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Reminders

• Homework C6 on 16.1 (vector fields) is due tonight
• Exam III is next Wednesday, November 13, 5:00-7:00 PM
• The Review Session for Exam III is Monday, November 11,

6:00-8:00 PM in room KAS 213
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Unit III: Multiple Integrals, Vector Fields

Double Integrals in Polar Coordinates
Triple Integrals (Part I)
Triple Integrals (Part II)
Triple Integrals in Cylindrical Coordinates
Triple Integrals in Spherical Coordinates
Change of Variables, Part I
Change of Variables, Part II

Vector Fields
Line Integrals (Scalar functions)
Line Integrals (Vector functions)

Exam III Review
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Goals of the Day

• Know how to compute line integrals of a scalar function in the
plane

• Know how to compute line integrals of a scalar function in space
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Preview: Line Integrals

Our next topic will be integrals of scalar functions and vector functions over curves in the
plane and in space. If C is a curve in the plane or in space, we’ll learn how to compute:

• ∫
C f (x, y) ds, the integral of a scalar function over a plane curve C

• ∫
C f (x, y, z) ds, the integral of a scalar function over a space curve C

• ∫
C F · dr, the integal of a vector function F(x, y) over a plane curve C

• ∫
C F · dr, the integral of a vector function F(x, y, z) over a space curve C

In all cases, we’ll reduce these to Calculus I and II type integrals by parameterizing the
curve C. We’ll also learn how to compute integrals like

• ∫
C f (x, y) dx

• ∫
C f (x, y) dy
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Parameterizing Paths

x

y

x

y

Parameterize the following paths:

1 The first planar path shown on the
left

2 The second planar path shown on the
left

3 The path connecting (0, 0, 0) to
(1, 0, 1)

4 The path connecting (1, 0, 1) to
(1, 2, 0)
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The Integral of a Scalar Function over a Plane Curve

If C is a plane curve, the line integral of f along C is∫
C

f (x, y) ds = lim
n→∞

n

∑
i=1

f (x∗i , y∗i )∆si

where we approximate the curve by n line segments of length ∆si

As a practical matter, if C is parameterized by (x(t), y(t)) for a ≤ t ≤ b,

ds =

√(
dx
dt

)2

+

(
dy
dt

)2

dt

so ∫
C

f (x, y) ds =
∫ b

a
f (x(t), y(t))

√(
dx
dt

)2

+

(
dy
dt

)2

dt
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The Integral of a Scalar Function over a Plane Curve

if C is parameterized by (x(t), y(t)) for a ≤ t ≤ b, then

∫
C

f (x, y) ds =
∫ b

a
f (x(t), y(t))

√(
dx
dt

)2

+

(
dy
dt

)2

dt

1 Find
∫

C(x/y) ds if C is the curve x = t2, y = 2t for 0 ≤ t ≤ 3

2 Find
∫

C xy4 ds if C is the right half of the circle x2 + y2 = 16
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Line Integrals over Piecewise Smooth Curves

1−1

1−1

A curve C is piecewise smooth if it is a union
of smooth curves C1, . . . Cn. Some examples
are shown at left.

If C consists of seveal smooth components,
then ∫

C
f (x, y) ds =

n

∑
i=1

∫
Ci

f (x, y) ds

Notice that each of these curves has
an orientation that determines how the
curve is parameterized–the parameteriza-
tion should “follow the arrows.”

1 Find
∫

C xy ds if C is the first curve
shown at left.
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Another Kind of Line Integral
For later use, we’ll also need the line integral of f with respect to x and the line integral
of f with respect to y:

∫
C

f (x, y) dx =
∫ b

a
f (x(t), y(t))x′(t) dt

∫
C

f (x, y) dy =
∫ b

a
f (x(t), y(t))y′(t) dt

1 Find
∫

C ex dx if C is the arc of the curve x = y3 from (−1,−1) to (1, 1)

2 Find
∫

C x2 dx + y2 dy if C is the arc of the circle x2 + y2 = 4 from (2, 0) to (0, 2)
followed by the line segment from (0, 2) to (4, 3)
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Summary of Line Integrals in the Plane

If C is a parameterized curve (x(t), y(t)) where a ≤ t ≤ b:

∫
C

f (x, y) dx =
∫ b

a
f (x(t), y(t))x′(t) dt

∫
C

f (x, y) dy =
∫ b

a
f (x(t), y(t))y′(t) dt

∫
C

f (x, y) ds =
∫ b

a
f (x(t), y(t))

√
(x′(t)2 + y′(t)2 dt
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Applications - Center of Mass

a

a

A wire of mass m and density ρ(x, y) along a curve
C has center of mass

x =
1
m

∫
C

xρ(x, y) ds

y =
1
m

∫
C

yρ(x, y) ds

A thin wire has the shape of the first quadrant part
of a circle with center at the origin and radius a. If
the density of the wire is

ρ(x, y) = kxy,

find the mass and center of mass of the wire.
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Line Integrals in Space

If C is a space curve (x(t), y(t), z(t)) where a ≤ t ≤ b, then∫
C

f (x, y, z) ds = ∫ b

a
f (x(t), y(t), z(t))

√
(x′(t))2 + (y′(t))2 + (z′(t))2 dt

1 Find
∫

C(x2 + y2 + z2) ds if C is the space curve (x(t), y(t), z(t)) = (t, cos 2t, sin 2t)
for 0 ≤ t ≤ 2π
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More Line Integrals in Space

Can you guess how to define
∫

C f (x, y, z) dx,
∫

C f (x, y, z) dy, and
∫

C f (x, y, z) dz?

1 Find
∫

C(x + z) dx +
∫

C(x + z) dy +
∫

C(x + y) dz if C consists of the line segments
from (0, 0, 0) to (1, 0, 1) and from (1, 0, 1) to (0, 1, 2)

x

y

z

(1, 0, 1)

(1, 2, 0)

(0, 0, 0)
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