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Reminders

e Homework B3 on 14.4 is due Wednesday night
e Quiz #4 on 14.1, 14.3 takes place on Thursday
e Homework B4 on 14.5 is due Friday night
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Unit II: Functions of Several Variables
13.3-4 Lecture 11: Velocity and Acceleration

14.1 Lecture 12: Functions of Several Variables

14.3 Lecture 13: Partial Derivatives

14.4 Lecture 14: Linear Approximation

14.5 Lecture 15: Chain Rule, Implicit Differentiation

14.6 Lecture 16: Directional Derivatives and the Gradient

14.7 Lecture 17: Maximum and Minimum Values, I
14.7 Lecture 18: Maximum and Minimum Values, II
14.8 Lecture 19: Lagrange Multipliers

15.1 Double Integrals
15.2 Double Integrals over General Regions
Exam II Review
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Learning Goals

Review the chain rule for functions of one variable

Learn how to differentiate f(x,y) along a curve (x(t),y(t))

Learn how to differentiate f(x,y) along x(s, t),y(s, t)
Learn about the Chain Rule Tree
Learn about Implicit Differentiation
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Chain Rule for Functions of One Variable

The Chain Rule, 1 Variable If y = f(u) and u = u(x), then
ay _dy i

dx  du dx

Remember that, at the end of the computation, you substitute for u the formula for u in
terms of x!

@ Ify =% and u = cosx, find dy/dx
@ Find the derivative of g(x) = (x2 41)%/2
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e S L B S
Case 1: f(x(t),y(t))

The Chain Rule, 2 Variables (Case 1) If z = f(x,y), x = g(t), and
y = h(t), then
d:_ofdx | afdy

dt — oxdt Oy dt

@ Suppose that z = sinxcosy, x = v/t,and y = 1/t. Find dz/dt.
@ Suppose thatz = /1 + xy, x = tant, and y = arctan . Find dz/dt.

Peter A. Perry University of Kentucky




S S e S
Case 1: f(x(t),y(t))

The Chain Rule, 2 Variables (Case 1) If z = f(x,y), x = g(t), and
y = h(t), then

dz _dfdx dfdy

dt — oxdt ' oydt

The differential of z is of 3
Z
dz = 5r dx + Y dy
If x = x(t) and y = y(t) then
_dx _ dl
dx = it dt, dy= it dt

Hence

dz _df dx oz dy

dt — ox dt ' 9y di
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e S S e
Case 2: f(x(s,t),y(s,t))

The Chain Rule, 2 Variables (Case 2) If
z=f(x,y),x =g(s,t),y = h(s, 1),
then

o _ofex ofay o _afox o
s 0s 0xds Jyos’ ot ox ot 9y ot’

@ Find 0z/9s and 0z /0t if z = tan_l(x2 + yz), x=slnt,y = te'.
@ Find 0z/0sand 9z/0t if z = \/xe"V, x = 1+st,y = g2 — 2
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B i
The Chain Rule Tree

You can visualize the chain rule by a tree
z diagram: If
5 . z=f(xy)

ox, Yy and
x=g(s,t), y=h(st),
X y then:

ox %’; oy 3y ® You can find dz/9s by adding
o 9s ot contributions for all paths from z to s
s

t s t ® You can find 0z/0t by adding
contributinos for all paths from z to ¢
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The Chain Rule Tree

Use the following diagram to find formulas for dw/ds and ow/ ot if w is a function of x,
y,and z, and x, y, z are each functions of s and ¢

9 Iy 0z
X y z
9x 9x J J 9z 9z
0s ot e / \Bt ds ot
S t s t S t
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More Fun with the Chain Rule

@ Find9z/otif w =In+/x2+y?+ 2%, x =sint, y = cost,and z = tant
@ Find ow/or if w = xy + yz + xz, x =rcosf,y = rsinf, z = rf.

© Suppose g(u,v) = f(e" +sinv,e” + cosv). Use the following table to find
$u(0,0) and g,(0,0).

fls8| x| Ny
00 |3 |64 |8
L2) |63 |2 |5
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Implicit Differentiation

If y is defined implicitly as a function of x by the equation F(x,y) = 0, we can use the

differential aF oF
to find dy/dx.
If F(x,y) is constant, then

__oF oF

and we can solve for dy/dx

We can use a similar technique for z defined implicitly as a function of x, y by an
equation of the form G(x,y,z) = 0.

@ Find dy/dx if cos(xy) = 1+ siny

@ Find 9z/9x and 0z/dy if x> —y> + 22 —2z =4
@® Find 0z/0x and 9z /dy if e = xyz
4 Y
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Summary

® We reviewed the chain rule for functions of one variable

o We studied several cases of the chain rule for functions of several variables,
beginning with z = f(x,y), x = g(t), y = h(t)
® We learned how to use the “chain rule tree” to apply the chain rule

® We learned how to compute partial derivatives of implicitly defined functions
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