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Reminders

• Homework B1 on 14.1 is due on tonight!
• You will have quiz #3 on 13.1-13.4 on Thursday
• Homework B2 on 14.3 is due on Friday
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Unit II: Functions of Several Variables

13.3-4 Lecture 11: Velocity and Acceleration

14.1 Lecture 12: Functions of Several Variables
14.3 Lecture 13: Partial Derivatives
14.4 Lecture 14: Linear Approximation
14.5 Lecture 15: Chain Rule, Implicit Differentiation
14.6 Lecture 16: Directional Derivatives and the Gradient

14.7 Lecture 17: Maximum and Minimum Values, I
14.7 Lecture 18: Maximum and Minimum Values, II
14.8 Lecture 19: Lagrange Multipliers

15.1 Double Integrals
15.2 Double Integrals over General Regions

Exam II Review
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Learning Goals

• Learn how to compute partial derivatives and know various
different notations for them

• Understand the geometric interpretation of partial derivatives
• Know how to compute higher partial derivatives
• Understand their connection with partial differential equations
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Derivatives - One Variable

y

x

y = f (x)

a

(a, f (a))

The derivative of f at a is the limit

f ′(a) = lim
h→0

f (a + h)− f (a)
h

if it exists.

f ′(a) is the slope of the tangent line to
the graph of f at the point (a, f (a)).

f ′(a) is also the instantaneous rate of
change of y = f (x) at x = a
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Partial Derivatives - Two Variables

A function of two variables has two very natural rates of change:
• The rate of change of z = f (x, y) with respect to x when y is fixed

• The rate of change of z = f (x, y) when respect to y when x is fixed

The first of these is called the partial derivative of f with respect to x, denoted ∂ f /∂x or fx

fx(a, b) = lim
h→0

f (a + h, b)− f (a, b)
h

the second is called the partial derivative of f with respect to y, denoted ∂ f /∂y or fy

fy(a, b) = lim
h→0

f (a, b + h)− f (a, b)
h
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Geometric Interpretation
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f (x, y) = x2(4− y2)

Given a function f (x, y) . . .

Compute fx(a, b) by setting y = b and
varying x:

fx(a, b) = lim
h→0

f (a + h, b)− f (a, b)
h

Compute fy(a, b) by setting x = a and
varying y:

fx(a, b) = lim
h→0

f (a, b + h)− f (a, b)
h
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Partial Derivatives

Rules for Finding Partial Derivatives of z = f (x, y)

1 To find fx , regard y as a constant and differentiate f (x, y) with
respect to x

2 To find fy, regard x as a constant and differentiate f (x, y) with
respect to y

Find both partial derivatives of the following functions:

1. f (x, y) = x4 + 5xy3 2. f (x, t) = t2e−x

3. g(u, v) = (u2 + v2)3 4. f (x, y) = sin(xy)

5. f (George, Fran) = (George)5 + (Fran)3
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Tangent Planes - Sneak Preview
y

x

y = f (x)

a

(a, f (a))

In calculus of one variable, the derivative
f ′(a) defines a tangent line to the graph of
f at (a, f (a)) by the equation

L(x) = f (a) + f ′(a)(x− a)
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In calculus of two variables, the partial
derivatives fx(a, b) and fy(a, b) define a tan-
gent plane to the graph of f at (a, b, f (a, b))
by

L(x, y) = f (a, b)

+ fx(a, b)(x− a) + fy(a, b)(y− b)
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More Partial Derivatives

Sometimes it’s useful to remember that, to compute a partial derivative like fx(x, 1),
you can set y = 1 before you start computing.

Find the following partial derivatives.

1 fx(x, 1) if f (x, y) = xyyyy

sin(x)

2 fy(3, y) if f (x, y) = (x− 3) sin(cos(log(y)) + xy
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Higher Partials

We can compute higher-order partial derivatives just by repeating operations. We’ll
find out what these partials actually mean later on!

Example Find the second partial derivatives of f (x, y) = x2y2

∂ f
∂x

= fx(x, y) = 2xy2,
∂ f
∂y

= 2x2y

∂2 f
∂x2 =

∂2 f
∂x∂y

=

∂2 f
∂y∂x

=
∂2 f
∂y2 =

Notations:
∂2 f

∂y∂x
= fxy = ( fx)y ,

∂2 f
∂x∂y

= fyx =
(

fy
)

x
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Clairaut’s Theorem

Suppose f is defined on a disk D that contains the point (a, b). If the func-
tions fxy and fyx are both continuous on D, then

fxy(a, b) = fyx(a, b)

Check Clairaut’s theorem for the function f (x, y) = x3y2 − sin(xy)
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Implicit Differentiation

You can find partial derivatives by implicit differentiation.

1 Find ∂z/∂x and ∂z/∂y if x2 + y2 + z2 = 1

2 Find ∂z/∂x and ∂z/∂y if ez = xyz
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Partial Differential Equations

Partial Differential Equations describe many physical phenomena. The unknown
function is a function of two or more variables.

The wave equation for u(x, t), a function which, for each t gives a ‘snapshot’ of a
one-dimensional traveling wave:

∂2u
∂t2 =

1
c2

∂2u
∂x2

The heat equation for u(x, y, t), the temperature of a thin sheet at position (x, y) at time t:

∂u
∂t

(x, y, t) = K
(

∂2

∂x2 +
∂2

∂y2

)
u(x, y, t)

Laplace’s Equation for the electrostatic potential of a charge distribution ρ:(
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)
u(x, y, z) = 4πρ(x, y, z)
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The Wave Equation

∂2u
∂t2 =

1
c2

∂2u
∂x2

0
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t

u

u(x, t) = sin(x− 0.2 ∗ t) u(x, t) gives the height of a wave mov-
ing down a channel as a function of dis-
tance x and time t

For each fixed t, we get a “snapshot” of
the wave

For each fixed x, we get the height of
the wave, at that point, as a function of
time
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The Heat Equation

∂u
∂t

(x, t) = K
∂2

∂x2 u(x, t)
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u(x, t) = (4πt)−1/2e−x2/4t

For each t we get a “snapshot” of the
distribution of heat–at first heat con-
centrates near x = 0, but then diffuses
and cools as time moves forward

Peter A. Perry University of Kentucky

Math 213 - Partial Derivatives



Summary

• We learned how to compute partial derviatives of functions of several variables
and the various notations for them

• We interpreted partial derivatives geometrically

• We learned how to compute higher derivatives

• We saw how partial derivatives arise in equations that describe heat flow and
wave propagation
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