Math 213 - Change of Variables in Triple Integrals

Peter A. Perry

University of Kentucky

November 9, 2018

Homework

- Re-rre-ead section 15.9
- Finish work on section 15.9, problems 1-37 (odd) from Stewart
- Begin reviewing for your exam, Wednesday, November 14

Unit III: Multiple Integrals

Daubla Intervals aver Dastangles

Lecture 24	Double integrals over Rectangles
Lecture 25	Double Integrals over General Regions
Lecture 26	Double Integrals in Polar Coodinates
Lecture 27	Applications of Double Integrals
Lecture 28	Surface Area
Lecture 29	Triple Integrals
Lecture 30	Triple Integrals in Cylindrical Coordinates
Lecture 31	Triple Integrals in Spherical Coordinates
Lecture 32	Change of Variable in Multiple Integrals, Part I
Lecture 33	Change of Variable in Multiple Integrals, Part II
Locturo 3/	Evam III Raviow

Goals of the Day

- Understand what a transformation T between two regions in space is
- Understand how to compute the Jacobian Matrix and Jacobian determinant of a transformation and understand what the Jacobian determinant measures
- Understand how to compute triple integrals using the change of variables formula

Change of Variable: $uv \rightarrow xy$

If x = g(u, v), y = h(u, v), and if the region S in the uv plane is mapped to the region R in the xy plane, then

$$\iint_{R} f(x,y) dA = \iint_{S} f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv$$

The Jacobian determinant

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

measures how areas change under the map $(u, v) \mapsto (x, y)$. We get the change of variables formula

Change of Variable: uvw to xyz

lf

$$x = g(u, v, w), \quad y = h(u, v, w), \quad z = k(u, v, w)$$

and the region S in uvw space is mapped to R in xyz space, then

$$\iiint_{R} f(x, y, z) dV =$$

$$\iiint_{S} f(x(u, v, w), y(u, v, w), z(u, v, w)) \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| du dv dw$$

where

$$\frac{\partial(x, y, z)}{\partial(u, v, w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}$$

Cylindrical and Spherical Coordinates

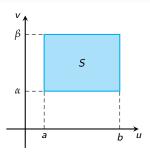
Recall that the Jacobian determinant is

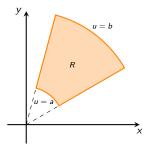
$$\frac{\partial(x, y, z)}{\partial(u, v, w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}$$

Find the Jacobian determinant if:

- (1) $x = u \cos v$, $y = u \sin v$, z = w (cylindrical)
- (2) $x = u \sin w \cos v$, $y = u \sin w \sin v$, $z = u \cos w$ (spherical)

What's the connection with these formulas and formulas for integration in cylindrical and spherical coordinates?

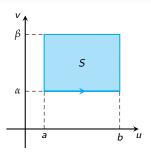


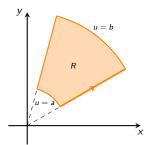


The transformation

$$x = u \cos v, y = u \sin v$$

$$\begin{vmatrix} \cos v & -u \sin v \\ \sin v & u \cos v \end{vmatrix} = u$$

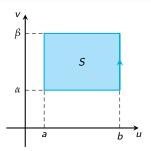


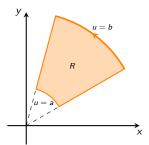


The transformation

$$x = u \cos v, y = u \sin v$$

$$\begin{vmatrix} \cos v & -u \sin v \\ \sin v & u \cos v \end{vmatrix} = u$$

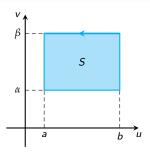


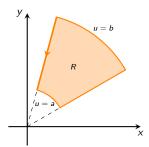


The transformation

$$x = u \cos v, y = u \sin v$$

$$\begin{vmatrix} \cos v & -u \sin v \\ \sin v & u \cos v \end{vmatrix} = u$$

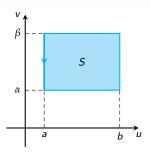


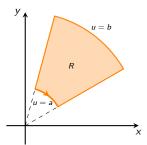


The transformation

$$x = u \cos v, y = u \sin v$$

$$\begin{vmatrix} \cos v & -u \sin v \\ \sin v & u \cos v \end{vmatrix} = u$$



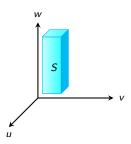


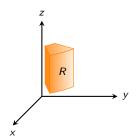
The transformation

$$x = u \cos v, y = u \sin v$$

$$\begin{vmatrix} \cos v & -u \sin v \\ \sin v & u \cos v \end{vmatrix} = u$$

Cylindrical Coordinates





The transformation

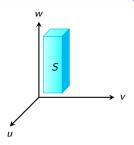
$$x = u \cos v$$
, $y = u \sin v$, $z = w$

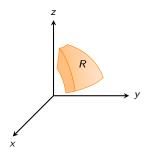
maps a box in the *uvw* plane to a 'cylindrical wedge' in *xyz* space

The Jacobian of this transformation is

$$\begin{vmatrix} \cos v & -u\sin v & 0\\ \sin v & u\cos v & 0\\ 0 & 0 & 1 \end{vmatrix} = \mathbf{u}$$

Spherical Coordinates





The transformation

$$x = u\sin(w)\cos(v)$$

$$y = u\sin(w)\sin(v)$$

$$z = u \cos(w)$$

maps a box in the *uvw* plane to a 'spherical wedge' in *xyz* space

The Jacobian of this transformation is

$$u^2 sin(w)$$

Volume of an Ellipsoid

Find the volume enclosed by the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

using the transformation

$$x = au$$
, $y = bv$, $z = cw$