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Reminders

• Homework D5 (16.9, the Divergence Theorem) is due
Wednesday night

• There will be a drop-in review session for the final exam on
Wednesday, December 18, 3:30-5:30 PM, CB 106.

• Your final exam is Thursday, December 19 at 6:00 PM. Room
assignments are the same as for Exams I - III

• On your final exam:
• The multiple choice questions will be 50% from Units I - III and

50% from unit IV.
• All free response questions will be from unit IV. Since these

questions typically involve integrals, they will also test material
from unit III
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Unit IV: Vector Calculus

Fundamental Theorem for Line Integrals
Green’s Theorem
Curl and Divergence
Parametric Surfaces and their Areas
Surface Integrals
Stokes’ Theorem, I
Stokes’ Theorem, II
The Divergence Theorem

Review, I
Review, II
Review, III
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Goals of the Day

Calculus is about functions, derivatives, integrals, and “fundamental
theorems” that relate them. Today we will review all of the

• New functions
• New derivatives
• New integrals
• New theorems

that we’ve learned about in this course.
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New Functions

• Vector functions r(t) = 〈x(t), y(t), z(t)〉 for space curves, such as

r(t) = 〈cos t, sin t, t〉

• Vector functions r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k for surfaces, such as

r(u, v) = 〈u cos v, u sin v, v〉

• Functions of several variables f (x, y) and g(x, y, z) such as

f (x, y) = x2 + y2, g(x, y, z) = exyz

• Transformations (x(u, v), y(u, v)) and (x(u, v, w), y(u, v, w), z(u, v, w)) such as

x(u, v) = u2 − v2, y(u, v) = 2uv

• Vector fields

F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k
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New Derivatives - Vector Functions

• The tangent vector to a space curve:

r′(t) = 〈x′(t), y′(t), z′(t)〉

ds =
∣∣r′(t)∣∣ dt, dr = r′(t) dt

• The tangent vectors to a parameterized surface

ru(u, v) =
∂x
∂u

i +
∂y
∂u

j +
∂z
∂u

k, rv(u, v) =
∂x
∂v

i +
∂y
∂v

j +
∂z
∂v

k

and the element of area

dS = |ru × rv| du dv, dS = (ru × rv) du dv
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New Derivatives - Functions of Several Variables

• The gradient of a function of a function of two variables

∇ f (x, y) =
∂ f
∂x

i +
∂ f
∂y

j

(greatest change, directional derivatives, critical points)

• The Hessian of a function of two variables

Hess( f ) =


∂2 f
∂x2

∂2 f
∂x∂y

∂2 f
∂y∂x

∂2 f
∂y2


(determine whether critical points are local extrema or saddle points)
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New Derivatives - Transformations

• The Jacobian matrix of a transformation (x(u, v), y(u, v))
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v


(Area change from uv plane to xy plane)

• The Jacobian of a transformation x(u, v, w), y(u, v, w), z(u, v, w)

∂x
∂u

∂x
∂v

∂x
∂w

∂y
∂u

∂y
∂v

∂y
∂w

∂z
∂u

∂z
∂v

∂z
∂w


(Volume change from uvw space to xyz space)
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New Derivatives - Vector Fields

A vector field is a function

F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k

so there are nine derivatives to choose from:

∂P
∂x

∂P
∂y

∂P
∂z

∂Q
∂x

∂Q
∂y

∂Q
∂z

∂R
∂x

∂R
∂y

∂R
∂z


Experience shows that there are two important ones, a scalar (the divergence) and a
vector (the curl).
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The Divergence

F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k



∂P
∂x

∂P
∂y

∂P
∂z

∂Q
∂x

∂Q
∂y

∂Q
∂z

∂R
∂x

∂R
∂y

∂R
∂z



div F = ∇ · F =
∂P
∂x

+
∂Q
∂y

+
∂R
∂z

The divergence is a scalar which measures net flux of F per unit volume
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The Curl

F(x, y, z) = P(x, y, z)i + Q(x, y, z)j + R(x, y, z)k



∂P
∂x

∂P
∂y

∂P
∂z

∂Q
∂x

∂Q
∂y

∂Q
∂z

∂R
∂x

∂R
∂y

∂R
∂z



curl F = ∇× F =

(
∂R
∂y
− ∂Q

∂z

)
i +
(

∂P
∂z
− ∂R

∂x

)
j +
(

∂Q
∂x
− ∂P

∂y

)
k

The curl is a vector. The circulation of F around the boundary of an oriented area dS is
curl F · dS
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New Integrals - Double Integrals

If f (x, y) is a function of two variables defined on a region D in the xy plane, the double
integral of f over D is

∫∫
D f (x, y) dA. It can be computed in the following ways:

• If D = [a, b]× [c, d] ∫∫
D

f (x, y) dA =
∫ b

a

∫ d

c
f (x, y) dy dx

• If D = {(x, y) : a ≤ x ≤ b, g1(x) ≤ y ≤ g2(y)} then∫∫
D

f (x, y) dA =
∫ b

a

∫ g2(x)

g1(x)
f (x, y) dy dx

• If D = {(r, θ) : α ≤ θ ≤ β, c ≤ r ≤ d} then∫∫
D

f (x, y) dA =
∫ β

α

∫ d

c
f (r cos θ, r sin θ) r dr dθ
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New Integrals - Triple Integrals
If f (x, y, z) is a function of three variables defined on a region E of xyz space, the triple
integral of f over E is

∫∫∫
E f (x, y, z) dV. It can be computed in the following ways

(among others!):

• If E = {(x, y, z) : a ≤ x ≤ b, c ≤ y ≤ d, r ≤ z ≤ s} then∫∫∫
E

f (x, y, z) dV =
∫ b

a

∫ d

c

∫ s

r
f (x, y, z) dz dy dx

• If E = {(x, y, z) : (x, y) ∈ D and g1(x, y) ≤ z ≤ g2(x, y)} then∫∫∫
E

f (x, y, z) dV =
∫∫

D

(∫ g2(x,y)

g1(x,y)
f (x, y, z) dz

)
dA

• If E = {(ρ, θ, φ) : α ≤ θ ≤ β, φ1 ≤ φ ≤ φ2, a ≤ ρ ≤ b} then∫∫
E

f (x, y, z) dV =∫ β

α

∫ φ2

φ1

∫ b

a
f (ρ sin φ cos θ, ρ sin φ sin θ, ρ cos φ) ρ2 sin φ dρ dφ dθ
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New Integrals - Line Integrals
If the space curve C is parameterized by r(t) = x(t)i + y(t)j + z(t)k, a ≤ t ≤ b, then:

• The line integral of a scalar function f (x, y, z) over C, denoted
∫

C f ds, is given by∫ b

a
f (x(t), y(t), z(t))

∣∣r′(t)∣∣ dt

• The line integral of a vector function F(x, y, z) over C, denotes
∫

C F · dr, is given
by ∫ b

a
F(x(t), y(t), z(t)) · r′(t) dt

• We also have ∫
C

f (x, y, z) dx =
∫ b

a
f (x(t), y(t), z(t)) x′(t) dt∫

C
f (x, y, z) dy =

∫ b

a
f (x(t), y(t), z(t)) y′(t) dt∫

C
f (x, y, z) dz =

∫ b

a
f (x(t), y(t), z(t)) z′(t) dt
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New Integrals - Surface Integrals
If S is a surface parameterized by the vector function

r(u, v) = x(u, v)i + y(u, v)j + z(u, v)k

where u, v run over a domain D in the uv plane:

• The surface integral of a scalar function f (x, y, z), denoted
∫∫

S f dS, is given by∫∫
D

f (x(u, v), y(u, v), z(u, v)) |ru × rv| du dv

• The surface integral of a vector function F(x, y, z), denoted
∫∫

S F · dS, is given by∫∫
D

F(x(u, v), y(u, v), z(u, v)) · (ru × rv) du dv

You can remember both of these formulas with the shorthand

dS = |ru × rv| du dv

dS = (ru × rv) du dv
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Lots of “Fundamental Theorems”
In Calculus I you learned two versions of the Fundamental Theorem:

Fundamental Theorem of Calculus, Part I Suppose that f (x) is continuous on [a, b] and
let F(x) =

∫ x
a f (t) dt. Then F is differentiable on (a, b) and

F′(x) = f (x)

Fundamental Theorem of Calculus, Part II Suppose that F is any antiderivative of f . Then∫ b

a
f (x) dx = F(b)− F(a)

a b

In this course we’ve seen four theorems which reduce integrals “by one dimension”:
the Fundamental Theorem for Line Integrals, Green’s Theorem, Stokes’ Theorem, and
the Divergence Theorem
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The Fundamental Theorem for Line Integrals

Recall that a vector field F is called conservative if there is a scalar function ϕ so that
F = ∇ϕ.

Theorem If F is a conservative vector field, and C is a curve parameterized by r(t), a ≤ t ≤ b,
then ∫

C
F · dr = ϕ(r(b))− ϕ(r(a))

a

b
C
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Green’s Theorem
Recall that a domain D is simply connected if it is connected (any two points of D can
be joined by a curve in D) and every simple closed curve in D surrounds only points of
D.

Theorem Suppose that D is a simply connected domain and its boundary C is a simple closed
curve. Suppose that F(x, y) = P(x, y)i + Q(x, y)j is a vector field and that P and Q have
continuous partial derivatives in a neighborhood of D. Then∫∫

D

(
∂Q
∂x
− ∂P

∂y

)
dA =

∮
C

P dx + Q dy

x

y

D
C

Peter A. Perry University of Kentucky

Math 213 - Semester Review - I



Learning Goals New Functions New Derivatives New Integrals New Theorems

Stokes’ Theorem
Recall that a surface S is oriented if there is a continuous choice of unit normal n at
every point of S. The bounding curve C has positive orientation if its direction is
consistent with the direction of n via the right-hand rule.
Theorem Let S be an oriented, piecewise smooth surface that is bounded by a simple closed
curve C with positive orientation. Let F be a vector field whose components have continuous
partial derivatives in an open region on R3 that contains S. Then∫∫

S
curl F · dS =

∫
C

F · dr

x

y

z

C

S

n
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Divergence Theorem
Recall that E is a simple volume if its boundary separates R3 into an “inside” and an
“outside.”

Theorem Let E be a simple solid region and let S be the boundary surface of E, given with
positive (outward) orientation. Let F be a vector field whose component functions have
continuous partial derivatives on an open region that contains E. Then∫∫∫

E
div F dV =

∫∫
S

F · dS

x y

z
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The Unity of (Almost) All Mathematics

Theorem Statement Region Boundary

FTC
∫ b

a
F′(x) dx = F(b)− F(a) [a, b] {a, b}

Green
∫∫

D

(
∂Q
∂x
− ∂P

∂y

)
dA =

∮
C

F · dr Domain D Curve C

Stokes
∫∫

S
curl F · dS =

∮
C

F · dr Surface S Curve C

Gauss
∫∫∫

E
div F dV =

∫∫
S

F · dS Volume E Surface S

Pattern
∫

region
DF =

∫
boundary

F Region Boundary
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