Math 213 - Exam Review

Peter A. Perry

University of Kentucky

March 6, 2019

Homework

- Exam II takes place tonight in CB 106, 5-7 PM and will cover 14.1, 14.3-14.8, 15.1-15.2
- Webwork B8 on 15.1-15.2 is due Friday March 8
- Practice problems for 15.3 are 1-4, 5-31 (odd), 35, 37
- Webwork C1 on 15.3 will be due Friday March 8

Unit II: Differential Calculus of Several Variables

Lecture 12 Functions of Several Variables

LCCture 12	Talletions of Several Variables
Lecture 13	Partial Derivatives
Lecture 14	Tangent Planes and Linear Approximation
Lecture 15	The Chain Rule
Lecture 16	Directional Derivatives and the Gradient
Lecture 17	Maximum and Minimum Values, I
Lecture 18	Maximum and Minimum Values, II
Lecture 19	Lagrange Multipliers
Lecture 20	Double Integrals
Lecture 21	Double Integrals over General Regions
Lecture 22	Double Integrals in Polar Coordinates
Lecture 23	Exam II Review

Goals of the Day

• Learn how to ace Exam II

Concept Check: Derivatives

Object	Good For:	
Directional Derivative $D_{\mathbf{u}}f$	Finding the rate of change of f in a direction \mathbf{u}	
Gradient ∇f	• Finding the maximum rate of change of f	
	and critical points of f	
	• Finding the normal to level curve $(f(x,y))$	
	or a surface $(f(x, y, z))$	
Hessian $\begin{pmatrix} f_{xx} & f_{xy} \\ f_{xy} & f_{yy} \end{pmatrix}$	Finding whether a critical point is a	
	saddle point or a local extremum	

Concept Check: Integrals

	Calculus I	Calculus III
Riemann sum	$\sum_{i=1}^{n} f(x_i^*) \Delta x$	$\sum_{i,j=1}^{n} f(x_i^*, y_j^*) \Delta A$
Riemann Integral	$\int_{a}^{b} f(x) dx$	$\iint_D f(x,y) dA$
Way of computing	F(b) - F(a)	Iterated Integral
Interpretation	Area under a curve	Volume under a surface

Partial Differentiation and "Partial Integration"

When you take the partial derivative of a function f(x, y), you differentiate with respect to one variable and treat the other variable as a constant

When you take the integral of a function f(x, y) with respect to one variable, you integrate in one variable and treat the other as a constant.

- 1. Find f_x and f_y if $f(x, y) = x^3y + e^{2xy}$
- 2. Find f_{xx} and f_{yy} if $f(x,y) = \cos(x)\sin(y)$
- 3. Find $\int_0^{2x} (x^2 + y^2) dy$
- 4. Find $\int_0^1 \left(\int_0^x \sin(x^2) dy \right) dx$

The Chain Rule

Remember the chain rule tree!

Write out the formula for $\partial z/\partial t$ if

$$z=f(x,y),$$

$$x = f(s, t, u), \quad y = g(s, t, u)$$

The Chain Rule

Remember the chain rule tree!

Write out the formula for $\partial z/\partial t$ if

$$z = f(x, y),$$

$$x = f(s, t, u), \quad y = g(s, t, u)$$

The Chain Rule

Remember the chain rule tree!

Write out the formula for $\partial z/\partial t$ if

$$z = f(x, y),$$
$$x = f(s, t, u), \quad y = g(s, t, u)$$

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

Implicit Differentiation

Calculus I

If
$$x^3 + xy^2 = 5$$
, find dy/dx

Calculus III

If
$$e^{xyz} = x^2 + yz$$
, find $\partial z/\partial x$ and $\partial z/\partial y$.

Implicit Differentiation

Calculus I

If
$$x^3 + xy^2 = 5$$
, find dy/dx

$$3x^{2} + y^{2} + 2xy \frac{dy}{dx} = 0$$
$$2xy \frac{dy}{dx} = -(3x^{2} - y^{2})$$
$$\frac{dy}{dx} = -\frac{3x^{2} + y^{2}}{2xy}$$

Calculus III

If
$$e^{xyz} = x^2 + yz$$
, find $\partial z/\partial x$ and $\partial z/\partial y$.

Implicit Differentiation

Calculus I

If
$$x^3 + xy^2 = 5$$
, find dy/dx

$$3x^{2} + y^{2} + 2xy\frac{dy}{dx} = 0$$
$$2xy\frac{dy}{dx} = -(3x^{2} - y^{2})$$
$$\frac{dy}{dx} = -\frac{3x^{2} + y^{2}}{2xy}$$

Calculus III

If
$$e^{xyz} = x^2 + yz$$
, find $\partial z/\partial x$ and $\partial z/\partial y$.

$$\left(yz + xy\frac{\partial z}{\partial x}\right)e^{xyz} = 2x + y\frac{\partial z}{\partial x}$$
$$\left(xye^{xyz} - y\right)\frac{\partial z}{\partial x} = 2x - yze^{xyz}$$
$$\frac{\partial z}{\partial x} = \frac{2x - yze^{xyz}}{xve^{xyz} - y}$$

Critical Points

Find and classify the critical points of

$$f(x, y) = x^4 + y^4 - 4xy + 1$$

Helpful formulas:

$$x^4 + y^4 - 4xy + 1$$

0

-0.5

0

x

2

0

$$f_x(x,y) = 4(x^3 - y)$$
 $f_y(x,y) = 4(y^3 - x)$
 $f_{xx}(x,y) = 12x^2$ $f_{yy}(x,y) = 12y^2$
 $f_{xy} = -4$
 $D = 144x^2y^2 - 16$

Critical Points

Find and classify the critical points of

$$f(x, y) = x^4 + y^4 - 4xy + 1$$

Helpful formulas:

$$f_x(x,y) = 4(x^3 - y)$$
 $f_y(x,y) = 4(y^3 - x)$
 $f_{xx}(x,y) = 12x^2$ $f_{yy}(x,y) = 12y^2$
 $f_{xy} = -4$

 $D = 144x^2y^2 - 16$

$$(x,y)$$
 $D(x,y)$ $f_{xx}(x,y)$ $f(x,y)$ Critical Point Type $(0,0)$ -16 $-$ 1 Saddle $(1,1)$ 128 12 -1 Minimum $(-1,-1)$ 128 12 -1 Minimum

Absolute Extrema

Find the absolute maximum and minimum values of f(x, y) = x + y - xy on the region enclosed by the triangle with vertices (0,0), (0,2), (4,0).

Useful formulas:

$$f_{xx}(x, y) = f_{yy}(0, y) = 0, \quad f_{xy}(x, y) = 1$$

For $0 \leq t \leq 1$,

$$f(0,2t) = 2t$$

$$f(4t, 2-2t) = 2t + 2 - (4t)(2-2t)$$

$$= 8t^2 - 6t + 2$$

$$f(4t, 0) = 4t$$

Absolute Extrema

Find the absolute maximum and minimum values of f(x, y) = x + y - xy on the region enclosed by the triangle with vertices (0,0), (0,2), (4,0).

Useful formulas:

$$f_{xx}(x,y) = f_{yy}(0,y) = 0, \quad f_{xy}(x,y) = 1$$

For $0 \le t \le 1$,

$$f(0,2t) = 2t$$

$$f(4t,2-2t) = 2t + 2 - (4t)(2-2t)$$

$$= 8t^2 - 6t + 2$$

$$f(4t,0) = 4t$$

Maximum f(4, 0) = 12Minimum f(0, 0) = 0

Planes and Surfaces

Unit I Given two planes with

normals \textbf{n}_1 and $\textbf{n}_2,$ the planes intersect in a line in the direction of $\textbf{n}_1\times\textbf{n}_2$

Find a vector parallel to the line of intersection for the planes

$$x + y + z = 5$$

and

$$x - y + z = 0$$

Unit II If the *surfaces* F(x,y,z) = 0 and G(x,y,z) = 0 intersect at (a,b,c), the *curve* of intersection will have a tangent in the direction of

$$\nabla F(a, b, c) \times \nabla G(a, b, c).$$

The sphere

$$x^2 + y^2 + z^2 = 9$$

and the cylinder

$$x^2 + y^2 = 5$$

intersect at the point (1,2,2). Find a the equation of the tangent to the curve of intersection

What's on My Cheat Sheet?

Linear Approximation Tangent Plane

Directional Derivative

Gradient Vector

Hessian Determinant Second Derivative Test Extrame Values of f on DLagrange Multiplier Method, I

Lagrange Multiplier Method, II

Type I Integral

Type II Integral

$$L(x, y) = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

$$z - f(a, b) = f_x(a, b)(x - a) + f_y(a, b)(y - b)$$

$$D_{\mathbf{u}}f(a, b) = \mathbf{u} \cdot \nabla f(a, b)$$

 $\nabla f(x,y) = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j}$

Magnitude: greatest change

Direction: direction of greatest change

 $D = f_{xx}f_{yy} - f_{xy}^2$

At critical points, check D > 0 and sign of f_{xx}

Occur at interior critical points or on boundary of ${\it D}$

Minimize f subject to a constraint g Lagrange equations $\nabla f = \lambda \nabla g$

Minimize f subject to g_1 and g_2

Lagrange equations $\nabla f = \lambda \nabla g_1 + \mu \nabla g_2$

$$D = \{ a \le x \le b, f_1(x) \le y \le f_2(x) \}$$

$$\iint_D f \, dA = \int_a^b \left(\int_{f_1(x)}^{f_2(x)} f(x, y) \, dy \right) \, dx$$

$$D = \{c \le y \le d, g_1(y) \le x \le g_2(y)\}$$

$$\iint_D f dA = \int_c^d \left(\int_{g_1(y)}^{g_2(y)} f(x, y) dx \right) dy$$

Good Luck!