Math 213 - Triple Integrals

Peter A. Perry

University of Kentucky

October 31, 2018

Homework

- Re-read section 15.6
- Begin work on problems 3-21 (odd), 33, 37-45 (odd) section 15.6
- Read section 15.6 for Monday, October 29
- Begin Webwork C2

Unit III: Multiple Integrals

Double Integrals over Rectangles

Double Integrals over General Regions

Lecture 24

Lecture 25

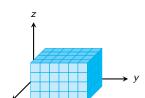
1 acture 26

Lecture 20	Double liftegrals in Folar Coodinates
Lecture 27	Applications of Double Integrals
Lecture 28	Surface Area
Lecture 29	Triple Integrals
Lecture 30	Triple Integrals in Cylindrical Coordinates
Lecture 31	Triple Integrals in Spherical Coordinates
Lecture 32	Change of Variable in Multiple Integrals, Part I
Lecture 33	Change of Variable in Multiple Integrals, Part II
Lecture 34	Exam III Review

Goals of the Day

- Understand triple integrals as a limit of Riemann sums
- Understand how to compute triple integrals as iterated integrals
- Understand how to compute triple integrals over fiendishly contrived regions

Riemann Sums



Given a rectangular box

$$B = [a, b] \times [c, d] \times [r, s]$$

and a function f(x, y, z), we can divide the box into cubes of side Δx , Δy , Δz and volume

$$\Delta V = \Delta x \, \Delta y \, \Delta z$$

The *triple integral* of *f* over the box *B* is the limit of Riemann sums

$$\sum_{i,j,k} f(x_{ijk}^*, y_{ijk}^*, z_{ijk}^*) \Delta V$$

and is denoted

$$\iiint_B f(x, y, z) dV$$

Triple Integrals as Iterated Integrals

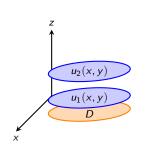
If
$$B = [a, b] \times [c, d] \times [r, s]$$
 then
$$\iiint_B f(x, y, z) dV = \int_r^s \int_c^d \int_a^b f(x, y, z) dx dy dz$$

Evaluate
$$\iiint_B (xy+z^2) dV$$
 if
$$B-\{(x,y,z): 0 \le x \le 2, \ 0 \le y \le 1, \ 0 \le z \le 3\}$$

Integrals Over Regions: Type I

Suppose that

$$E = \{(x, y, z) : (x, y) \in D, u_1(x, y) \le z \le u_2(x, y)\}.$$



$$\iiint_{E} f(x, y, z) dV =$$

$$\iint_{D} \left[\int_{u_{1}(x, y)}^{u_{2}(x, y)} f(x, y, z) dz \right] dA$$

Find $\iiint_E y \, dV$ if E is the region over

$$D = \{0 \le x \le 3, \ 0 \le y \le x\}$$

where for each (x, y),

$$x - v < z < x + v$$

- 1. Find $\int_0^1 \int_y^{2y} \int_0^{x+y} 6xy \, dz \, dx \, dy$
- 2. Find $\int_0^1 \int_0^1 \int_0^{\sqrt{1-z^2}} \frac{z}{y+1} dx dz dy$

Integrals over Regions: Type II

lf

$$E = \{(x, y, z) : (y, z) \in D, u_1(y, z) \le x \le u_2(y, z)\}$$

then

$$\iiint_E f(x,y,z) dV = \iint_D \left[\int_{u_1(y,z)}^{u_2(y,z)} f(x,y,z) dx \right] dA$$

Find
$$\iiint_E \frac{z}{x^2 + z^2} dV$$
 if
$$E = \{(x, y, z) : 1 < y < 4, y < z < 4, 0 < x < z\}.$$

Integrals over Regions: Type III

lf

$$E = \{(x, y, z) : (x, z) \in D, u_1(x, z) \le y \le u_2(x, z)\}$$

then

$$\iiint_E f(x,y,z) dV = \iint_D \left[\int_{u_1(x,z)}^{u_2(x,z)} f(x,y,z) dy \right] dA$$

Find $\iiint_E \sqrt{x^2 + z^2} \, dV$ if E is the region bounded by the paraboloid $y = x^2 + z^2$ and the plane y = 4

Practical Application

Find the volume of pumpkin removed to form the evil grin shown.

Hint: Carry out the integration in corregated dental coordinates.