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Abstract. The purpose of this note is to verify that several basic rings appearing in tran-
schromatic homotopy theory are Noetherian excellent normal domains and thus amenable to

standard techniques from commutative algebra. In particular, we show that the coefficients of

iterated localizations of Morava E-theory at the Morava K-theories are normal domains and
also that the coefficients in the transchromatic character map for a fixed group form a normal

domain.

1. Introduction

Excellent rings were introduced by Grothendieck as a well-behaved class of commutative Noe-
therian rings general enough for the purposes of arithmetic and algebraic geometry, while ex-
cluding several pathological examples of Noetherian rings found by Nagata. In particular, the
collection of excellent rings is closed under localization and completion.

These algebraic operations describe the effect on coefficient rings of the derived localizations
appearing in stable homotopy theory. Most prominently, such Bousfield localizations occur when
comparing different chromatic layers of the stable homotopy category, a subject known as tran-
schromatic homotopy theory. The main goal of this note is to demonstrate that important rings
appearing in transchromatic homotopy theory are built from excellent rings, and hence surpris-
ingly well-behaved. Specifically, although these rings are rather complicated algebraically and in
general not regular, we prove that they are integral domains and thus regular in codimension 1.
However, establishing these fundamental properties directly turned out to be considerably more
difficult than anticipated, which led us to employ the theory of excellent rings instead. We hope
that the methods used here will prove useful in tackling similar problems in related contexts.

Our first result concerns the rings Lt,n = π0LK(t)En obtained as the localization of Morava
E-theory En of height n at the Morava K-theory K(t) of height t < n. This is a fundamental
example of a transchromatic ring, since the localization map

En // LK(t)En

shifts chromatic height from n to t. These rings were studied in detail by Mazel–Gee, Peter-
son, and Stapleton in [MGPS15] using the theory of pipe rings. In particular, Theorem 36 of
[MGPS15] shows that π0En → Lt,n represents a natural moduli problem. Technicalities aside,
the moduli problem associates to a pair of (properly topologized) rings R → S the groupoid of
deformations of a fixed height n formal group over a perfect field k to R with the property that
the pullback to S has height t up to a notion of ?-isomorphism.

We complement their work by showing that the Lt,n are well-behaved from the point of view
of commutative algebra.

Theorem (Proposition 3.2). The ring Lt,n is a Noetherian excellent normal domain. More
generally, the same conclusion holds for any iteration of localizations of En at Morava K-theories.
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As a consequence, Lt,n has the cancellation property, which is crucial in applications as for
example in [BS15]. Moreover, this result about Lt,n forms the basis for deducing similar prop-
erties of other prominent rings appearing in transchromatic homotopy theory. Specifically, we
study the completion at It of the transchromatic character rings Ct,k

Ĉt,k = (Ct,k)∧It .

that were first introduced in [Sta13]. For a fixed finite group G there exists a k ≥ 0 so that Ĉt,k
may be used to build a transchromatic character map

Ĉt,k ⊗E0
n
E0
n(BG)

∼=−→ Ĉt,k ⊗Lt,n
LK(t)E

0
n(BGBZn−t

p ).

Theorem (Corollary 3.8 and Corollary 3.9). The transchromatic character ring Ĉt,k is a Noe-

therian excellent normal domain for all t and k. The colimit colimk Ĉt,k is normal.

There are two key ingredients in the proof of this theorem: Firstly, a recent theorem of
Gabber–Kurano–Shimomoto on the ideal-adic completion of excellent rings. Secondly, we use
an identification of Ĉt,k with a localization and completion of a certain ring of Drinfeld level
structure on the formal group associated to En, thereby providing a new perspective on these
transchromatic character rings.

Conventions and references. We rely heavily on a number of results from commutative al-
gebra that cannot be found in standard textbooks. Rather than locating the earliest published
reference for each of the facts used here, we will always refer to the stacks project [Sta15]. All
rings in this note are assumed to be commutative and all ideals are taken to be finitely generated.

Acknowledgements. We would like to thank Frank Gounelas for providing helpful geometric
intuition and Niko Naumann and Paul VanKoughnett for useful discussions. The second author
is supported by SFB 1085 Higher Invariants funded by the DFG.

2. Excellent rings

We start this section with an example illustrating that localizations of complete regular local
Noetherian rings are more complicated than what one might expect. This shows that, while the
localization or completion of a regular local ring is again regular, the class of regular local rings
is not closed under these operations.

Example 2.1. Let k be a field and consider R = kJx, yK. The ring A = y−1R ∼= kJxK((y)) is not
local and, in particular, it is not isomorphic to the regular local ring k((y))JxK. Indeed, we claim
that both (x) and (x− y) are different maximal ideals in A. The ideal (x) is clearly maximal, so
it remains to show that (x− y) is maximal as well. To this end, note that

A/(x− y) ∼= k((x)),

which is a field, hence (x− y) ⊂ A is maximal as claimed. In contrast, (x− y) = x(1− y/x) has
formal inverse 1/x ·

∑∞
i=0(y/x)i, so x− y is a unit in k((y))JxK.

After completion, this subtlety disappears: in fact, A∧(x)
∼= k((y))JxK, see [MGPS15, B.2].

The Auslander–Buchsbaum theorem asserts that regular local rings are unique factorization
domains, but in light of the previous example, we may not expect this property to be preserved
under the operations appearing in transchromatic theory. Instead, we will study the larger class
of normal rings, which corresponds to regularity in codimension 1 via Serre’s criterion.

To this end, recall that a normal domain is a domain which is integrally closed in its quotient
field. A ring R is called normal if the localizations Rp are normal domains for all primes ideals
p ⊂ R. The following lemma collects the key properties of normal rings that we will apply in
this note.
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Lemma 2.2. Let R be a commutative ring.

(1) If R is regular, then R is normal.
(2) If R is normal, then any of its localizations is normal.
(3) Filtered colimits of normal rings are normal.
(4) If R is Noetherian and normal, then it is a finite product of normal domains.

Proof. The first claim is [Sta15, Tag 0567], the second one is [Sta15, Tag 037C], and the third one
is [Sta15, Tag 037D]. To prove the last claim we apply [Sta15, Tag 030C], so that we have to check
that R is reduced and contains only finitely many minimal primes. Because R is Noetherian,
the second condition is satisfied. For the first one, note that, since R is normal it is reduced, as
being reduced is a local property and R is locally a domain. �

The definition of an excellent ring is rather involved. For the convenience of the reader, we
give this definition; we will assume that the reader is familiar with the definition of a regular
local ring.

Definition 2.3. Recall the following definitions for a commutative ring R:

(1) A ring R is a G-ring if for all prime ideals p ⊂ R, Rp is a local G-ring. A local ring
(R,m) is a local G-ring if the completion map R → R∧m is a regular morphism. This
means that the map is flat and for all primes p ⊂ R, κ(p) ⊗R R∧m is Noetherian and
geometrically regular over κ(p). A k-algebra R is geometrically regular over k if for
every finite extension k ⊂ K, R ⊗k K is regular, where a ring is regular if it is locally
regular.

(2) A ring R is J-2 if for all finite type extensions R→ S the ring S is J-1. A ring R is J-1
if the subset of points of p ∈ Spec(R) with the property that Rp is regular local is open.

(3) A ring R is universally catenary if it is Noetherian and for every finite type extension
R → S, the ring S is catenary. A ring R is catenary if for all pairs of primes ideals
q ⊂ p ⊂ R, all maximal chains of prime ideals q = P0 ⊂ P1 ⊂ . . . ⊂ Pl = p have the same
length.

Finally, a ring R is called excellent if it is Noetherian, a G-ring, J-2, and universally catenary.

For example, fields, Dedekind domains with characteristic 0 quotient field, and all complete
local Noetherian rings are excellent, see [Sta15, Tag 07QW]. Moreover, the same reference shows
that any algebra of finite type over an excellent ring is excellent.

The next proposition essentially generalizes [Sta15, Tag 0C23] to non-local rings. The purpose
is to show that the collection of Noetherian excellent normal rings is closed under the operations
of localization at a multiplicatively closed set and completion at a prime ideal. The key point is
that we do not assume that our rings are local, as the rings that naturally arise in transchromatic
homotopy theory are often not local.

Proposition 2.4. Suppose R is a Noetherian excellent normal ring, p ⊂ R is a prime ideal,
and S ⊆ R \ p is multiplicatively closed, then A = (R[S−1])∧p is a Noetherian excellent normal
domain.

Proof. By [Sta15, Tag 07QU] and Part (2) of Lemma 2.2, R[S−1] is Noetherian, excellent, and
normal and pR[S−1] is prime, thus we may assume without loss of generality that S = {1}.
Consider the canonical map f : R → A = R∧p . Since R is excellent and thus a G-ring, the map
f is regular by [Sta15, Tag 0AH2]. The completion of a Noetherian ring is Noetherian, so we
may apply [Sta15, Tag 0C22] and Part (1) of Lemma 2.2 to deduce that A is normal as desired.
Since A is Noetherian and normal, Part (4) of Lemma 2.2 implies that it is a product of finitely
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many domains A1, . . . , Al. Also, pA is prime. Now we have canonical isomorphisms

A ∼= A∧p
∼=
∏
i

(Ai)
∧
p .

By the structure theory of prime ideals in products, only one of the factors will survive, hence
A ∼= Ai for some i. Finally, the completion of an excellent ring is excellent by a recent theorem
of Gabber–Kurano–Shimomoto [KS16]. �

Remark 2.5. In virtue of [Sta15, Tag 07PW], the proof of the above proposition does not obviously
work if we assume that R is a Noetherian normal G-ring. We see that the conditions on R all
conspire to make the proof go through.

Proposition 2.6. Let R be a domain, let p = (r1, . . . , rl) ⊂ R be a prime ideal generated by a
regular sequence, and let q = (r1, . . . , rm) for m < l, then q is a prime ideal.

Proof. Since R is a domain, the localization map R→ Rp is injective. The ring Rp is regular local
with system of parameters given by r1, . . . , rl. In such a situation Rp/(r1, . . . , rm) is prime for
any 1 ≤ m ≤ l. Now the preimage of (r1, . . . , rm) ⊂ Rp is the ideal generated by (r1, . . . , rm) ⊂ R
since the localization map R→ Rp is injective. �

3. Rings in transchromatic homotopy theory

Throughout this section, we fix a prime p and height n ≥ 0. Recall that Morava E-theory En
is an even periodic E∞-ring spectrum with coefficients

E∗n := π−∗En ∼= WkJu1, . . . , un−1K[u±1],

where Wk is the ring of Witt vectors on a perfect field k of characteristic p, the ui’s are in
degree 0 and u has degree 2. Note that π0En = E0

n is a complete regular local Noetherian ring,
so in particular an excellent domain. Furthermore, let K(n) be Morava K-theory of height n
with coefficients K(n)∗ ∼= k[u±1] and denote by LK(n) the corresponding Bousfield localization
functor. If m < n, then LK(n)LK(m) = 0, but the composite LK(m)LK(n) is non-trivial and
encodes much of the structure of transchromatic homotopy theory, see for example [Hov95].

Since all spectra involved are even periodic, we will restrict attention to the degree 0 part of
the homotopy groups. In particular, an even periodic module M over an even periodic E1-ring
spectrum A is said to be flat if π0M is flat as π0A-module. This definition is compatible with
the one given in [BF15].

Lemma 3.1. Given a sequence 0 ≤ t1 ≤ · · · ≤ ti ≤ n of integers, the canonical localization map

M // LK(t1) · · ·LK(ti)M

is flat for any flat En-module M .

Proof. We will prove this by induction on the number i of integers in the sequence. If i = 0, the
claim is trivial, so suppose it is proven for all sequences of numbers t2 ≤ · · · ≤ ti and let t1 ≤ t2;
for simplicity, write N = LK(t2) · · ·LK(ti)M . By assumption, π0N is a flat E0

n-module, so [BS16,
Cor. 3.10] shows that

π0LK(t1)N ∼= (π0N [u−1
t1 ])∧It1 ,

where It denotes the ideal (p, u1, . . . , ut−1). Localization is exact, hence π0N [u−1
t1 ] is flat over

E0
n. Therefore, an unpublished theorem of Hovey, proven in [BF15, Prop. A.15], implies that

π0LK(t1)N is flat over E0
n as claimed. �

To simplify notation, we shall write LK(T ) for the composite functor LK(t1) · · ·LK(ti) for any
sequence T = (t1, . . . , ti) of integers. Note that, if there is j with tj−1 > tj in T , then LK(T ) ' 0.
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Proposition 3.2. The ring π0LK(T )En is a Noetherian excellent normal domain for all finite
non-increasing sequences T of non-negative integers.

Proof. We proceed by induction, the base case being clear. Suppose that the claim has been
proven for all sequences of length at most i− 1 and consider a sequence T = {t1 ∪T ′} with T ′ =
(t2, . . . , ti) of length i−1. Write R = LK(T ′)En, so π0R is a Noetherian excellent normal domain
by hypothesis. As is shown in the proof of Lemma 3.1, there is an isomorphism π0LK(t1)R ∼=
(π0R[u−1

t1 ])∧It1
. The ideal It1 ⊂ It2 satisfies the condition of Proposition 2.6 and therefore is

prime. Thus the triple (π0R, {ut1 , u2
t1 , . . .}, It1) satisfies the assumptions of Proposition 2.4,

hence π0LK(t1)R is a Noetherian excellent normal domain. �

As a special case of Proposition 3.2, we immediately obtain the following corollary, which was
used in the proof of [BS15, Lem. 4.4] and provided the original motivation for this note:

Corollary 3.3. The ring Lt = π0LK(t)En is an excellent domain for all t and n. In particular,
Lt has the cancellation property.

In [BS15], we also studied a variant Ft = LK(t)((En)It) of Lt, where the localization (−)It is
understood in the ring-theoretic sense, i.e., as inverting the complement of It.

Corollary 3.4. The ring π0Ft is an excellent domain.

Proof. We see as in the proof of Proposition 3.2 that the (degree 0) coefficients of Ft are given
by ((E0

n)It)
∧
It

, to which we can apply Proposition 2.4. �

We now turn to the rings that feature prominently in the transchromatic character theory of
Hopkins, Kuhn, and Ravenel [HKR00], as well as its generalizations [Sta13] and [BS16]. To this
end, we quickly review the definition and role of the coefficient ring for transchromatic character
theory. For any integer 0 ≤ t ≤ n, let GLK(t)En be the formal group associated to the natural

map MU → En → LK(t)En, viewed as a p-divisible group. In [Sta13], an Lt-algebra called Ct is
defined which carries the universal isomorphism of p-divisible groups

Ct ⊗GEn
∼= (Ct ⊗GLK(t)En

)⊕ (Qp/Zp)n−t.
Note that both Lt and Ct also depend on n. From the perspective of stable homotopy theory,
Ct is useful because there is a canonical isomorphism (the character map)

Ct ⊗E0
n
E0
n(BG)

∼=−→ Ct ⊗π0LK(t)En
LK(t)E

0
n(Ln−tBG),

where L denotes the (p-adic) free loop space. The ring Ct is a colimit of smaller rings Ct =
colimk Ct,k. With p and n fixed implicitly, denote the finite abelian group (Z/pk)n−t by Λk,t.
The ring Ct,k is a localization of Lt ⊗E0

n
E0
n(BΛ∗k,t). The ring E0

n(BΛ∗k,t) carries the universal
homomorphism

Λk,t → GEn
.

Recall from [Sta13, Section 2] that the p-divisible group Lt ⊗E0
n
GEn

is the middle term in a
short exact sequence

0→ GLt → Lt ⊗E0
n
GEn → Get → 0,

where Get is a height n− t étale p-divisible group.
Let Tt,k ⊂ E0

n(BΛ∗k,t) be the multiplicative subset generated by the nonzero image of the
canonical map

Λk,t → GEn(E0
n(BΛ∗k,t)).

The nonzero image of this map has an explicit description in terms of a coordinate, as we shall
explain now. After fixing an isomorphism OGEn

∼= E0
nJxK, there is an induced isomorphism

E0
n(BΛ∗k,t)

∼= E0
nJx1, . . . , xtK/([pk](x1), . . . , [pk](xt)),
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where [pk](x) is the pk-series of the formal group law determined by the coordinate. The nonzero
image of Λk,t can be described as the set of nonzero sums

[i1](x1) +GEn
. . .+GEn

[it](xt).

Of course, we may view Tk,t as a subset of Lt ⊗E0
n
E0
n(BΛ∗k,t).

Let St,k ⊂ Lt ⊗E0
n
E0
n(BΛ∗k,t) be the multiplicative subset generated by the nonzero image of

the canonical map

Λk,t → (Lt ⊗E0
n
GEn

)(Lt ⊗E0
n
E0
n(BΛ∗k,t))→ Get(Lt ⊗E0

n
E0
n(BΛ∗k,t)).

The ring Ct,k is defined to be S−1
t,k (Lt ⊗E0

n
E0
n(BΛ∗k,t)). Instead of working with this ring, we

will work with the mild variation obtained by completing at It

Ĉt,k = (Ct,k)∧It = (S−1
t,k (Lt ⊗E0

n
E0
n(BΛ∗k,t)))

∧
It .

This ring is an Lt-algebra in a canonical way and it corepresents a certain functor on the category
of continuous (with respect to It) Lt-algebras. The functor associates to a continuous Lt-algebra
R the set of isomorphisms under R⊗GLt

[pk] of the form

R⊗GLt
[pk]⊕ Λk,t

∼=−→ R⊗GEn
[pk].

This follows immediately from Proposition 2.17 in [Sta13].
For a finite abelian group A, the scheme of A-level structures in the formal group GEn of

Morava E-theory is represented by a ring DA:

Level(A,GEn
) ∼= Spf(DA).

This ring was introduced by Drinfeld [Dri74]. It was also studied further by Strickland in [Str97]
and first applied to the study of Morava E-theory in [And95].

Lemma 3.5. The ring DΛk,t
is a Noetherian excellent normal domain.

Proof. The ring DΛk,t
is a module-finite extension of E0

n. This immediately implies that it is
Noetherian and excellent. Drinfeld proves that it is regular local and this implies that it is a
normal domain. �

Let A∗ be the Pontryagin dual of A. The rings E0
n(BΛ∗k,t) and DΛk,t

are closely related. There
is a canonical surjective map

π : E0
n(BΛ∗k,t) � DΛk,t

and the kernel is understood by the proof of Proposition 4.3 in [Dri74]. It is generated by power
series fi(x1, . . . , xi) for 1 ≤ i ≤ n− t, where

fi(x1, . . . , xi) =
[pk](xi)

gi(x1, . . . , xi)

and

gi(x1, . . . , xi) =
∏

(j1,...,ji−1)∈Λk,i−1

(
xi − ([j1](x1) +GEn

. . .+GEn
[ji−1](xi−1))

)
.

Proposition 3.6. There is a canonical isomorphism

Ĉt,k ∼= (T−1
t,k (Lt ⊗E0

n
DΛk,t

))∧It .

Proof. This will be proved in two steps. First, inverting Tt,k and inverting St,k in Lt ⊗E0
n

E0
n(BΛ∗k,t) give the same ring after It-completion. Secondly, we show that inverting Tt,k in

E0
n(BΛ∗k,t) kills the kernel of π.
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It suffices to prove the first claim after taking the quotient by It. By [Sta13, proof of Propo-
sition 2.5], after taking the quotient, the ring of functions applied to the quotient

Lt ⊗E0
n
GEn [pk]→ Get[pk]

sends the coordinate y of Get[pk] to the function xp
kt

on Lt ⊗E0
n
GEn

[pk]. Thus the set Tt,k is

the pkt powers of the elements in St,k. Inverting an element is equivalent to inverting any of its
powers.

Since a −GEn
b is a unit multiple of a − b (for any elements a, b in the maximal ideal of a

complete local ring), it follows from Drinfeld’s description of the kernel of π that inverting Tt,k in
E0
n(BΛ∗k,t) kills the kernel of π. Since DΛk,t

is a quotient of E0
n(BΛ∗k,t), there is an isomorphism

T−1
t,k E

0
n(BΛ∗k,t)

∼= T−1
t,kDΛk,t

.

�

Remark 3.7. Theorem 36 of [MGPS15] gives a moduli interpretation of the map π0En → Lt.

It would be satisfying to give a moduli interpretation of DΛk,t
→ Ĉt in terms of pipe rings.

The Drinfeld ring DΛk,t
has a nice interpretation in terms of deformations equipped with Λk,t-

level structures up to compatible ?-isomorphisms. A moduli interpretation of the map DΛk,t
→

Ĉt would likely associate to a (properly topologized) pair R → S the groupoid with objects
deformations of our fixed height n formal group over k to R equipped with Λk,t-level structures
and such that the pullback as p-divisible groups to S induces an isomorphism of Λk,t with the
étale [pk] torsion of the étale part. In order to achieve this, one would need to develop the theory
of p-divisible groups over pipe rings.

Corollary 3.8. For all k, the rings Ĉt,k are Noetherian excellent normal domains.

Proof. Since DΛk,t
is a Noetherian excellent normal domain and Ĉt,k can be constructed from

DΛk,t
by iterated localization and completion, Proposition 2.4 applies. �

Corollary 3.9. The ring colimk Ĉt,k, which receives a canonical map from Ct, is normal.

Proof. This is an immediate consequence of Corollary 3.8 and Part (3) of Lemma 2.2. �

For more many purposes in transchromatic homotopy theory (e.g., [BS16]), it is more conve-

nient to work with the completion of colimk Ĉt,k, so we end this note with the following question.

Question 3.10. What can be said about (colimk Ĉt,k)∧It?
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