Quiz 1

Quiz 1

Name:

Section and/or TA: _____

Answer all questions in a clear and concise manner. Unsupported answers will receive *no credit*.

1. (2 points) Find $\int_{0}^{2\pi} t \sin(2t) dt$ using integration by parts. Be sure to show your work.

Solution: Set u = t, $dv = \sin(2t)dt$ so du = dt and $v = -\frac{1}{2}\cos(2t)$. Then $\int_{0}^{2\pi} t \sin(2t) dt = -\frac{t^{2}}{2}\cos(2t)\Big|_{0}^{2\pi} - \frac{1}{2}\int_{0}^{2\pi}\cos(2t) dt$ $= -\frac{t^{2}}{2}\cos(2t)\Big|_{0}^{2\pi} - \frac{1}{4}\sin(2t)\Big|_{0}^{2\pi}$ $= \frac{-2\pi}{2} + 0 = -\pi$

2. (2 points) Make a substitution and then use integration by parts to integrate $\int e^{\sqrt{x}} dx$

Solution: First make the substitution $u = \sqrt{x}$ so that $2\sqrt{x} du = dx$ to get $\int 2ue^{u} du$. Then set w = 2u, $dv = e^{u}$, so dw = du, and $v = e^{u}$. Then $\int 2ue^{u} du = 2ue^{u} - 2\int e^{u} du$ $= 2ue^{u} - 2e^{u}$ $= 2e^{u}(u-1) = 2e^{\sqrt{x}}(\sqrt{x}-1)$