Math 213 - Change of Variables, Part II

Peter A. Perry

University of Kentucky

March 27, 2019

Homework

- Read section 16.1 for Friday
- Practice problems for 15.9 are 1-19 (odd), 21, 23
- Webwork C4 on 15.8 is due tonight
- You have a quiz on 15.7-15.8 tomorrow

Learning Goals

Unit III: Integral Calculus, Vector Fields

Lecture 24	Triple Integrals
Lecture 25	Triple Integrals, Continued
Lecture 26	Triple Integrals - Cylindrical Coordinates
Lecture 27	Triple Integrals - Spherical Coordinates
Lecture 28	Change of Variables for Multiple Integrals,
Lecture 29	Change of Variable for Multiple Integrals,
Lecture 30	Vector Fields
Lecture 31	Line Integrals (Scalar Functions)
Lecture 32	Line Integrals (Vector Functions)
Lecture 33	Fundamental Theorem for Line Integrals
Lecture 34	Green's Theorem
Locturo 35	Evam III Poviow

Application

Goals of the Day

- Understand what a transformation T between two regions in space is
- Understand how to compute the Jacobian Matrix and Jacobian determinant of a transformation and understand what the Jacobian determinant measures
- Understand how to compute triple integrals using the change of variables formula

Change of Variable: $uv \rightarrow xy$

If x = g(u, v), y = h(u, v), and if the region S in the uv plane is mapped to the region R in the xy plane, then

$$\iint_R f(x,y) \, dA = \iint_S f(x(u,v),y(u,v)) \, \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \, du \, dv$$

The Jacobian determinant

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix}$$

measures how areas change under the map $(u, v) \mapsto (x, y)$.

A way to remember the change of variables formula

$$dA = \underbrace{\left| \frac{\partial(x, y)}{\partial(u, v)} \right|}_{\text{Area change factor}} \underbrace{\frac{\partial u}{\partial v}}_{\text{dA in } uv \text{ plan}}$$

Example: Change of Variable uv to xy

$$\iint_R f(x,y) \, dA = \iint_S f(x(u,v),y(u,v)) \, \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \, du \, dv$$

Problem Find $\iint_R (x-3y) dA$ if R is the triangular region with vertices (0,0), (2,1) and (1,2). Use the transformation x=2u+v, y=u+2v.

Hint: You'll need to find u and v in terms of x and y to find the region S

Example: Change of Variable uv to xy

$$\iint_{R} f(x,y) dA = \iint_{S} f(x(u,v),y(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| du dv$$

Problem: Find $\iint_R (x+y)e^{x^2-y^2} dA$ if R is the rectangle enclosed by x-y=0, x-y=2, x+y=0, and x+y=3.

What coordinates u and v are natural in this problem?

Example: Change of Variable uv to xy

$$\iint_R f(x,y) \, dA = \iint_S f(x(u,v),y(u,v)) \, \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \, du \, dv$$

Problem: Find $\iint_R (x+y)e^{x^2-y^2} dA$ if R is the rectangle enclosed by x-y=0, x-y=2, x+y=0, and x+y=3.

What coordinates u and v are natural in this problem?

Preview: Change of Variable: uvw to xyz

lf

$$x = g(u, v, w), \quad y = h(u, v, w), \quad z = k(u, v, w)$$

and the region S in uvw space is mapped to R in xyz space, then

$$\iiint_{R} f(x, y, z) dV =$$

$$\iiint_{S} f(x(u, v, w), y(u, v, w), z(u, v, w)) \left| \frac{\partial(x, y, z)}{\partial(u, v, w)} \right| du dv dw$$

where

$$\frac{\partial(x, y, z)}{\partial(u, v, w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}$$

Cylindrical and Spherical Coordinates

Recall that the Jacobian determinant is

$$\frac{\partial(x, y, z)}{\partial(u, v, w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix}$$

Find the Jacobian determinant if:

- (1) $x = u \cos v$, $y = u \sin v$, z = w (cylindrical)
- (2) $x = u \sin w \cos v$, $y = u \sin w \sin v$, $z = u \cos w$ (spherical)

What's the connection with these formulas and formulas for integration in cylindrical and spherical coordinates?

The transformation

$$x = u \cos v, y = u \sin v$$

maps a rectangle S in the uv plane to a polar rectangle R in the xy plane
The Jacobian of this transformation is

$$\begin{vmatrix} \cos v & -u \sin v \\ \sin v & u \cos v \end{vmatrix} = u$$

The transformation

$$x = u \cos v, y = u \sin v$$

maps a rectangle S in the uv plane to a polar rectangle R in the xy plane
The Jacobian of this transformation is

$$\begin{vmatrix} \cos v & -u\sin v \\ \sin v & u\cos v \end{vmatrix} = u$$

The transformation

$$x = u \cos v, y = u \sin v$$

maps a rectangle S in the uv plane to a polar rectangle R in the xy plane The Jacobian of this transformation is

$$\begin{vmatrix} \cos v & -u\sin v \\ \sin v & u\cos v \end{vmatrix} = \mathbf{u}$$

The transformation

$$x = u \cos v, y = u \sin v$$

maps a rectangle S in the uv plane to a polar rectangle R in the xy plane The Jacobian of this transformation is

$$\begin{vmatrix} \cos v & -u\sin v \\ \sin v & u\cos v \end{vmatrix} = \mathbf{u}$$

The transformation

$$x = u \cos v, y = u \sin v$$

maps a rectangle S in the uv plane to a polar rectangle R in the xy plane The Jacobian of this transformation is

$$\begin{vmatrix} \cos v & -u\sin v \\ \sin v & u\cos v \end{vmatrix} = \mathbf{u}$$

Cylindrical Coordinates

The transformation

$$x = u \cos v$$
, $y = u \sin v$, $z = w$

maps a box in the *uvw* plane to a 'cylindrical wedge' in *xyz* space

The Jacobian of this transformation is

$$\begin{vmatrix} \cos v & -u\sin v & 0\\ \sin v & u\cos v & 0\\ 0 & 0 & 1 \end{vmatrix} = \mathbf{u}$$

Spherical Coordinates

The transformation

$$x = u\sin(w)\cos(v)$$

$$y = u\sin(w)\sin(v)$$

$$z = u \cos(w)$$

maps a box in the uvw plane to a 'spherical wedge' in xyz space

The Jacobian of this transformation is

$$u^2 sin(w)$$

Volume of an Ellipsoid

Find the volume enclosed by the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

using the transformation

$$x = au$$
, $y = bv$, $z = cw$