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1. The Fundamental Theorem of Calculus

Theorem 1.1 (Fundamental Theory of Calculus). (i) Suppose that f is contin-
uous on [a, b] and let

F (x) =

∫ x

a

f(t) dt.

Then F is differentiable on (a, b) and F ′(x) = f(x).
(ii) Suppose that f is continuous and F is any antiderivative of f . Then∫ b

a

f(x) dx = F (b)− F (a).

Motivated by the Fundamental Theorem, ask the following questions:

(1) Suppose that f is integrable on [a, b] with indefinite integral F (x) =
∫ x
a
f(t) dt.

Does this imply that F is differentiable a.e. and F ′ = f a.e.?
(2) What conditions on a function F guarantee that f(x) = F ′(x) a.e. ad that

F (b)− F (a) =

∫ b

a

F ′(x) dx?

The first question motivates the following more general question about integrable
(or locally integrable) functions in Rd. If f is integrable on Rd, is it true that

lim
m(B)→0,x∈B

1

m(B)

∫
B

f(y) dy = f(x)

for a.e. x? Here B is a ball in Rd, and m(B) is the Lebesgue measure of B.
The second question leads to several new classes of functions: the functions of

bounded variation and absolutely continuous functions.

2. The Lebesgue Differentiation Theorem

Our first result will be the Lebesgue Differentiation Theorem.

Theorem 2.1. If f is integrable on Rd, then

lim
m(B)→0,x∈B

1

m(B)

∫
B

f(y) dy = f(x)

for a.e. x.

Synopsis of Stein and Shakarchi, 3.1-3.3.
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2.1. The Hardy-Littlewood Maximal Function. On the way to the proof we
introduce a very important function in harmonic analysis, the Hardy-Littlewood
Maximal Function. If f is integrable on Rd, then

f∗(x) = sup
x∈B

1

m(B)

∫
B

|f(y)| dy.

Here the supremum goes over all balls containing x. Remarkably, f∗ has the fol-
lowing properties:

(i) f∗ is measurable
(ii) f∗ is finite a.e.
(iii) f∗ satisfies the weak-type estimate

m
{
x ∈ Rd : f∗(x) > α

}
≤ 3d

α
‖f‖L1(Rd) .

The estimate (iii) on the maximal function means that f∗ is “almost L1. ” The
proof requires the Vitali covering lemma.

Lemma 2.2. Suppose that {Bi}Ni=1 is a finite collection of open balls in Rd. There
is a sub-collection Bi1 , . . . , Bik of disjoint open balls so that

m

(
N⋃
`=1

B`

)
≤ 3d

k∑
j=1

m(Bij ).

The proof of Theorem 2.1 makes use of the facts that L1 functions can be ap-
proximated by continuous functions in L1 norm and that the conclusion of Theorem
2.1 is true for continuous functions. The set of points for which averages converge
is called the Lebesgue set.

2.2. Convolution with Good Kernels. Convolutions of functions with “good
kernels” are a kind of averaging. A collection of “good kernels” is a set of functions
Kδ(x) indexed by δ > 0 with the following properties:

(i)
∫
Rd Kδ(x) dx = 1

(ii)
∫
Rd |Kδ(x)| dx ≤ A

(iii) For every η > 0,

lim
δ→0

∫
|x|≥η

|Kδ(x)| dx = 0.

It can be shown that if f is integrable, then Kδ ∗ f converges to f as δ → 0 at each
point of continuity of f .

To study convolution with Lebesgue integrable functions, we will consider a more
fanilies of kernels called approximations to the identity. These satisfy (i) above and

(ii’) |Kδ(x)| ≤ Aδ−d for all δ > 0
(iii’) |Kδ(x)| ≤ Aδ/|x|d+1 for all δ > 0 and x ∈ Rd.

We’ll show that If {Kδ}δ>0 is an approximation to the identity, then (Kδ ∗
f)(x)→ f(x) as δ → 0 for all x in the Lebesgue set of f .
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2.3. PDE Background. The heat equation for an unknown function u(x, t) with
initial condition f(x) is

(1)


∂u

∂t
= ∆u

u(x, 0) = f(x)

where x ∈ Rd and t > 0. This equation has solution

u(x, t) =
1

(4πt)d/2

∫
Rd

e−|x−y|
2/4tf(y) dy.

The fact that u(x, t) → f(x) as t → 0 follows from the fact that the family of
functions

Kδ(x) =
1

(4πt)d/2
e−|x|

2/4t

are an approximation to the identity.

The Laplace equation on the upper half-plane is the boundary value problem

(2)


(
∂2

∂x2
+

∂2

∂y2

)
u = 0

u(x, 0) = f(x)

has solution

u(x, y) =

∫
Rd

P (x− x′, y)f(x′) dx′

where

P (x, y) =
1

π

y

x2 + y2
.

The fact that u(x, y) → f(x) as y → 0 for a.e. x follows from the fact that the
family of functions

Ky(x) = P (x, y)

are an approximation of the identity.

3. Functions of Bounded Variation

A function F on [a, b] is of bounded variation if there is a fixed M > 0 so that

N∑
j=1

|F (tj)− F (tj−1| ≤M

for all partitions {t0, . . . tN} of [a, b]. We will prove:

Theorem 3.1. If F is of bounded variation on [a, b], then F is differentiable almost
everywhere.
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4. Absolutely Continuous Functions

A function F on [a, b] is absolutely continuous if for any ε > 0 there is a δ > 0
so that

N∑
k=1

|F (bk)− F (ak)| < ε whenever

N∑
k=1

|bk − ak| < δ.

Note that F absolutely continuous implies that F is of bounded variation. Note
that, if f(x) =

∫ x
a
f(y) dy for an integrable function, then F is absolutely continu-

ous. We will prove:

Theorem 4.1. Suppose F is absolutely continuous on [a, b]. Then F ′ exists for
almost every x in [a, b] and is integrable. Moreover

F (x)− F (a) =

∫ x

a

F ′(y) dy.

Conversely, if f is integrable on [a, b], there is an absolutely continuous function
F so that F ′(x) = f(x) for a.e. x, and F (x) =

∫ x
a
f(y) dy.


