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Homework

• Re-read section 14.2

• Start working on practice problems in section
14.2, 1, 5-17 (odd), 21, 25, 29, 31, 33, 35

• Be ready to work on sections 14.1-14.2 in
recitation tomorrow

• Read section 14.3 for Wednesday’s lecture
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Unit II: Differential Calculus of Several Variables

Lecture 13 Functions of Several Variables
Lecture 14 Limits and Continuity
Lecture 15 Partial Derivatives
Lecture 16 Tangent Planes and Linear Approximation, I
Lecture 17 Tangent Planes and Linear Approximation, II
Lecture 18 The Chain Rule
Lecture 19 Directional Derivatives and the Gradient
Lecture 20 Maximum and Minimum Values, I
Lecture 21 Maximum and Minimum Values, II
Lecture 22 Lagrange Multipliers
Lecture 23 Review for Exam 2
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Goals of the Day

• Understand limits for functions of two variables and know how
to determine when they do or do not exist

• Understand what a continuous function of two variables is and
how to determine when a given such function is continuous

• Understand how limits and continuity generalize to functions
of three variables
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Limits: One Variable

a

L

L− ε

L+ ε

ε

ε

a− δ a+ δ

limx→a f (x) = L if:

• for every ε > 0,

• we can find a δ > 0 so that,
if |x − a| < δ, then |f (x)− L| < ε

Remember that f does not need to be
defined at x = a for the limit to exist

One can approach x = a either from the
left (x < a) or from the right (x > a)
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Limits: Two Variables

y

x

(a, b)

δ

(x , y )

lim(x ,y )→(a,b) f (x , y) = L if:

• for any ε > 0,

• we can find a δ > 0 so that that,
if

0 <
√
(x − a)2 + (y − b)2 < δ

then |f (x , y)− L| < ε

f does not need to be defined at (a, b)

One can approach (x , y) = (a, b) on any
line (or any curve!) that goes to (a, b)
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Limits - Two Variables

The set

D =

{
(x , y) : 0 <

√
(x − a)2 + (y − b)2 < δ

}
is a punctured disk of radius δ at (a, b).

lim(x ,y )→(a,b) f (x , y) = L if:

given any ε > 0, we can a δ > 0 so that

for any (x , y) in D, f (x , y) is within ε of L
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When don’t limits exist?

Suppose

f (x , y) =
x2y

x3 + y3

Does lim(x ,y )→(0,0) f (x , y) exist?

Try the line test: (x , y) = (x ,mx)

f (x ,mx) =
mx3

x3 +m3x3
=

m

1 +m3

What does this tell you about the limit?
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Now You Try It

Find the limit or show that the limit does not exist.

1. lim(x ,y )→(3,2)(x
2y3) 2. lim(x ,y )→(π,π/2) y sin(x − y)

3. lim(x ,y )→(0,0)
xy√

x2 + y2
4. lim(x ,y )→(0,0)

xy4

x4 + y4

5. lim(x ,y )→(0,0)
xy

x2 + y2
6. lim(x ,y )→(0,0)

e−x
2−y2 − 1

x2 + y2
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Post-Lecture Solutions, I

1. lim(x ,y )→(3,2) x
2y3 = 3223 = 72

2. lim(x ,y )→(π,π/2) y sin(x − y) = π sin(π/2) = π

3. Using polar coordinates x = r cos θ, y = r sin θ∣∣∣∣∣ xy√
x2 + y2

∣∣∣∣∣ =
∣∣∣∣ r2 cos θ sin θ

r

∣∣∣∣ ≤ r

so
0 ≤ |f (x , y)| ≤ r .

By the Squeeze Theorem, lim(x ,y )→(0,0)
xy√
x2+y2

= 0



Learning Goals Limits Continuity Three Variables

Post-Lecture Solutions, II

4. Here’s a different solution from the one given in class. We can estimate∣∣∣∣ xy4

x4 + y4

∣∣∣∣ ≤ |x | ∣∣∣∣ x4 + y4

x4 + y4

∣∣∣∣ ≤ |x |
so

0 ≤
∣∣∣∣ xy4

x4 + y4

∣∣∣∣ ≤ |x |
so by the Squeeze Theorem again, lim(x ,y )→(0,0) f (x , y) = 0.

5. For this one use the line test. Compute that

f (x ,mx) =
x(mx)

x2 + (mx)2
=

m

1 +m2

which will given different limits depending on the value of m. So this
function has no limit as (x , y , )→ (0, 0).
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Post-Lecture Solutions, III

6. Using polar coordinates

lim
(x ,y )→(0,0)

f (x , y) = lim
r→0

e−r
2 − 1

r2

= lim
r→0

−2re−r
2

2r
= −1
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Continuity

One Variable

A function f (x) is continuous at
a point a if

lim
x→a

f (x) = f (a)

Recall this means:

• a lies in the domain of f

• limx→a f (x) exists

• limx→a f (x) = f (a)

Two Variables

A function f (x , y) is continuous at a
point (a, b) of its domain if

lim
(x ,y )→(a,b)

f (x , y) = f (a, b)

Deduce that this means:

• (a, b) lies in the domain of f

• lim(x ,y )→(a,b) f (x , y) exists

• lim(x ,y )→(a,b) f (x , y) = f (a, b)
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Now You Try It
Determine the set of points at which each function is continuous.

1. f (x , y) =
xy

1 + ex−y
2. f (x , y) =

1 + x2 + y2

1− x2 − y2

3. g(x , y) = ln(1 + x − y) 4. f (x , y) =
x2y2

x2 + y2
, (x , y) 6= (0, 0)

f (0, 0) = 0

Post-Lecture solutions:

1. Continuous for all (x , y) in R2.

2. Continuous for all (x , y) with x2 + y2 6= 1

3. Continuous for all (x , y) with 1 + x − y > 0, i.e., 1 + x > y

4. Continuous for all (x , y) in R2. One has to check that
lim(x ,y )→(0,0) f (x , y) = 0. You can do this either using polar coordinates

or using the fact that x2y2

x2+y2 ≤ x2 y2

x2+y2 ≤ x2 and using the Squeeze

Theorem.
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Three Variables

Let x = (x , y , z), a = (a, b, c)

limx→a f (x) = L if for every ε > 0, there is a δ > 0 so that if x is in the domain
of f and

0 < |x− a| < δ,

then
|f (x)− L| < ε

f (x) is continuous at a point a in its domain if

lim
x→a

f (x) = f (a)
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Three Variables

1. Describe the set of points at which the function

f (x , y , z) =
√

9− x2 − y2 − z2

is continuous

2. Do the same for

f (x , y , z) =
1

x2 + y2 + z2 − 1


	Learning Goals
	Limits
	Continuity
	Three Variables

