
MATH 676

PROBLEM SET #1 SOLUTIONS

(1) (Stein and Shakarchi, page 37, Exercise 1, Not graded) Prove that the
Cantor set C is totally disconnected and perfect.

Recall that C = ∩∞k=1Ck where Ck is the union of 2k intervals of length
3−k. First, suppose that x, y ∈ C with x 6= y. There a positive integer k so
that |x− y| > 3k, so that x and y must lie in different intervals of Ck. This
shows that the interval [x, y] is not contained in C.

Second, given any x ∈ C, for each k there is an interval Ik of Ck containing
x. At least one endpoint xk of Ik satisfies |x−xk| < 3−k, and each such xk

belongs to C. Thus the sequence {xk} is a sequence from C that converges
to x, so that x is not an isolated point.

(2) (Stein and Shakarchi, page 38, Exercise 4) Let Ĉ = ∩∞k=1Ĉk where at each
stage one removes 2k−1 disjoint, centrally situated open intervals each of
length `k, so chosen that

∞∑
i=1

2i−1`i < 1.

(a) (2 points) We claim that m(Ĉ) = 1 −
∑∞

k=1 2i−1`i. One can prove
this using monotonicity of Lebesgue measure (Theorem 3.3). Let

Dn = ∩nk=1Ĉk. Then Dn ↘ Ĉ and m(Dn) = 1 −
∑n

i=1 2i−1`i, so
by monotonicity m(D) = limn→∞m(Dn) = 1−

∑∞
i=1 2i−1`i.

(b) (3 points) If x ∈ Ĉ, then x ∈ Ĉk for all k. Any x ∈ Ĉk must lie in one
of 2k remaining intervals, say Jk. Note that all of the 2k intervals of

Ĉk have the same size and hence have length less than 2−k. Each such
interval Jk must be adjacent to a removed interval Ik of length `k, so

that if xk ∈ Ik then |xk − x| ≤ 2−k + `k. Hence xk /∈ Ĉk but xk → x
as k →∞. Note that `k → 0 as k →∞, so |Ik| → 0 as k →∞.

(c) (3 points) The set Ĉ is a countable intersection of closed sets and
therefore closed.
If x ∈ Ĉ, then for each k, x belongs to an interval of size `k. Since the

endpoints of this interval belong to Ĉ, we can pick one, say yk, so that

|yk − x| < `k. Since all endpoints belong to Ĉ, it follows that Ĉ has no
isolated points.

To see that Ĉ can contain no open interval, fix x ∈ Ĉ. Any interval

(x− ε, x+ ε) contains an element of [0, 1]− Ĉ by part (b), hence there

is no open interval containing any point of Ĉ.
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(d) (2 points) We have shown that any countable set has measure 0. It

therefore follows from (a) that Ĉ is uncountable.

(3) (Not graded) Suppose that E ⊂ Rd. Since any cover of E by cubes {Qi}
is also a cover by rectangles, it follows that

mR∗ (E) ≤
∞∑
i=1

|Qi|

for any such cover. It follows that mR∗ (E) ≤ m∗(E).
To prove the opposite inequality, it suffices to show that for every cover

{Ri} of E by rectangles, there is a cover {Qi} by cubes so that
∞∑
i=1

|Qi| ≤
∞∑
i=1

|Ri|+ ε.

To prove this, it suffices to show that we can find a cover of each rectangle

Ri by finitely many cubes Qi,k, 1 ≤ k ≤ Ni, with
∑Ni

k=1 |Qi,k| ≤ |Ri|+ε2−i.
Consider a rectangle R = [0, `1] × . . . × [0, `d]. We can find rational

numbers r1, . . . , rd so that `i < ri but r1 × . . .× rd < `1 × . . .×
elld + ε. The rational rectangle R′ = [0, r1]× . . .× [0, rd] can be subdivided
exactly into cubes: if ri = mi/ni, we can subdivide into finitely many
cubes Qi of side 1/N where N = n1n2 . . . nd. By Lemma 1.1 of Stein and
Shakarchi, |R′| =

∑
i |Qi| < |R|+ ε.


