MA 114 Worksheet #28: Direction fields, Separable Differential Equations

1. Match the differential equation with its slope field. Give reasons for your answer.

$$y' = 2 - y$$
 $y' = x(2 - y)$ $y' = x + y - 1$ $y' = \sin(x)\sin(y)$

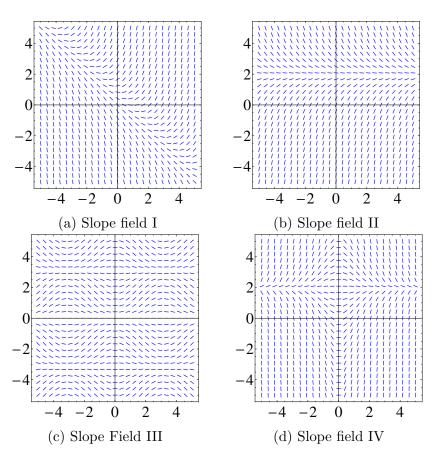


Figure 1: Slope fields for Problem 1

2. Use slope field labeled IV to sketch the graphs of the solutions that satisfy the given initial conditions

$$y(0) = -1, \quad y(0) = 0, \quad y(0) = 1.$$

3. Sketch the slope field of the differential equation. Then use it to sketch a solution curve that passes through the given point

(a)
$$y' = y^2$$
, (1,1)

(b)
$$y' = y - 2x$$
, (1,0)

(c) $y' = xy - x^2$, (0, 1)

- 4. Consider the autonomous differential equation $y' = y^2(3-y)(y+1)$. Without solving the differential equation, determine the value of $\lim_{t\to\infty} y(t)$, where the initial value is
 - (a) y(0) = 1
 - (b) y(0) = 4
 - (c) y(0) = -4
- 5. Use Euler's method with step size 0.5 to compute the approximate y-values, y_1 , y_2 , y_3 , and y_4 of the solution of the initial-value problem y' = y 2x, y(1) = 0.
- 6. Use separation of variables to find the general solutions to the following differential equations.
 - (a) $y' + 4xy^2 = 0$
 - (b) $\sqrt{1-x^2}y' = xy$
 - (c) $(1+x^2)y' = x^3y$
 - (d) $\sqrt{1+y^2} y' + \sec x = 0$