
PROBLEM SET #8 - THE FOURIER TRANSFORM

1. (4 points) Stein and Shakarchi, page 94, problem 21 (d) - (e)

21(d) (2 points) First, we have the estimate

|(f ∗ g)(x)| ≤
∫
|f(x− y)| |g(y)| dy.

We apply Tonelli’s Theorem on Rd × Rd to compute∫
|f(x− y)| |g(y)| dx dy =

∫ (∫
|f(x− y)| |g(y)| dx

)
dy

=

∫
|g(y)|

(∫
|f(x− y) dx

)
dy

= ‖f‖L1 ‖g‖L1 .

which shows that F (x, y) = f(x−y)g(y) is integrable. It follows
from Fubini’s Theorem that (f ∗ g)(x) =

∫
F (x, y) dy defines a

measurable and integrable function of x.

21(e) (2 points) For f ∈ L1(Rd), we define
This was shown in
Proposition 4.1; citing
the proof is OK, but
knowing how to do it
is not a bad idea!

f̂(ξ) =

∫
e−2πix·ξf(x) dx.

f̂ is bounded since∣∣∣f̂(ξ)
∣∣∣ ≤ ∫ |f(x)| dx = ‖f‖L1 .

To see that f̂ is continuous, note that

f̂(ξ + h)− f̂(ξ) =

∫ (
e−2πi(x+h)·ξ − e−2πix·ξ

)
f(x) dx

=

∫
e−2πiξ·x

(
e−2πiξ·h − 1

)
f(x) dx

The integrand on the last line is bounded pointwise in x by
2|f(x)| and goes to zero as h → 0. It now follows from the

Dominated Convergence Theorem that f̂(ξ + h)− f̂(ξ)→ 0 as
h→ 0.
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2. (2 points) Stein and Shakarchi, page 94, problem 22 (The Riemann-
Lebesgue Lemma)

We can write
I corrected a couple
of typos in this para-
graph from the previ-
ous version; thanks to
the grader for pointing
these out!

f̂(ξ) =
1

2

∫
Rd

[f(x)− f(x− ξ′)] e−2πix·ξ dx

because∫
Rd
f(x− ξ′)e−2πix·ξ dx =

∫
Rd
f(y)e−2πiy·ξe−2πiξ

′·ξ dy

= −
∫
Rd
f(y)e−2πiy·ξ dy

since ξ′ · ξ = 1
2

and e−πi = −1. Then we may estimate∣∣∣f̂(ξ)
∣∣∣ =≤ frac12int |f(x− ξ′)− f(x)| dx

which goes to zero as ξ →∞ using Proposition 2.5.

3. (4 points) Stein and Shakarchi, page 95, problem 24

(a) (2 points) To see that f ∗ g is uniformly continuous, compute

(f ∗ g)(x+ h)− (f ∗ g)(x) =

∫
[f(x+ h− y)− f(x− y)] g(y) dy

and estimate (using |g(y)| ≤M for a.e. y)

|(f ∗ g)(x+ h)− (f ∗ g)(x)| ≤M

∫
|f(x+ h− y)− f(x− y)| dy

= M

∫
|f(h− y)− f(−y)| dy

= M

∫
|f(z + h)− f(z)| dz

= ‖f( · + h)− f( · )‖L1 .

where in the third step we used translation invariance and in
the fourth step we set z = −y (reflection).

(b) (2 points) Suppose that f and g are both integrable, and that
g is bounded. It then follows from the proof in problem 21(d)
that f ∗ g, in addition to being continuous, is also integrable.
From problem 6 (assuming that the proof goes through for Rd),
we can then conclude that (f ∗ g)(x)→ 0 as |x| → ∞.
One can also give a simple direct proof. Suppose that f is uni-
formly continuous and integrable, and that lim sup|x|→∞ |f(x)| =
c > 0. There is a sequence of points {xn} with xn → ∞ and
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|f(xn)| > c/2. By passing to a subsequence if needed we may
assume that |xn − xn−1| > 1. By uniform continuity there is a
δ ∈ (0, 1/2) so that |f(y) − f(x)| ≤ c/4 if |x − y| < δ. It fol-
lows that |f(y)| > c/4 on each ball Bδ(xn) and that these balls
are disjoint. But then

∫
|f | ≥

∑∫
Bδ(xn)

|f | which is infinite, a

contradiction.

4. (ℵ0 points) Prove the Riemann Hypothesis.
It’s a pity no one
did this problem; you
could have skipped
prelims!

No solutions will be provided for optional problems!


