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Homework

• Webwork A1 is due Wednesday night

• Re-read section 12.3, pp. 807–812

• Begin work on problems 1-37 (odd), 41-51 (odd)
on pp. 812–814

• Begin work on Webwork A2 – Remember to
access WebWork only through Canvas!

Also, read section 12.4, pp. 814–821 for Wednesday
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Unit I: Geometry and Motion in Space

Lecture 1 Three-Dimensional Coordinate Systems
Lecture 2 Vectors
Lecture 3 The Dot Product
Lecture 4 The Cross Product
Lecture 5 Equations of Lines and Planes, Part I
Lecture 6 Equations of Lines and Planes, Part II
Lecture 7 Cylinders and Quadric Surfaces

Lecture 8 Vector Functions and Space Curves
Lecture 9 Derivatives and Integrals of Vector Functions
Lecture 10 Arc Length and Curvature
Lecture 11 Motion in Space: Velocity and Acceleration
Lecture 12 Exam 1 Review
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Goals of the Day

• Know how to compute the dot product a · b of two vectors
and understand its geometric interpretation

• Understand direction angles and direction cosines of a vector
and how to compute them using dot products

• Understand what the projection of one vector onto another
vector is

• Understand the connection between dot products and the
work done by a given force F through a displacement D
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The Dot Product

Definition If a = 〈a1, a2, a3〉 and b = 〈b1, b2, b3〉, the dot product
of a and b is the number a · b given by

a · b = a1b1 + a2b2 + a3b3

There’s a similar definition for the dot product of vectors in two dimensions.
The dot product is also called the scalar product of two vectors.

Find a · b if . . .

1. a = 〈1, 1〉 and b = 〈1,−1〉

2. a = b =
〈

1√
2

, 1√
2

〉
3. a = 3i− 4j + k, b = 2i + 5j

4. a = 2i + 5j and b = 3i− 4j

5. a = 2i− 3j + 4k and b = k
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Properties of the Dot Product

Fill in the blanks:

a · a = a · b = b · a
a · (b + c) = (ca) · b = (a · b) = a · ( )

0 · a =

How can you check these identities?
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The Law of Cosines

A B

C

c

b
a

Recall from trigonometry:

c2 = a2 + b2 − 2ab cos θ

where

θ = m∠ACB
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The Most Important Slide in this Lecture

Theorem If θ is the angle between the vectors a and b, then

a · b = |a| |b| cos(θ)

You can prove that this is true using the law of cosines to the triangle OAB:

b
a− b

a
O

B

Aθ

|AB |2 = |OA|2 + |OB |2

− 2|OA||OB | cos θ

so

|a− b|2 = |a|2 + |b|2 − 2|a||b| cos θ

Now express |a− b|2 using the dot
product.
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Why The Last Slide Was Important

a · b︸ ︷︷ ︸
the dot product

= |a| |b| cos θ︸ ︷︷ ︸
its geometric meaning

• To find the angle between two nonzero vectors a and b, compute

cos θ =
a · b
|a||b|

• Two nonzero vectors are orthogonal if and only if a · b = 0

1. Are the vectors a = 〈9, 3〉 and b = 〈−2, 6〉 parallel, orthogonal, or
neither?

2. Find the three angles of the triangle with vertices P(2, 0), Q(0, 3),
R(3, 4)

3. Is the triangle with vertices P(1,−3,−2), Q(2, 0,−4), R(6,−2,−5) a
right triangle?
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Why Two Slides Ago Was Important

• Two nonzero vectors are orthogonal if and only if a · b = 0

3. Is the triangle with vertices P(1,−3,−2), Q(2, 0,−4), R(6,−2,−5) a
right triangle?

P

Q

R
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Puzzlers

w

u v
At left is an equilateral triangle
made of of vectors u, v, and w. If u
is a unit vector, find u · v and u ·w

(2, 1)

(1, 4)

(3, 3)

Find the acute angle between the
lines

2x − y = 3

3x + y = 7
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Direction Angles and Direction Cosines

α

βγ

The direction angles associated to a vec-
tor v are shown in the picture at left.
They can be computed by

cos α =
v · i
|v| , cos β =

v · j
|v|

cos γ =
v · k
|v|

The numbers cos α, cos β, and cos γ are
called the direction cosines of v.

1. Find the direction cosines of the
vector 〈2, 1, 2〉

2. Find the direction cosines of the
vector 〈c, c, c〉 if c > 0.
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Projections

b

a

proja b

θ

Finally we can use the dot product to find
the vector projection of a vector b onto an-
other vector a, denoted

proja b

To the left is a visual of what the projection
means.

The projection of b onto a is a vector in the
direction of b having (signed) magnitude

compa b = b · a

|a| = |b| cos θ

So,

proja b =

(
b · a

|a|

)
a

|a| =
(

a · b
|a|2

)
a
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Projection Puzzler

a = 〈−5, 12〉

b = 〈4, 6〉

b

a

Recall the scalar projection

compa b = b · a

|a| = |b| cos θ

and the vector projection

proja b =

(
a · b
|a|2

)
a

1. Find the scalar and vector
projections of b = 〈4, 6〉 onto
a = 〈−5, 12〉

2. In the second figure shown, is
the scalar projection of b onto
a a positive number, or a
negative number?
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Dot Products and Work

The work done by a force F acting through a displacement D is

W = F ·D

Unit Reminders:

Quantity Type MKS Unit FPS Unit

Force Vector Newton Pound
Displacement Vector Meter Foot
Work Scalar Joule (Nt-m) Foot-pound

A boat sails south with the help of a wind blowing in the direction S 36◦E with
magnitude 400 lb. Find the work done by the wind as the boat moves 120 ft.
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For Next Time: Determinants

Next time we’ll define the cross product of two vectors, and we’ll need to know
how to compute the determinant of a 2× 2 or 3× 3 matrix.

A determinant of order 2 is defined by∣∣∣∣a1 a2
b1 b2

∣∣∣∣ = a1b2 − a2b1

Find the following determinants:∣∣∣∣2 1
4 −6

∣∣∣∣ ,

∣∣∣∣4 −6
2 1

∣∣∣∣ ,

∣∣∣∣1 2
2 4

∣∣∣∣
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Determinants, Continued

A determinant of order 3 is defined by∣∣∣∣∣∣
a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣ = a1

∣∣∣∣b2 b3
c2 c3

∣∣∣∣−a2 ∣∣∣∣b1 c3
c1 c3

∣∣∣∣+ a3

∣∣∣∣b1 b2
c1 c2

∣∣∣∣
For an illustration of this formula, see this Khan Academy Video

For a shortcut method that many students like, see this Khan Academy Video

https://www.khanacademy.org/math/algebra-home/alg-matrices/alg-determinants-and-inverses-of-large-matrices/v/finding-the-determinant-of-a-3x3-matrix-method-2
https://www.khanacademy.org/math/algebra-home/alg-matrices/alg-determinants-and-inverses-of-large-matrices/v/finding-the-determinant-of-a-3x3-matrix-method-1
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