THE CONFORMAL GEOMETRY OF THE SCATTERING
OPERATOR

PETER PERRY

ABSTRACT. These are notes for a lecture delivered at the Workshop on Confor-
mal Invariants — Geometric and Analytic Aspects, June 10-14, at the National
Center for Theoretical Science, Hsinchu, Taiwan. The work on scattering for
pseudoconvex domains described here is joint work with Peter Hislop and Siu-
Hung Tang. This work is motivated by Graham and Zworski’s work which
identified certain poles of the scattering operator on asymptotically hyper-
bolic manifolds as conformally invariant differential operators. We will con-
sider two settings: scattering theory for asymptotically hyperbolic manifolds,
as described in the lectures of Colin Guillarmou, and scattering theory for
pseudoconvex domains. In each setting we will discuss the geometric informa-
tion carried by the poles of the scattering operator.
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1. INTRODUCTION

If (X, g) is a complete, non-compact Riemannian manifold with “simple geome-
try at infinity,” the spectral theory of the Laplace operator A, can be studied using
techniques of scattering theory. We would like to discuss two examples of this geo-
metric scattering theory of particular relevance to conformal geometry: scattering
theory for asymptotically hyperbolic manifolds, such as real hyperbolic space or its
quotients by a geometrically finite discrete group, and scattering theory for pseudo-
convex domains, such as the complex unit ball. The point of view taken here-in
which scattering theory is viewed as a study of boundary value problems for degen-
erate elliptic operators on a compact manifold with boundary—was advocated by
Richard Melrose in his monograph Geometric Scattering Theory [11] and has been
remarkable fruitful in the study of the Laplacian on complete manifolds.
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2. ASYMPTOTICALLY HYPERBOLIC MANIFOLDS

In the first case, X is the interior of an (n+ 1)-dimensional manifold with bound-
ary, X, and the metric g takes the form 2=2h where x is a defining function for X
and h is a smooth, nondegenerate metric on X. Such a metric is called conformally
compact. Since any two defining functions differ by a strictly positive C*° function
on X, the conformal class of h|,, is fixed by the Riemannian structure on X. If the
sectional curvatures of g approach —1 asymptotically as p — M, then the metric is
called asymptotically hyperbolic. For an asymptotically hyperbolic metric, one can
find coordinates (x,y), where x is a boundary defining function and the coordinates

y are constant along integral curves of V x, so that the metric takes the form
dz? H
(2.1) 9=zt

where H = H (z,y, dy) has a Taylor series to all orders in « at © = 0 (see Proposition
2.1 of [8]; the paper [8] and the thesis [6] also analyzes the scattering operator for
asymptotically hyperbolic manifolds in some detail, using the methods of [10]).

Let us describe the spectral theory of the Laplacian on (X, g) when ¢ is asymp-
totically hyperbolic. We will denote by C*°(X) the smooth functions on X (with
no restrictions on behavior as z | 0), by C>(X) the C>(X) functions which vanish
to all orders at z = 0, and by C>(X) the set of C>(X) functions with Taylor
expansions to all orders at £ = 0. Choosing coordinates (x,y) as described above,
the Laplacian takes the form

(2.2) Ay = —(20,)? + n(x0;) + 2 Ay + 2Q(, y, 20,)

where h = H|,,. and @ is a second-degree polynomial in the differential operators
with coefficients smooth in = and y. The operator

(2.3) I(Ay) = —(20,)* + n(z0;)
is called the indicial operator for Ay .Note that
(2.4) I(Ag)z? =o(n— o)z

The operator A, has at most finitely many L?(X)-eigenvalues in the interval
(0,n%/4) and absolutely continuous spectrum in (n?/4,00). Thus the L2-resolvent
(A, —2)~! is a meromorphic function in the cut plane C\[n?/4, 00). It is convenient
to re-parameterize by writing

R(s) = (Ag —s(n—s))"

for Re(s) > n/2. Mazzeo and Melrose [10] showed that the resolvent R(s), viewed
as a map from C*(X) to C*°(X), admits a meromorphic continuation to s € C. It
follows from their results that, for Re(s) > n/2,

(2.5) R(s) : C®(X) — z°C>®(X)

a fact which we will use later.
Consider the eigenvalue problem

(Ayg—s(n—s)u=0

In analogy to the theory of expansions about a regular singular point for ordi-
nary differential equations, it is not unreasonable to expect that this problem has
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solutions u € C*°(X) having the form
u=zx""°F+z2°G

where F' and G belong to C*(X), provided that n — 2s is not an integer (for such
“exceptional” points we expect logarithmic terms to arise; this observation will
play a very important role later). For Re(s) = n/2 such solutions are generalized
eigenfunctions of the Laplace operator and play a key role in scattering theory. Let

f=Flyx

9= Glyx
For such solutions, assuming only that n — 2s is not an integer, the complete Taylor
expansions of F' and G are determined by f and g. This is easily seen using the
form (2.2) of the Laplacian and the identity In fact, a great deal more is true. Let

us denote by &£ the ‘exceptional’ set of points where either (1) 2s —n not an integer
or (2) s(n—s) not an eigenvalue of the Laplacian. If s ¢ £, the “Dirichlet problem”

(2.6) (Ay—s(n—s)u=0
(2.7) u=2a""°*F+2°G
(2.8) Flox =1

for a given function f € C*°(0X) has a unique solution. The mapping
P(s): C(0X) > f —u € C®(X)
is called the Poisson operator. This implies that the mapping
S(s): C®(0X) — C>=(0X)
given by
(2.9) S()f = Glox

is well-defined. This mapping is called the absolute scattering operator. It follows
immediately from its definition that

S(s)S(n—s)=1
and it follows from the boundary pairing formula (2.11) that S(s) is unitary.
Note that the scattering operator depends in a rather explict way on the choice
of defining function: if # = e¥z for ¢ € C*°(X) and T = 9|+ then
(2.10) S(s) = e Y G(s)e )T,

Thus, S(s) is naturally viewed as a map from conformal densities of weight (n — s)
to conformal densities of weight s.

For Re(s) = n/2 the uniqueness is a consequence of the boundary pairing formula.
Suppose that v; and vy are functions in C*°(X) of the form

v; =z"°F; + 2°G;

where F; and G; belong to C®(X). Suppose further that the v; are “almost”
generalized eigenfunctions in the sense that

(A, —s(n—s))v; =r; € C¥(X), i=1,2

A simple computation with Green’s formula for the Laplacian shows that

(2.11) /X (173 — v9T7) dg = (25 — n)/ (fif2 — 132) dh

X
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(use the observation that 7; = x"~*F; + x°G; if Re(s) = n/2!). Thus, if u; and
ug are both solutions of the Dirichlet problem (2.6)-(2.8), the function v = u; — us
takes the form (2.7) with f = 0. It follows that

v=2x°G

and from the boundary pairing formula with u; = us = v we get f = 0, hence
v € L*(X,g), hence v = 0.

A generalization of the boundary pairing formula can be used to show that the
Dirichlet problem (2.6)-(2.8) also has a unique solution when Re(s) > n/2 and
s ¢ £. At the exceptional points s € &, it is expected that the scattering operator
will have poles. It can also be shown that S(s) is self-adjoint for s real.

Graham and Zworski (see the lecture [4] and paper [5], and see also the beautiful
thesis of Guillarmou [6] and subsequent paper [7]) analyzed the behavior of the
scattering operator near the points s € £ with Re(s) > n/2 and 2s —n € N. In [5],
Graham and Zworski proved two remarkable theorems Denote by Py the kth confor-
mally invariant power of the Laplacian on the conformal manifold (M, [h]). Recall
that if n = dim M is even, Branson’s Q-curvature [1] is a quantity constructed
from the Riemann curvature tensor and its covariant derivatives that generalizes
the scalar curature in two dimensions and obeys the transformation law.

(2.12) e"YQ =Q+ P, T
The first result is

Theorem 2.1. Let (X,g) be an asymptotically hyperbolic manifold of dimension
n + 1 with conformal infinity (M, [h]), and let S(s) be the scattering operator for
the Laplacian A,. Let s = n/2 + k, suppose that (n/2)? — k? is not an eigenvalue
of the Laplacian, and suppose that k < n/2 if n is even. The scattering operator
S(s) has an infinite-rank pole with residue

R S(s) =P
s=n/628+k (S) Lk

The self-adjointness of the operators P is an easy consequence.
Theorem 2.2. Suppose that n is even. Then
Cn/QQ = S(?’l)l

From this formula, Graham and Zworski give another proof of the transformation
law (2.12) and show that [ u @ dh is a conformal invariant. Subsequently, Graham
and Fefferman [3] were able to deduce many of the same results by formal power
series arguments that did not make use of scattering theory.

Graham and Zworski’s analysis is based on a careful consideration of the Poisson
operator P(s). In particular, they show that the Poisson operator is analytic in s
so long as s(n — s) is not an eigenvalue, and that if s = n/2 +[/2 (corresponding
to the crossing of indicial roots)

P(s)f = a"/?7V2F 4 Ga"/?H 2 Jog &

They further show that the residue of the scattering operator at s = n/2 + /2,
denoted p; can be calculated from the formula

Glox =2p
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The Poisson operator can be constructed as follows. Given f € C*(9X), we can
construct a smooth function u; on X having asymptotic series

up ~ > 2" f(y)
Jj>0
so that
r = (Ay —s(n—s))u; € C®(X)
The functions f; can be computed iteratively using the form (2.5) of A;. On the
other hand, using the mapping property (2.5), the function

us = —R(s)uq

€re we must assume at s(n — s) 1S not an eigenvalue o as an asymptotic
h t that is not an eigenvalue of A,) h ymptoti

series of the form
ug ~ Y 2" g;(y)
i>0
S0 u = uy + ug solves the Dirichlet problem (2.6)-(2.8). The identification of p; as
the residue of the scattering operator, and the calculation of the principal symbol,
follow from a formal power series analysis.

3. STRICTLY PSEUDOCONVEX DOMAINS

Next, we consider scattering theory for the Laplacian on a pseudoconvex domain.
As we will see there are some remarkable analogies with the case of asymptotically
hyperbolic manifolds but also some important differences. Epstein, Melrose, and
Mendoza [2] constructed the resolvent family R(s) for a large class of manifolds
including the Laplacian on a pseudoconvex domain. Subsequently, Melrose [12]
announced further results on the scattering operator and its meromorphic contin-
uation. Here we will identify certain poles of the scattering operator on a strictly
pseudoconvex domain as conformally invariant differential operators whose princi-
pal symbol is a power of the sub-Laplacian on its boundary. The work described
here is joint with Peter Hislop and Siu-Hung Tang.

Recall that a strictly pseudoconvex domain €2 in C" is an open subset of C"
with the following property: there is a smooth function ¢ with ¢ < 0 in 2 strictly,
©~1(0) = 99, and the Hermitian matrix

0%

hi =
gk 82’]82’%

is strictly positive definite in Q. If g = —log(—¢) then the Hermitian metric
ds® = i dAd2*
defines a complete Kdhler metric on 2. Clearly
Yik | Pi¥E
T—e P
The positive Laplacian is the operator

Ag= *gﬁajaﬁ
while the Kahler form is given by
i <5‘890 o /\850)
A O R K
A ¥

N}
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Let ¢ : M — Q be the natural inclusion. The manifold M carries a CR-structure
given by the form
0 =" (—i0yp)
By pseudoconvexity, the Levi form
df = 1*(—id0y)
is nondegenerate on H = ker #, the holomorphic tangent bundle for M. The form
(3.1) Y=0A(do)"".

is nondegenerate and defines a volume element for M.

Changing the defining function ¢ for 02 preserves the conformal class of the
CR-structure on M. If 3 is another defining function for 02, we have @ = ¥y for
a smooth function . It is not difficult to see that = ¢¥6 and df = e¥df where
T =Yy

Lee and Melrose [9] showed that, in boundary normal coordinates (where z =
—p and coordinates y are constant along integral curves of V,¢) the Laplacian
associated to the Kahler metric takes the form

(3.2) Ay = I(20,) + x (—r(20,)* + Oy + V) + 2°Ro(2,y, 205, 0)
where

(3.3) I(x0,) = —(20,)* + n(x0,)

is the indicial operator, r is a smooth function,

(3.4) Oy = 0,0

is the boundary Laplacian associated to the Levi form, and
1

where T is the unique vector field on M with §(T) = 1 and T 1 df = 0. There is
a formal similarity with the problem for asymptotically hyperbolic manifolds with
the important differences that (1) the underlying algebra of differential operators
is generated by the vector fields 20, and 0, rather than zd, and z0, and (2) the
boundary operators that occur are degenerate elliptic.

The Laplacian Ay has continuous spectrum in [n?/4,00). Epstein, Melrose, and
Mazzeo showed that the resolvent operator (for a large class of problems including
the one considered here!)

R(s) = (&g — s(n—s))™"

admits a meromorphic continuation to the complex s-plane and that the resolvent
has the mapping property

R(s) : C>®(Q) — °C>(Qy/2)
where the space C*°(€;/2) consists of those functions in C*°(X) having Taylor

expansions to all orders in /2 (see Proposition 12.10 in [2]). Using the form (3.2)
of the Laplacian, we can refine this mapping property to assert that

R(s) : C®(Q) — 2°C>(Q).

Moreover, using Green’s formula

/U(ulAug —ugAuy) W" = /BU (u1(vug) —ug(vuy)) v o w"
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where v is the inward unit normal, we can prove a boundary pairing formula essen-
tially identical to (2.11). We obtain the following uniqueness result.

Proposition 3.1. Suppose that Re(s) = n/2, and s # n/2. Then the Dirichlet
problem

(3.5) (Ay—s(n—s)u=0
(3.6) u=2a"""F+2°G
(3.7) Flogg=f

where F and G belong to C*®(99), has a unique solution.
This uniqueness result allows us to define the scattering operator
S(s) : C*(002) — C=(0N)
for Re(s) =n/2, s #n/2 by
(3.8) S()f = Glag

and the Poisson operator
P(s) : C(00) — C=(Q)
for the same s by
P(s)f =u.
These two maps enjoy many of the same formal properties as their counterparts
on asymptotically hyperbolic manifolds. In particular, the scattering operator is

conformally covariant in the sense that if 7 = e¥x for v € C®(Q2) and T = | 5a
then

(3.9) S(s) = e *TS(s)e )T,

Moreover, S(s) is unitary for s = n/2 and can be extended to Re(s) > n/2 so long
as s(n — s) is not an eigenvalue of A, and 2s —n ¢ N.

The same formal power series arguments use to construct the Poisson operator
for Re(s) > n/2 in the asymptotically hyperbolic case carry over to the case of the
Laplacian on a pseudoconvex domain. The Poisson operator in this range is also
studied (again, for a large class of problems that includes our particular case) in
§15 of [2], although these authors do not construct P(s) for the ‘exceptional’ points
which play a key role here.

By following closely the formal analysis in [5] and using the form (3.2), we have
shown:

Theorem 3.2. Let S(s) be the scattering operator for the Laplacian on a strictly
pseudoconvex domain  in C™. The scattering operator S(s) has residues at s =
n/2 4+ k of the form
Res S(S) = CkPk
s=n/2+k

where Py is a differential operator with principal symbol o(Py) = o(02F).

From the transformation law (3.9) it follows that the operators Pj are con-
formally covariant. That they are self-adjoint with respect to the volume form
0 A (d9)"~! follows from the corresponding self-adjointness statement for the scat-
tering operator.
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Thus, in the special case of pseudoconvex domains, the connection between scat-
tering theory and (conformal) CR-geometry of the boundary persists. In future
work we hope to obtain further information about the conformally invariant op-
erators and extend our results to complete complex manifolds having a natural
“CR-~conformal infinity.”
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