PROBLEM SET #8 - THE FOURIER TRANSFORM

1. (4 points) Stein and Shakarchi, page 94, problem 21 (d) - (e)
21(d) (2 points) First, we have the estimate

(f * 9)()] < / (@ = )] l9(w)| dy.

We apply Tonelli’s Theorem on R? x R¢ to compute

11 =vllstaray - [ ( 1= |g<y>|d:c) dy
= [l ([ 15—y ar) ay

= Al llgll -

which shows that F'(x,y) = f(x—y)g(y) is integrable. It follows
from Fubini’s Theorem that (f * g)(z) = [ F(z,y) dy defines a
measurable and integrable function of z.

21(e) (2 points) For f € L*(R?), we define

fle) = / e f (1) da,

~

f is bounded since
Fo)| < [1r@lde =11,

To see that J?is continuous, note that

-~ -~

fle )= Jle) = [ (esmiesne = e2me) (o) do
= /6_2”5'” (72" — 1) f(z) da

The integrand on the last line is bounded pointwise in = by
2|f(x)| and goes to zero as h — 0. It now follows from the

~

Dominated Convergence Theorem that f(£ + h) — f(£) = 0 as
h — 0.
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This was shown in
Proposition 4.1; citing
the proof is OK, but
knowing how to do it
is not a bad ideal



I corrected a couple
of typos in this para-
graph from the previ-
ous version; thanks to
the grader for pointing
these out!
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. (2 points) Stein and Shakarchi, page 94, problem 22 (The Riemann-

Lebesgue Lemma)

We can write

1

fio) =5 [ o) = fla =)<

because

f(l’ o g,)e_gm'gc.g dr — f(y)e—Qm’y-ge—Qm'ghg dy
R R4

=— [ fly)e ™ dy
R4

since £ - £ =1 and e™™ = —1. Then we may estimate

7©)

which goes to zero as & — oo using Proposition 2.5.

=< frac12int |f(z — &) — f(z)| dx

. (4 points) Stein and Shakarchi, page 95, problem 24

(a) (2 points) To see that f x g is uniformly continuous, compute

(f* )z +h) — (f * 9)(x) :/[f(x+h—y)—f(x—y)] o(y) dy

and estimate (using |g(y)| < M for a.e. y)
(Frg)e+b) = (Fx)@)| <M [ |+ h=y) = fo— )| dy
= [150—) = s-0)l dy

=M/|f<z+h>—f<z>|dz
AR — (e

where in the third step we used translation invariance and in
the fourth step we set z = —y (reflection).

(b) (2 points) Suppose that f and g are both integrable, and that
g is bounded. It then follows from the proof in problem 21(d)
that f * g, in addition to being continuous, is also integrable.
From problem 6 (assuming that the proof goes through for R%),
we can then conclude that (f x g)(z) — 0 as |z| — oco.

One can also give a simple direct proof. Suppose that f is uni-
formly continuous and integrable, and that lim sup,, . |f(z)| =
¢ > 0. There is a sequence of points {z,} with z,, — oo and
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|f(z,)| > ¢/2. By passing to a subsequence if needed we may
assume that |z, — x,_1| > 1. By uniform continuity there is a
d € (0,1/2) so that |f(y) — f(z)] < c¢/4if |z —y| < 0. Tt fol-
lows that |f(y)| > ¢/4 on each ball Bs(z,) and that these balls
are disjoint. But then [[f| > 3= [5 . |f] which is infinite, a

contradiction.

4. (N, points) Prove the Riemann Hypothesis.

It’s a pity no one
did this problem; you
could have skipped
prelims!

No solutions will be provided for optional problems!



