MA 114 Worksheet #24: Review for Exam 03

- 1. Find the volume of the following solids.
 - (a) The solid obtained by rotating the region bounded by $y = x^2$ and $x = y^2$ about the x-axis,

Solution: Washer method,
$$\int_0^1 \pi (x - x^4) \, dx = \frac{3\pi}{10}$$

(b) The solid obtained by rotating the region bounded by $x = y^2$ and x = 1 about the line x = 1,

Solution: Disc method,
$$\int_{0}^{1} \pi (1-y^2)^2 \, dy = \frac{8\pi}{15}$$

1

(c) The solid obtained by rotating the region bounded by $y = 4x - x^2$ and y = 3 about the line x = 1,

Solution: Washer method, $\int_{1}^{3} 2\pi (x-1) [x(4-x)-3] dx = \frac{8\pi}{3}$

(d) The solid with circular base of radius 1 and cross-sections perpendicular to the base that are equilateral triangles.

Solution: The area of an equilateral triangle with side length s is $\sqrt{3}s^2/4$. For a given x, the side length s is $s = 2\sqrt{1-x^2}$. So the volume of this solid is

$$V = \int_{-1}^{1} \sqrt{3}(1-x^2) \, dx = \frac{4\sqrt{3}}{3}$$

- 2. Find the area of the surface of revolution obtained by rotating the given curve about the given axis.
 - (a) $y = \sqrt{x+1}, 0 \le x \le 3$; about x-axis,

Solution:
$$ds = \sqrt{1 + \frac{1}{4(x+1)^2}} dx$$
 so
$$A = \int_0^3 2\pi \sqrt{x+1} \sqrt{1 + \frac{1}{4(x+1)^2}} dx$$

This is a difficult integral and I wouldn't worry about evaluating it.

Solution:
$$ds = 6t\sqrt{t^2 + 1}$$
 and
 $A = \int_0^5 2\pi x \, ds = 2\pi \int_0^5 (3t^2) \cdot 6t\sqrt{t^2 + 1} \, dt = 2\pi \cdot 11616$

Again, I wouldn't bother actually computing the integral - you will not find something this ugly on the final.

- 3. Compute the arc length of the following curves.
 - (a) $x = a\cos^3\theta$, $y = a\sin^3\theta$, $0 \le \theta \le 2\pi$,

Solution: Since $dx/d\theta = 3a\cos^2\theta\sin\theta$, $dy/d\theta = 3a\sin^2\theta\cos\theta$ we compute

$$ds = 3a \left| \sin \theta \cos \theta \right| \, d\theta$$

so that

$$L = 3a \int_0^{2\pi} ds = 6a$$

(b) $y = \sqrt{2 - x^2}, \ 0 \le x \le 1$

Solution: This curve is part of a circle of radius $\sqrt{2}$. The arc from (0, 2) to (1, 1) subtends an angle of $\pi/4$ so the arc length is $\sqrt{2\pi}/4$.

4. Find the centroid of the region bounded by $y = \sqrt{x}$ and y = x.

Solution: See the formulas on page 564 of the text.

$$A = \int_0^1 (\sqrt{x} - x) \, dx = \frac{1}{6}$$
$$\overline{x} = \frac{1}{A} \int_0^1 x(\sqrt{x} - x) \, dx = \frac{2}{5}$$
$$\overline{y} = \frac{1}{A} \int_0^1 \frac{1}{2} (x - x^2) \, dx = \frac{1}{2}$$

5. Find the average value of the function $y = 3\sin(x) + \cos(2x)$ on the interval $[0, \pi]$.

Solution:

$$\frac{1}{\pi} \int_0^\pi (3\sin x + \cos 2x) \, dx = \frac{6}{\pi}$$

6. Compute the slope of the tangent line to the curve in Problem 3(a) above, with a = 8, at the point $(1, 3\sqrt{3})$. Use this to determine an equation for the tangent line.

Solution: Note the correction to the original WS 24 problem here. The parametric equations are $x = 8\cos^3\theta$, $y = 8\sin^3\theta$, and the point $(1, 3\sqrt{3})$ corresponds to $\theta = \pi/3$. At $\theta = \pi/3$, $dx/d\theta = -24\cos^2\theta\sin\theta = -3\sqrt{3}$ and $dy/d\theta = 24\sin^2\theta\cos\theta = 9$ so the slope of the tangent line is $-\sqrt{3}$. Thus we get

$$y - 3\sqrt{3} = (-\sqrt{3})(x - 1).$$

- 7. Consider the curve given by the parametric equations $(x(t), y(t)) = (t^2, 2t + 1)$.
 - (a) Find the tangent line to the curve at (4, -3). Put your answer in the form y = mx + b.

Solution: First, dy/dx = (dy/dt)/(dx/dt) = 2/(2t) = 1/t and the point (4, -3) corresponds to t = -2. Hence y + 3 = (-1/2)(x - 4) or y = (-1/2)x - 1.

(b) Find second derivative $\frac{d^2y}{dx^2}$ at (x, y) = (4, -3). Is the curve concave up or concave down near this point?

Solution: Recall that

so in our case

$$\frac{d^2y}{dx^2} = \frac{1}{2t}\frac{d}{dt}\left(\frac{1}{t}\right) = \frac{-1}{2t^3}.$$

 $\frac{d^2y}{dx^2} = \frac{1}{(dx/dt)}\frac{d}{dt}\left(\frac{dy}{dx}\right)$

Evaluating at t = -2 we get $d^2y/dx^2 = 1/16 > 0$ so the curve is concave up.