by showing that a coaction by this
coalgebra on a supercommutative ring is the same information as a con-
nective super cdga structure on the ring. This is a supercommutative
algebra which is equipped with an additional grading by the natural
numbers together with an odd, degree-one differential. These results
are, to a large extent, well-known, and have appeared in a variety of
guises throughout the literature. A very general and closely related
version appears in the context of super Fermat theories [CR12a]. Our
treatment is heavily influenced by [Sto12] and [HKST11].

The superalgebraic cartesian set End(A0|1) of endomorphisms of the
superpoint (a monoid object) naturally acts on the internal mapping su-
peralgebraic cartesian set sCart(A0|1, X) for any superalgebraic carte-
sian set X. In the second part of this section we provide conditions on
X under which this action leads to a coaction by O(End(A0|1)). These
results do not seem to have appeared in the literature.

The most direct approach to the monoid structure on End(A0|1) is
via the S-point formalism. Here S ∈ sA is some unspecified repre-
sentable superalgebraic cartesian set. The S-points of End(A0|1) =
sCart(A0|1,A0|1) are, by construction, the maps S×A0|1 → A0|1. This,
in turn, is equivalent to a map S × A0|1 → S × A0|1, which commutes
with the projection to S. This latter description is convenient, as the
monoid structure on End(A0|1) is given by composition. Since S and
S × A0|1 are representable, we may equivalently describe such data by
passing to the rings of global functions. We see that an S-point of



RATIONAL COHOMOLOGY FROM SUPERSYMMETRIC FIELD THEORIES 23

End(A0|1) is given by an O(S)-algebra map

O(S)[ε]→ O(S)[ε]

ε 7→ sev · ε+ sodd.

where sev and sodd are even, respectively odd, elements of O(S). This
description makes explicit the identification sCart(A0|1,A0|1) ∼= A1|1

from Lemma 3.1. Moreover we have

O(sCart(A0|1,A0|1)× sCart(A0|1,A0|1))

∼= O(sCart(A0|1,A0|1))⊗R O(sCart(A0|1,A0|1))

and hence the monoid structure of sCart(A0|1,A0|1) induces a comonoid
structure for O(sCart(A0|1,A0|1)).

It follows immediately from the formula for composition of affine
transformations in one variable that the global functions of the multi-
plication map for the monoid End(A0|1) are given by the map

R[x, ε]
m∗−→ R[x1, x2, ε1, ε2]

x 7→ x1x2

ε 7→ ε1 + x1ε2.

This implies:

Proposition 4.1. There is an isomorphism of monoidal superalgebraic
cartesian sets

End(A0|1) ∼= A0|1 oA1,

where A1 acts on A0|1 by scalar multiplication.

Definition 4.2. A supercommutative differential graded algebra (super
cdga) is a supercommutative algebra A equipped with

• a grading, i.e. a collection of R-module direct summands An ⊆
A for each n ∈ Z such that Ap · Aq ⊆ Ap+q, and as R-modules
A ∼=

⊕
nAn; and

• a differential, i.e. an odd derivation d : A → A, which squares
to zero, d2 = 0.

We require that the derivation has degree one, which means d(Ap) ⊆
Ap+1. A super cdga is connective if Ap = 0 for p < 0.

A weakly graded super cdga B is defined identically to a super cdga
except that we require B ∼=

∏
nBn, the direct product of isotypical

factors, rather than the direct sum.

Proposition 4.3. Let A be a supercommutative algebra (such as O(Y )).
A coaction by O(A0|1 o A1) is equivalent to a connective super cdga
structure on A.
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Proof. The semidirect product A0|1 oA1 admits a canonical section

A0|1 −→ A0|1 oA1 ←− A1,

which allows us to break the action into its constituent parts.
A coaction of O(A1) ∼= R[x] is equivalent to a connective grading by

N, with the elements a ∈ A of degree k being those where the coaction
map sends a 7→ a ⊗ xk. Here by a grading we mean, as above, that
A ∼= ⊕An, the direct sum of factors, and not the direct product.

A coaction of O(A0|1) is equivalent to an odd differential. Again, for
a ∈ A the coaction map sends a 7→ a + a1ε. We set da = a1. The fact
that d is a differential follows from the associativity of the action.

Now we combine these actions in a twisted way in A0|1 o A1. We
can check that this tells us that the differential increases degree. The
associativity diagram for the coaction is the following:

A

A⊗O(A0|1 oA1)

A⊗O(A0|1 oA1)

A⊗O(A0|1 oA1)⊗O(A0|1 oA1).

µ∗

µ∗

1⊗m∗

µ∗ ⊗ 1

Now if a ∈ A is degree k, we have

a axk + (da)xkε

axk1x
k
2 + (da)xk1x

k
2ε1 − (da)xk+1

1 xk2ε2 ,

which is completely determined by the formula for m∗. Going around
the other way we discover that there must be an equality µ∗(da) =
(da)xk+1. That is, the differential increases degree by 1. �

Corollary 4.4. There is an equivalence of categories between the cate-
gory of supercommutative algebras with coactions by O(A0|1 oA1) and
the category of super cdga’s. �

Now we calculate the effect of O(−) on the action map

µ : End(A0|1)× sCart(A0|1,An|q) −→ sCart(A0|1,An|q).

Note that, since everything involved is affine, this gives a coaction of
O(End(A0|1)) on O(sCart(A0|1,An|q)). We write

O(sCart(A0|1,An|q)) ∼= R[x1, . . . , xn, ε1, . . . , εq, x1, . . . , xn, ε1, . . . , εq],
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where xi and εi are even and xi and εi are odd. We use this notation
because xi is induced by xi ∈ O(An|q) and εi is induced by εi ∈ O(An|q).

Proposition 4.5. The coaction of O(End(A0|1)) ∼= R[x, ε] on O(sCart(A0|1,An|q))
maps

xi 7→ xi + xiε

εi 7→ εix

xi 7→ xix

εi 7→ εi + εiε.

Proof. Since An|q ∼= (A1)n × (A0|1)q it suffices to check this on A1

and A0|1. We prove this for A1, the case of A0|1 having already been
treated during our explicit description of the coalgebra structure of
O(End(A0|1)). Let T be a Z/2-graded commutative R-algebra. Using
the functor of points a map

R[x, ε] −→ T

mapping x 7→ tx and ε 7→ tε corresponds to the map

T [ε] −→ T [ε] : ε 7→ txε+ tε.

Now O(sCart(A0|1,A1)) ∼= R[x1, x1]. A map

R[x1, x1] −→ T

mapping x1 7→ tx1 and x1 7→ tx1 corresponds to the map

T [x] −→ T [ε] : x 7→ tx1 + tx1ε.

Composing these gives the map

T [x] −→ T [ε] : x 7→ (tx1 + tx1tε) + tx1txε.

Thus the coaction is the map

R[x1, x1] −→ R[x, ε]⊗R R[x1, x1]

mapping x1 7→ x1 + x1ε and x1 7→ x1x. �

The super cdga structure on O(sCart(A0|1,An|q)) thus has xi even of
degree 0, xi odd of degree 1, εi odd of degree 0, and εi even of degree
1.

Now let Y be a superalgebraic cartesian set with an action of End(A0|1):

End(A0|1)× Y µ−→ Y.

Applying global functions gives a map

µ∗ : O(Y )→ O(End(A0|1)× Y ).
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When Y is representable, the codomain decomposes as a tensor product

O(End(A0|1)× Y ) ∼= O(End(A0|1))⊗R O(Y ),

and hence in this case O(Y ) becomes a supercomodule for the super-
coalgebra R[x, ε] described above. In general taking global functions
fails to turn products into tensor products, and so we would not gen-
erally expect such a coaction. We begin by analyzing the general case
in order to see just how bad things can get. Then we show that for a
superalgebraic cartesian set X that is a finite colimit of representables
there is a genuine coaction on

O(sCart(A0|1, X)).

Also we show that in the case when there exists N ∈ N such that X
is a colimit of representables of the form An|0 where n < N there is an
induced coaction on O(sCart(A0|1, X)).

Let Y be a superalgebraic cartesian set with an action by End(A0|1).
Then Y = colim

I
An|q and we have the sequence of isomorphisms

O(End(A0|1)× Y ) ∼= O(End(A0|1)× colim
I

An|q)

∼= O(colim
I

(End(A0|1)× An|q))

∼= lim
I
O((End(A0|1)× An|q)).

Since the action map µ is natural in Y and O(An|q) admits an coac-
tion map, this implies that the map of rings

O(Y )
µ∗−→ O(End(A0|1)× Y )

is a limit of coaction maps

lim
I
O(An|q) −→ lim

I
O((End(A0|1)× An|q)).

Thus Proposition 4.5 provides a formula for this map. An element of
the ring O(Y ) is a compatible family of polynomials in O(An|q) as n
and q vary. Let x = {x1, . . . , xn} and ε = {ε1, . . . , εq}. If (fi(x, ε))i∈I
is a compatible family then

µ∗((fi(x, ε))i∈I) = (µ∗fi(x, ε))i∈I ,

where the µ∗ on the right is the coaction of O(End(A0|1)) on O(An|q).
Now we explain two cases in which the limit of coaction maps induces

a coaction by O(End(A0|1)).
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Proposition 4.6. Let X = colim
I

An|q where I is a finite category.

Then there is an isomorphism

O(End(A0|1))⊗R O(sCart(A0|1, X)) ∼= O(End(A0|1)× sCart(A0|1, X)).

This implies that the ring of functions applied to the action map gives
a coaction for “finite” superalgebraic cartesian sets.

Proof. The key point here is that O(End(A0|1)) is flat as an R-module.
The underlying module is an (infinitely generated) free R-module.

Now we have the sequence of isomorphisms

O(End(A0|1)× sCart(A0|1, X))

∼= O(End(A0|1)× sCart(A0|1, colim
I

An|0))

∼= O(End(A0|1)× colim
I

sCart(A0|1,An|0))

∼= O(colim
I

(End(A0|1)× sCart(A0|1,An|0)))

∼= lim
I
O(End(A0|1)× sCart(A0|1,An|0))

∼= lim
I
O(End(A0|1))⊗R O(sCart(A0|1,An|0))

∼= O(End(A0|1))⊗R lim
I
O(sCart(A0|1,An|0))

∼= O(End(A0|1))⊗R O(sCart(A0|1, X)).

The second isomorphism follows from the fact that A0|1 is cartesian
tiny. The third is because colimits distribute with products in a topos.
The fifth is because the objects are affine and the sixth uses the fact
that O(End(A0|1)) is flat. �

Proposition 4.7. Assume that there exists N ∈ N such that X =
colim

I
An|0 with n < N . Then the ring of functions on the action map

factors through the tensor product. Thus the action map of End(A0|1)
on sCart(A0|1, X) induces a coaction on global functions.

Proof. The functor O(−) applied to the action map gives

lim
I
O(sCart(A0|1,An|0) −→ lim

I
O(End(A0|1)× sCart(A0|1,An|0)),

which is an inverse limit of coactions. We see from Proposition 4.5
that the action of End(A0|1) on sCart(A0|1,An|0)) induces a grading on
O(sCart(A0|1,An|0))) ∼= O(An|n). The maximal element in the grading
has degree n. We claim that this implies that there is a factorization
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of the map above through

lim
I
O(sCart(A0|1,An|0) −→ O(End(A0|1))⊗R

(
lim
I
O(sCart(A0|1,An|0))

)
.

Since O(End(A0|1)) is a polynomial ring (and not a power series ring), a
factorization exists as long as there is no element in lim

I
sCart(A0|1,An|0))

that has unbounded degree. �

Example 4.8. Consider the superalgebraic cartesian set
∐
n≥0

An|0, which

is the disjoint union of (non-super) affine spaces, one of each dimension.
There is an isomorphism

O(sCart(A0|1,
∐
n≥0

An|0)) ∼=
∏
n

O(An|n)

and so this ring has unbounded degree. In particular it contains the
element (1, ε1, ε1ε2, ε1ε2ε3, . . .). Thus no factorization as above could
exist for this ring and so the action of End(A0|1) on sCart(A0|1,

∐
n≥0

An|0)

does not induce a coaction after taking the ring of functions.

For a superalgebraic cartesian set X satisfying the hypotheses of
either of the propositions above, let Ω∗(X) be the super cdga associated
to O(sCart(A0|1, X)) with the coaction by O(A0|1 o A1). So if u is
the forgetful functor from super cdga’s to sAlg we have uΩ∗(X) =
O(sCart(A0|1, X)) = Ω(X).

5. Polynomial Forms via Superalgebraic Cartesian Sets

In [Sul77], Sullivan introduced a simplicial commutative differential
graded algebra (cdga) called Ω∗•. It is defined on n-simplices by the
formula

sSet(∆n,Ω
∗
•)
∼= R[x1, . . . , xn, dx1, . . . dxn],

where |xi| = 0. This is the cdga of Kähler differential forms on the
polynomial algebra R[x1, . . . , xn, ]. The simplicial maps are built just
as in the functor i introduced in Subsection 1.3.

The n-simplices of the simplicial cdga in fact have the structures of a
super cdga (a cdga with a Z/2 grading and an odd degree 1 differential).
The elements xi are even of degree 0 and the elements dxi are odd of
degree 1.

For any simplicial set X the set of maps sSet(X,Ω∗•) =: Ω∗R(X) is a
commutative differential graded R-algebra, which is only weakly graded
if X is infinite dimensional (c.f. Def. 4.2). This cdga has a concrete
description. An element consists of a compatible choice {ωσ}σ∈X of
polynomial Kähler differential forms for each simplex σ of X. This
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collection is required to be compatible with restriction maps in the
obvious way.

When R is a Q-algebra, the simplicial cdga Ω∗• has the property that,
for a simplical set X,

H∗(sSet(X,Ω∗•))
∼= H∗(X,R),

where H∗(X,R) is the singular cohomology of X with coefficients in the
ring R (c.f. [Sul77, Thm 7.1]). The cdga Ω∗Q(X) is Sullivan’s rational
polynomial differential forms.

There is a forgetful functor u from the category of super cdga’s to
sAlg. The simplicial supercommutative algebra

uΩ∗• : ∆op −→ sAlg .

will play an in important role in this section, where we prove that for
any simplicial set X there is a natural isomorphism of supercommuta-
tive algebras

O(sCart(A0|1, i!X)) ∼= u sSet(X,Ω∗•).

We begin by studying the relationship between Ω and Ω∗•.

Proposition 5.1. There is a natural isomorphism of simplicial super-
commutative algebras (where Ω is the superalgebraic cartesian set from
Example 1.9)

uΩ∗•
∼= i∗Ω.

Proof. Evaluating on ∆n gives

sSet(∆n, i∗Ω) ∼= sCart(i!∆
n,Ω)

∼= sCart(An,Ω)

∼= O(sCart(A0|1,An))

∼= O(An|n)
∼= R[x1, . . . , xn, ε1, . . . , εn]
∼= uΩ∗•(∆

n).

�

As a special case we get the following corollary:

Corollary 5.2. For any simplicial set X there is an isomophism

O(sCart(A0|1, i!X)) ∼= u sSet(X,Ω∗•).
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Proof. There are isomorphisms

u sSet(X,Ω∗•)
∼= sSet(X, uΩ∗•)
∼= sSet(X, i∗Ω)
∼= sCart(i!X,Ω)

∼= O(sCart(A0|1, i!X)).

The last isomorphism is an application of Corollary 3.5. �

In other words, for any simplicial set X the supercommutative al-
gebra underlying the commutative differential graded algebra Ω∗R(X)
of polynomial differential forms over the ring R on X is naturally
isomorphic to the ring of functions on the internal mapping object
sCart(A0|1, i!X).

Proposition 5.3. For X a simplicial set, there is an isomorphism of
(weakly graded) super cdga’s

Ω∗(i!X) ∼= sSet(X,Ω∗•).

Proof. We will first consider the case ofX a finite dimensional simplicial
set. In Corollary 3.5, we showed that the above is an isomorphism of
the underlying supercommutative algebras. Here we lift this to the
category of super cdga’s.

The forgetful functor u creates limits and i! preserves colimits. This
implies that X = colim

∆k→X
∆k satisfies the conditions of Proposition 4.7.

Now there are isomorphisms

Ω∗(i!X) ∼= Ω∗( colim
i!(∆k→X)

i!∆
k)

∼= Ω∗( colim
i!(∆k→X)

Ak)

∼= lim
i!(∆k→X)

Ω∗(Ak).

Thus it suffices to prove the result for Ak ∼= i!∆
k. Now this follows

from Proposition 4.5. Thus xi corresponds to dxi.
Now let X be an infinite dimensional simplicial set. We may write

it as a colimit of its finite dimensional skeleta. This implies that Ω(X)
admits a sequential inverse limit of coactions. We have

Ω(X) ∼=
∏
i∈N

Ωi(X).

This fails to have a super cdga structure only in that it is the direct
product over isotypical factors, rather than the direct sum. Hence it is
weakly graded. �
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6. Geometries On The Superpoint

In this section we will study several possible geometries that can be
placed on the superpoint. Each of these geometries will give rise to
a slightly different breed of supersymmetric 0|1-dimensional quantum
field theory.

Following the lead of HKST we will define a geometry in the spirit of
Felix Klein’s Erlangen program. That is to say a geometry is completely
specified by its group symmetries, which is a subgroup of Aut(A0|1).
In fact the most natural thing which acts on A0|1 is the monoid of
endomorphisms; we don’t see a compelling reason to limit ourselves to
subgroups.

Definition 6.1. A geometry on A0|1 is a submonoid M of the monoid
End(A0|1) of endomorphisms (in superalgebraic cartesian sets).

There are five geometries that we will explore below:

(1) M = End(A0|1) ∼= A0|1 o A1 is the full endomorphism monoid.
We call this geometry pre-topological.

(2) M = Aut(A0|1) ∼= A0|1 oGm is the maximal subgroup. We call
this geometry topological.

(3) M = A0|1 o Z/2Z. Following HKST we call this geometry Eu-
clidean.

(4) M = A0|1 × 1. We call this geometry oriented Euclidean.
(5) M = 1. We call this geometry fully-rigid.

The geometries (submonoids) include into each other in the following
way:

1 ⊂ A0|1 × 1 ⊂ A0|1 o Z/2Z ⊂ A0|1 oGm ⊂ A0|1 oA1,

where we have abused notation and written Gm for O∗(Gm). On global
functions these inclusions correspond to the maps of supercommutative
bialgebras

R[x, ε]
x 7→x−→ R[x, x−1, ε]

x 7→(1,−1)−→ (R×R)[ε]
π1−→ R[ε]

ε 7→0−→ R.

Corollary 6.2. The following are consequences of the proof of Propo-
sition 4.3:

(1) A supercommutative algebra with a coaction by O(A0|1oGm) is
a Z-graded super cdga.

(2) A supercommutative algebra with a coaction by O(A0|1 o Z/2)
is a Z/2-graded super cdga.

(3) A supercommutative algebra with a coaction by O(A0|1) is a
supercommutative algebra with an odd differential.
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Next we define the notion of M-structure on a superalgebraic carte-
sian set that is abstractly isomorphic to the superpoint.

Definition 6.3. Let X be a superalgebraic cartesian set that is ab-
stractly isomorphic to the superpoint A0|1. An M-prestructure on X is
a subfunctor

Γ ⊆ sCart(A0|1, X)

with the property that Γ is closed under the action of M:

Γ ·M = Γ.

An M-isometry between two superalgebraic cartesian sets equipped

with M-prestructures, (X,Γ) and (X ′,Γ′), is a map X
f−→ X ′ such

that f∗Γ ⊆ Γ′. Thus (X,Γ) is isomorphic to (X ′,Γ′) if there is an

isomorphism X
f−→ X ′ such that f∗Γ = Γ′.

Example 6.4. The superpoint A0|1 has a canonical M-prestructure
given by

M ⊆ sCart(A0|1,A0|1).

Definition 6.5. An M-prestructure (X,Γ) is an M-structure if there
exists an isomorphism

(X,Γ) ∼= (A0|1,M).

There is an action of M on the superalgebraic cartesian set

sCart(A0|1, X)

given by precomposition. We may consider the (categorical) quotient
superalgebraic cartesian set

sCart(A0|1, X)/M.

When M is a group and thus a subgroup of A0|1oGm, we may consider
its normalizer in A0|1 oGm defined by the formula

N(M)(An|q) = {g ∈ (A0|1 oGm)(An|q)|gM(An|q)g−1 = M(An|q).

In each of the above cases the normalizer is the whole of A0|1 oGm.
It is clear that N(M) acts on

sCart(A0|1, X)/M.

When M is normal in N(M), the action factors through N(M)/M.

Example 6.6. The most interesting example of this is the Euclidean
geometry

M = A0|1 o Z/2.
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We have N(M) = A0|1 o Gm and when 2 ∈ R×, Z/2 ∼= Gm[2], and
hence

N(M)/M ∼= Gm/Gm[2] ∼= Gm.

Note that an action of Gm on Spec(R) that factors through Gm/Gm[2]
is equivalent to a grading by the even integers.

Remark 6.7. For each of the other geometries this is quite elementary.
When M = 1, there is an action of A0|1 oGm. When M = A0|1, there
is an action of Gm.

7. Superalgebraic Cartesian Quantum Field Theories

We are now in a position to define supersymmetric 0|1-dimensional
quantum field theories over an arbitrary superalgebraic cartesian set.
For each geometry M (discussed in the last section) and each superalge-

braic cartesian set X, we construct Bord
0|1
(M,X), the symmetric monoidal

0-category (internal to superalgebraic cartesian sets) consisting of 0|1-
dimensional bordisms equipped with M-structures and maps to X.
As a symmetric monoidal 0-category is just a commutative monoid,

Bord
0|1
(M,X) is just a commutative monoid object in superalgebraic carte-

sian sets. We will describe it in more detail in just a moment.
The target of a field theory is another symmetric monoidal category,

which in this 0-dimensional case means another commutative monoid
(internal to superalgebraic cartesian sets). The target of a quantum
field theory (as opposed to a classical field theory or other variety of
field theory) should have some further mechanism implementing the
physical concept of superposition. This can be accomplished by requir-
ing the target category to have not just a multiplicative (i.e. monoidal)
structure, but to also have an additive structure. In the classical con-
text of the Atiyah-Segal axioms this is the direct sum operation on the
target category of vector spaces. In the case at hand it means that our
target should be a ring (or at least a rig). A natural choice is the ring
O = A1|1.

A supersymmetric 0|1-dimensional M-quantum field theory over a
superalgebraic cartesian set X is then defined to be a homomorphism

Z : Bord
0|1
(M,X) → O

of commutative monoids in superalgebraic cartesian sets.

As usual, the easiest way to describe Bord
0|1
(M,X) and the homomor-

phism Z is via the formalism of S-points. For each representable

An|q ∈ sA, and each map f : An|q → Bord
0|1
(M,X), the field theory Z

should associate a map Z(f) : An|q → O. That is to say we obtain
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a function Z(f) ∈ O(An|q). Maps An|q → Bord
0|1
(M,X) are obtained by

considering An|q-families of bordisms.
Each of the structures we place on our bordisms, the M-structure,

the map to X, the supercommutative ring of functions, indeed even
the enrichment in superalgebraic cartesian sets, should be thought of
as enhancements we give to an underlying topological 0-bordism. The

category Bord
0|1
(M,X) should have a forgetful functor to Bord0. Hence

every 0|1-dimensional bordism is equivalent to a finite disjoint union
of superpoints, and we will say that this bordism is equipped with an
M-structure if each component superpoint has an M-structure. Two
such bordisms will be equivalent if they are related by M-isometries,
where an M-isometry between bordisms is a permutation followed by
M-isometries on each factor. This definition ensures there is a forgetful
functor to Bord0.

Definition 7.1. The superalgebraic cartesian commutative monoid

Bord
0|1
(M,X) associates to An|q ∈ sA the set of equivalence classes of An|q-

families of 0|1-dimensional bordisms equipped with M-structure, with
the equivalence relation of M-isometry.

Hence an An|q-family of such bordisms induces a map An|q → Bord
0|1
(M,X).

Thus a field theory Z will associate to each such family

f : An|q × Y 0|1 → X

a function Z(f) ∈ O(An|q) (where Y 0|1 ∼=
∐

k A0|1 for some k, and
is equipped with an M-structure). If two An|q-families of bordisms are
related by an An|q-family of M-isometries, then the associated functions
will be the same. This gives rise to the following explicit description of

Bord
0|1
(M,X):

Proposition 7.2. The superalgebraic cartesian set Bord
0|1
(M,X) is given

by the quotient

Bord
0|1
(M,X)

∼=
∐
k∈N

(
sCart(

∐
k

A0|1, X)/M o Σk

)

∼=
∐
k∈N

(∏
k

[sCart(A0|1, X)/M]/Σk

)
.

The commutative monoid structure on Bord
0|1
(M,X) is induced by the

disjoint union operation on bordisms, and combining this with the
above explicit description we obtain:
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Corollary 7.3. Bord
0|1
(M,X) is the free commutative monoid generated

by the superalgebraic cartesian set

sCart(A0|1, X)/M.

Corollary 7.4. The supersymmetric 0|1-dimensional M-quantum field
theories over a superalgebraic cartesian set X (with values in O) are in
natural bijection with the set of M-invariant functions on sCart(A0|1, X).

Note that this implies that the field theories naturally have the struc-
ture of a commutative ring. Using the description from this last corol-
lary and our previous calculations we may now identify the supersym-
metric 0|1-dimensional M-quantum field theories over a simplicial set.

Theorem 7.5. Let X be a finite dimensional simplicial set. Then
the set of supersymmetric 0|1-dimensional M-quantum field theories
over i!X is naturally isomorphic (as supercommutative algebras with a
coaction of O(N(M)/M)) to...

(1) M = End(A0|1) ∼= A0|1 oA1 (pre-topological)

0|1-pTFT(X) ∼= Ω0
R,cl(X)

closed, degree zero polynomial differential forms on X over R.
(2) M = Aut(A0|1) ∼= A0|1 oGm (topological)

0|1-TFT(X) ∼= Ω0
R,cl(X)

closed, degree zero polynomial differential forms on X over R.
(3) M = A0|1 o Z/2Z (Euclidean)

0|1-EFT(X) ∼= Ωev
R,cl(X)

closed polynomial differential forms on X over R of even degree.
(4) M = A0|1 × 1 (oriented Euclidean)

0|1-EFTor(X) ∼= Ω∗R,cl(X)

closed polynomial differential forms on X over R of arbitrary
degree.

(5) M = 1 (fully-rigid)

0|1-QFTf-r(X) ∼= Ω∗R(X)

all polynomial differential forms on X over R.

Remark 7.6. When X is an infinite dimensional simplicial set we
may write it as the colimit over finite dimensional skeleta and then the
theorem still holds as long as Ωev

R,cl(X) means the product over even
closed polynomial forms instead of the sum (and likewise for the last
two cases).
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Proof. Recall that Proposition 4.3 gives an explicit description of the
coaction of O(End(A0|1)) on the supercommutative algebra of rational
differential forms uΩ∗R(X). In all of the cases above we compute the
coinvariants for the respective coaction. For all of the following, let
a ∈ uΩ∗R(X).

(1) Let a be a k-form, then

a 7→ axk + (da)xkε.

To be coinvariant k = 0 and da = 0.
(2) This follows from 1.
(3) Let a be a k-form, then

a 7→ a(1,−1)k + (da)(1,−1)kε.

To be coinvariant, k ∈ 2Z and da = 0.
(4) Let a be any form, then

a 7→ a+ (da)ε.

To be coinvariant, da = 0.
(5) This is Corollary 5.2.

�

8. Twisted Field Theories

In Section 7 we saw how a 0|1-dimensional supersymmetric M-quantum
field theory assigned to each S-family of M-bordisms over X a function
on S ∈ sA. A function on S is a map from S to O, a section of the
trivial O-line bundle over S. A twisted field theory is similar, except
that we allow the O-line bundles to be non-trivial.

Following [ST11, §5] a twisted field theory is defined to be a natural
transformation between certain functors, the twist functors. Moreover
these twist functors are functors of symmetric monoidal categories in-
ternal to superalgebraic cartesian sets, and this natural transforma-
tion is a transformation in the internal sense. The target symmetric
monoidal category, PicO, was introduced in Section 2. The source cat-

egory is an enhancement of Bord
0|1
(M,X) to be an internal symmetric

monoidal category in superalgebraic cartesian sets.

8.1. The bordism category. In Section 7 we introduced the bordism

category Bord
0|1
(M,X) as a commutative monoid internal to superalgebraic

cartesian sets. We will now promote this to a category internal to su-

peralgebraic cartesian sets, which we denote by Bord
0|1
(M,X) to distinguish

it from our previous definition.
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For S ∈ sA, the S-points of Bord
0|1
(M,X) consisted of the equivalence

classes of S-families of 0|1-dimensional bordisms equipped with M-
structures and maps to X. The equivalence relation was determined by

S-families of M-isometries. A similar description applies to Bord
0|1
(M,X)

only now instead of forming the quotient by the M-isometries, the M-

isometries form the morphisms between the objects of Bord
0|1
(M,X)(S).

Furthermore, X is now permitted to be any superalgebraic cartesian
prestack.

If Z is a superalgebraic cartesian set and M is a superalgebraic carte-
sian monoid acting on Z, let Z//M denote the action category, internal
to superalgebraic cartesian sets, whose objects are Z and morphisms
are Z ×M . The source and target maps are given by projection and
the action and the composition in given by the monoid structure of M .
In complete analogy to Proposition 7.2 we have:

Proposition 8.1. The category internal to superalgebraic cartesian

sets, Bord
0|1
(M,X), is given by

Bord
0|1
(M,X)

∼=
∐
k∈N

(∏
k

sCart(A0|1, X)//M o Σk

)
In short Bord

0|1
(M,X) is the free symmetric monoidal category, internal to

superalgebraic cartesian sets, generated by the category sCart(A0|1, X)//M.

8.2. Twisted field theories.

Definition 8.2. A twist for 0|1-dimensional supersymmetric M-quantum
field theories over X is a functor

τ : Bord
0|1
(M,X) → PicO

of internal symmetric monoidal categories.

The twists, together with the internal natural transformations of twists,
form a symmetric monoidal category. In particular we can take the ten-
sor product of twists. Moreover this symmetric monoidal category is
contravariantly functorial in X (since the bordism category is covari-
antly functorial in X).

Example 8.3. The trivial twist τ0 : Bord
0|1
(M,X) → PicO is the constant

symmetric monoidal functor with value the unit object of PicO. This
is the unit object in the symmetric monoidal category of twists.

Definition 8.4. Let τ be a twist for 0|1-dimensional supersymmetric
M-quantum field theories over X. A τ -twisted field theory is an internal
natural transformation Z between internal functors:
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Bord
0|1
(M,X) PicO⇓ Z

τ0

τ

from the trivial twist τ0 to the twist τ .

Example 8.5 (c.f. [ST11, Lma 5.7]). A τ0-twisted field theory is an in-
ternal natural endo-transformation of the constant twist. Since O may
be identified with the endomorphisms of the unit object of PicO, such
natural transformations amounts to an M-invariant O-valued function
on sCart(A0|1, X). Hence τ0-twisted field theories are precisely the
quantum field theories from Section 7.

Since Bord
0|1
(M,X) is free, a twist is determined by an (internal) functor

τ̄ : sCart(A0|1, X)//M −→ PicO .

General twists over a general space X can be quite interesting (see
[SPST] for computation of general twists in the related context of 0|1-
field theories in the sense of HKST, that is in the context of superman-
ifolds rather than superalgebraic cartesian sets).

In the remainder of this work we will only consider the simplest
twists, which are pulled back from the case X = pt. We will call such
twists basic. They are easy to classify:

Lemma 8.6. The basic twists are classified (up to isomorphism) by

(1) an object L ∈ obPicO = ob PicR, and
(2) a representation ρ : M→ Hom(L,L) ∼= O.

The tensor product of basic twists tensors these two pieces of data.

Proof. When X = pt we have sCart(A0|1, X) ' pt, and hence a basic
twist is the same as an internal functor pt//M→ PicO. Such a functor
consists of exactly the claimed data. �

Theorem 8.7. If X is a finite dimensional simplicial set, the (L, ρ)-
twisted field theories over X are in bijection with the O(M)-coinvariants
of Ω∗R(X;L).

Proof. Recall that L may be viewed as an invertible O-module or as
an invertible R-module. Recall the isomorphisms

Ω∗R(X;L) ∼= Ω∗R(X)⊗R L ∼= Ω(X;L).

The natural coaction of O(M) on O(sCart(A0|1, X)) from Proposition
4.7 extends to a coaction on Ω∗R(X;L) by tensoring up to L and using
the isomorphisms above.



RATIONAL COHOMOLOGY FROM SUPERSYMMETRIC FIELD THEORIES 39

Let τ be a basic twist. A natural transformation τ0 ⇒ τ of symmet-
ric monoidal functors (internal to sCart) is determined by a natural
transformation of functors (internal to sCart) τ̄0 ⇒ τ̄ . Since τ is basic,
Lemma 8.6 implies that it is determined by an object L ∈ obPicO and
a representation ρ of M. Thus an internal natural transformation is
determined by a map of superalgebraic cartesian sets

sCart(A0|1, X)
n−→ HomO(O,L) ∼= L

such that the following diagram commutes:

M× sCart(A0|1, X)

sCart(A0|1, X)

HomO(L,L)× HomO(O,L)

HomO(O,L),

t

ρ× n

t

n

where t is the action map. But the action of HomO(L,L) on HomO(O,L)
is the action of O on L, so the square becomes

M× sCart(A0|1, X)

sCart(A0|1, X)

O × L

L.

t

ρ× n

t

n

But this exactly means that n is ρ-coinvariant for the coaction discussed
above. �

Remark 8.8. When X is infinite dimensional then we consider it as a
colimit of its finite skeleta. The theorem provides a bijection for each
finite skeleton and thus a bijection in the inverse limit.

8.3. Calculation of all twists. We will first consider the case of pre-
topological structures M ∼= A0|1 o A1. We need to calculate all of the
actions of A0|1 oA1 on A1|1. Such an action consists of a map

µ : M×O → O
which is unital and satisfies three properties:

(1) it is associative with respect to the multiplication of M;
(2) it is distributes over the addition of O;
(3) it commutes with the scalar multiplication of O on O.

This is the same as a unital function:

R[y, ε]
µ∗−→ R[y, ε, x, δ]
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such that three squares commute.
An arbitrary map µ∗ is described by a pair of values:

y 7→ f0(x, y) + f1(x, y)δε

and
ε 7→ g0(x, y)ε+ g1(x, y)δ.

and each of the commutative squares give restrictions on the allowed
functions f0, f1, g0, and g1.

The first condition gives the commutative square:

R[y, ε, x, δ]
µ∗⊗1 // R[y, ε, x1, δ1, x2, δ2]

R[y, ε]

µ∗

OO

µ∗ // R[y, ε, x, δ].

1⊗m∗
OO

Going around the diagram the two ways for y gives

f0(x1x2, y) + ε(f1(x1x2, y)x1δ2 + f1(x1x2, y)δ1)(1)

= f0(x2, f0(x1, y) + εf1(x1, y)δ1)+

(g0(x1, y)ε+ g1(x1, y)δ1)(f1(x2, f0(x1, y) + εf1(x1, y)δ1))δ2.

While for ε we get

g0(x1x2, y)ε+ g1(x1x2, y)(x1δ2 + δ1)(2)

= g0(x2, f0(x1, y) + f1(x1, y)εδ1)(g0(x1, y)ε+ g1(x1, y)δ1)

+ g1(x2, f0(x1, y) + f1(x1, y)εδ1)δ2.

This puts strong restrictions on the possible µ∗.
Similarly, each of the other two conditions put restrictions on µ∗.

Compatibility with respect to the additive structure of O forces f0, f1,
g0, and g1 to have the following form:

f0(x, y) = p(x)y

f1(x, y) = q(x)

g0(x, y) = r(x)

g1(x, y) = s(x)y

While further requiring µ∗ to commute with the scalarO-multiplication
forces

p(x) = r(x) and q(x) = s(x).

Returning to Equations (1) and (2), we see that µ∗ defines a unital
M-action on the O-module O if and only if

q(x) = 0, p(x1x2) = p(x1)p(x2), and p(1) = 1.



RATIONAL COHOMOLOGY FROM SUPERSYMMETRIC FIELD THEORIES 41

Lemma 8.9. Let R be a connected ring of characteristic 0 and p(x) ∈
R[x, x−1]. If

p(x1x2) = p(x1)p(x2)

then either p(x) = 0 or p(x) = xn for some n.

Proof. This implies that

p(x)2 = p(x2).

Since R is connected we have that p(1) = 1 or p(1) = 0.
Assume that p(1) = 0. Then we see immediately that

p(x) = 0.

Assume that p(1) = 1. Let

w(x) = xmp(x),

then
w(x1)w(x2) = w(x1x2).

By choosing m large enough, w(x) has the form

rxn + lower degree terms,

where n > 0, r 6= 0, and the lower degree terms are in positive degree.
The equality w(x1)w(x2) = w(x1x2) implies that r2 = r, so r = 1. Now
we may take the derivative with respect to x1 n-times in order to get
the equality

w(n)(x1x2)xn2 = w(x2)w(n)(x1),

but this is just the statement that

(n!) · w(x2) = xn2 · (n!),

which is equivalent to w(x) = xn since we are in characteristic zero.
This implies the result for p(x) by the definition of w(x). �

This completely determines the basics twists for the pre-topological
geometry in characteristic zero. If R is connected, then for each n ∈ N
there is a degree n twist

y 7→ xny

ε 7→ xnε

A similar calculation determines the possible basic twists for the
remaining geometries. Below is a table containing the forms of the O-
linear actions of M on A1|1 for each of the geometries M = A0|1 o Z/2
and M = A0|1.

We will refer to these as the degree n twists, where in the pre-
topological geometry n ∈ N, in the topological geometry n ∈ Z, in the
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Geometry Coaction

A0|1 o Z/2 y 7→ y
R[x, δ]/(x2 − 1, δ2) ε 7→ ε

y 7→ xy
ε 7→ xε

A0|1 y 7→ y
ε 7→ ε

Euclidean geometry n ∈ {odd, even}, and in the oriented Euclidean
geometry there is only one twist.

Translating this to twisted field theories yields:

Theorem 8.10. Over a ring R of characteristic zero, for each geome-
try and each degree n basic twist, the twisted field theories are given in
Table 1. In the case of the pretopological geometry these pick out closed
forms ω ∈ Ωk and α ∈ Ωk, k ∈ N. When Ω∗ = Ω∗R(X,L) is the cdga
of differential forms on a simplicial set X, there are only odd forms in
odd degrees and only even forms in even degrees. Thus fixing k picks
out precisely the forms of degree k (one of ω or α must be zero).

The topological geometry behaves in precisely the same way and, of
course, there are only forms in nonnegative degrees when the cdga con-
sists of the forms on a simplicial set.

In the case of the Euclidean geometry taking both ω and α to be even
gives the even forms on X and taking both to be odd gives the odd forms
on X.

We will denote the collection of degree n twisted field theories with a
geometry by a superscript n. Thus 0|1-pTFTn(X) denotes the degree
n pretopological field theories.

Geometries Twisted Field Theories

A0|1 oA1 ω ∈ Ωk, α ∈ Ωk

Pretopological dω = 0, dα = 0, k ∈ N
A0|1 oGm ω ∈ Ωk, α ∈ Ωk

Topological dω = 0, dα = 0, k ∈ Z
A0|1 o Z/2 ω ∈ Ωeven or odd, α ∈ Ωeven or odd

Euclidean dω = 0, dα = 0

A0|1 ω ∈ Ω∗, α ∈ Ω∗

oriented Euclidean dα = 0, dω = 0

Table 1. General form of basic twists
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9. Concordance

Theorems 7.5 and 7.5 and Table 1 show that the twisted superalge-
braic cartesian quantum field theories with a geometry over a simplicial
set X correspond to important subsets of Sullivan’s rational differential
forms on X. To recover the rational cohomology groups of X from the
field theories we study a notion of equivalence of field theories called
concordance. In this algebraic setting we uncover three notions of con-
cordance. We prove that they are all equivalent. In each case two closed
differential forms are concordant if and only if they are cohomologous.

Given a simplicial set X, we may consider the two inclusions

f0, f1 : X −→ X ×∆1

induced by the coface maps of ∆1. Now, using the the canonical map

i!(X ×∆1) −→ i!X × A1

and the canonical map Ω∗(i!X) ⊗ Ω∗(A1) −→ Ω∗(i!X × A1) we build
the commutative diagram:

Ω∗(i!X)⊗ Ω∗(A1)

��

��

Ω∗(i!X × A1)

��
Ω∗(i!(X ×∆1))

f0

((

f1

vv
Ω∗(i!X) Ω∗(i!X).

Note that the downward arrows need not be isomorphisms. We use
this diagram to describe the three notions of concordance for two dif-
ferential forms ω0, ω1 ∈ Ω∗cl(i!X). They fit nicely into a table:

Cohomologous ∃α, ω0 − ω1 = dα
Cochain Concordance ∃ω ∈ Ω∗cl(i!X)⊗ Ω∗cl(A1), fjω = ωj
Algebraic Concordance ∃ω ∈ Ω∗cl(i!X × A1), fjω = ωj
Simplicial Concordance ∃ω ∈ Ω∗cl(i!(X ×∆1)), fjω = ωj

It is immediate that Cochain Concordance implies Algebraic Con-
cordance implies Simplicial Concordance.

Proposition 9.1. Cohomologous implies Cochain Concordance.

Proof. The element ω1t+ω0(1− t) +αdt ∈ Ω∗cl(i!X)⊗Ω∗cl(A1) does the
job. �
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Proposition 9.2. Let R be a Q-algebra, then Simplicial Concordance
implies Cohomologous.

Proof. It suffices to take ω ∈ Ω∗(i!(X × ∆1)) such that f0ω = 0 and
f1ω = ω1. We must show that there exists α such that dα = ω1.
However, because X × ∆1 ' X, by Sullivan’s theorem [Sul77] f0 and
f1 are quasi-isomorphisms. Thus the cohomology class of ω1 equals the
cohomology class of 0. �

We use square brackets to denote the set of twisted field theories
with a given geometry taken up to concordance. Thus 0|1-pTFTn[X]
denotes the degree n pretopological field theories up to concordance.

Theorem 9.3. Let R be a Q-algebra, HR be cohomology with coeffi-
cients in R, and X be a simplicial set. There are natural isomorphisms

0|1-pTFTn[X] ∼= 0|1-TFTn[X] ∼= HRn(X)

and

0|1-EFTn[X] ∼= PHRn(X),

where PHR is periodic cohomology with coefficients in R.

Remark 9.4. Because periodic cohomology is defined using the prod-
uct, X may be taken to be an infinite dimensional simplicial set.
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Études Sci. Publ. Math., (47):269–331 (1978), 1977.
[Vis05] Angelo Vistoli. Grothendieck topologies, fibered categories and descent

theory. In Fundamental algebraic geometry, volume 123 of Math. Surveys
Monogr., pages 1–104. Amer. Math. Soc., Providence, RI, 2005.

Max-Planck-Institut fr Mathematik,Vivatsgasse 7, 53111 Bonn, Ger-
many

E-mail address: schommerpries.chris.math@gmail.com

E-mail address: nstapleton@math.mit.edu

http://www.nd.edu/~stolz/Math80440(S2012)/Gauged_QFTs.pdf
http://www.nd.edu/~stolz/Math80440(S2012)/Gauged_QFTs.pdf

	Introduction
	Further motivations
	Review of the literature: supersymmetric field theories and de Rham cohomology
	Outline of the paper
	Acknowledgments

	1. Superalgebraic Cartesian Sets
	1.1. Superalgebraic cartesian sets as a presheaf topos
	1.2. Superalgebraic cartesian sets and superalgebras
	1.3. Superalgebraic cartesian sets and simplicial sets

	2. The Picard Category
	3. Tiny Objects And Internal Homs
	4. The Action Of The Endomorphisms Of The Super Point
	5. Polynomial Forms via Superalgebraic Cartesian Sets
	6. Geometries On The Superpoint
	7. Superalgebraic Cartesian Quantum Field Theories
	8. Twisted Field Theories
	8.1. The bordism category
	8.2. Twisted field theories
	8.3. Calculation of all twists

	9. Concordance
	References

