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OPERATOR
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Abstract. These are notes for a lecture delivered at the Workshop on Confor-
mal Invariants �Geometric and Analytic Aspects, June 10-14, at the National
Center for Theoretical Science, Hsinchu, Taiwan. The work on scattering for
pseudoconvex domains described here is joint work with Peter Hislop and Siu-
Hung Tang. This work is motivated by Graham and Zworski�s work which
identi�ed certain poles of the scattering operator on asymptotically hyper-
bolic manifolds as conformally invariant di¤erential operators. We will con-
sider two settings: scattering theory for asymptotically hyperbolic manifolds,
as described in the lectures of Colin Guillarmou, and scattering theory for
pseudoconvex domains. In each setting we will discuss the geometric informa-
tion carried by the poles of the scattering operator.
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1. Introduction

If (X; g) is a complete, non-compact Riemannian manifold with �simple geome-
try at in�nity,�the spectral theory of the Laplace operator �g can be studied using
techniques of scattering theory. We would like to discuss two examples of this geo-
metric scattering theory of particular relevance to conformal geometry: scattering
theory for asymptotically hyperbolic manifolds, such as real hyperbolic space or its
quotients by a geometrically �nite discrete group, and scattering theory for pseudo-
convex domains, such as the complex unit ball. The point of view taken here�in
which scattering theory is viewed as a study of boundary value problems for degen-
erate elliptic operators on a compact manifold with boundary�was advocated by
Richard Melrose in his monograph Geometric Scattering Theory [11] and has been
remarkable fruitful in the study of the Laplacian on complete manifolds.
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2. Asymptotically Hyperbolic Manifolds

In the �rst case, X is the interior of an (n+1)-dimensional manifold with bound-
ary, X, and the metric g takes the form x�2h where x is a de�ning function for @X
and h is a smooth, nondegenerate metric on X. Such a metric is called conformally
compact. Since any two de�ning functions di¤er by a strictly positive C1 function
on X, the conformal class of hjM is �xed by the Riemannian structure on X. If the
sectional curvatures of g approach �1 asymptotically as p!M , then the metric is
called asymptotically hyperbolic. For an asymptotically hyperbolic metric, one can
�nd coordinates (x; y), where x is a boundary de�ning function and the coordinates
y are constant along integral curves of rgx, so that the metric takes the form

(2.1) g =
dx2

x2
+
H

x2

whereH = H(x; y; dy) has a Taylor series to all orders in x at x = 0 (see Proposition
2.1 of [8]; the paper [8] and the thesis [6] also analyzes the scattering operator for
asymptotically hyperbolic manifolds in some detail, using the methods of [10]).
Let us describe the spectral theory of the Laplacian on (X; g) when g is asymp-

totically hyperbolic. We will denote by C1(X) the smooth functions on X (with
no restrictions on behavior as x # 0), by _C1(X) the C1(X) functions which vanish
to all orders at x = 0, and by C1(X) the set of C1(X) functions with Taylor
expansions to all orders at x = 0. Choosing coordinates (x; y) as described above,
the Laplacian takes the form

(2.2) �g = �(x@x)2 + n(x@x) + x2�h + xQ(x; y; x@y)

where h = HjM . and Q is a second-degree polynomial in the di¤erential operators
with coe¢ cients smooth in x and y. The operator

(2.3) I(�g) = �(x@x)2 + n(x@x)

is called the indicial operator for �g.Note that

(2.4) I(�g)x
� = �(n� �)x�

The operator �g has at most �nitely many L2(X)-eigenvalues in the interval
(0; n2=4) and absolutely continuous spectrum in (n2=4;1). Thus the L2-resolvent
(�g�z)�1 is a meromorphic function in the cut plane Cn[n2=4;1). It is convenient
to re-parameterize by writing

R(s) = (�g � s(n� s))�1

for Re(s) > n=2. Mazzeo and Melrose [10] showed that the resolvent R(s), viewed
as a map from _C1(X) to C1(X), admits a meromorphic continuation to s 2 C. It
follows from their results that, for Re(s) > n=2,

(2.5) R(s) : _C1(X)! xsC1(X)

a fact which we will use later.
Consider the eigenvalue problem

(�g � s(n� s))u = 0

In analogy to the theory of expansions about a regular singular point for ordi-
nary di¤erential equations, it is not unreasonable to expect that this problem has
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solutions u 2 C1(X) having the form
u = xn�sF + xsG

where F and G belong to C1(X), provided that n� 2s is not an integer (for such
�exceptional� points we expect logarithmic terms to arise; this observation will
play a very important role later). For Re(s) = n=2 such solutions are generalized
eigenfunctions of the Laplace operator and play a key role in scattering theory. Let

f = F j@X
g = Gj@X

For such solutions, assuming only that n�2s is not an integer, the complete Taylor
expansions of F and G are determined by f and g. This is easily seen using the
form (2.2) of the Laplacian and the identity In fact, a great deal more is true. Let
us denote by E the �exceptional�set of points where either (1) 2s�n not an integer
or (2) s(n�s) not an eigenvalue of the Laplacian. If s =2 E , the �Dirichlet problem�

(�g � s(n� s))u = 0(2.6)

u = xn�sF + xsG(2.7)

F j@X = f(2.8)

for a given function f 2 C1(@X) has a unique solution. The mapping
P(s) : C1(@X) 3 f ! u 2 C1(X)

is called the Poisson operator. This implies that the mapping

S(s) : C1(@X)! C1(@X)
given by

(2.9) S(s)f = Gj@X
is well-de�ned. This mapping is called the absolute scattering operator. It follows
immediately from its de�nition that

S(s)S(n� s) = I

and it follows from the boundary pairing formula (2.11) that S(s) is unitary.
Note that the scattering operator depends in a rather explict way on the choice

of de�ning function: if ex = e x for  2 C1(X) and � =  j@X then

(2.10) eS(s) = e�s�S(s)e(n�s)�:

Thus, S(s) is naturally viewed as a map from conformal densities of weight (n� s)
to conformal densities of weight s.
For Re(s) = n=2 the uniqueness is a consequence of the boundary pairing formula.

Suppose that v1 and v2 are functions in C1(X) of the form
vi = xn�sFi + x

sGi

where Fi and Gi belong to C1(X). Suppose further that the vi are �almost�
generalized eigenfunctions in the sense that

(�g � s(n� s)) vi = ri 2 _C1(X); i = 1; 2
A simple computation with Green�s formula for the Laplacian shows that

(2.11)
Z
X

(v1r2 � v2r1) dg = (2s� n)
Z
@X

�
f1f2 � g1g2

�
dh
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(use the observation that vi = xn�sFi + xsGi if Re(s) = n=2!). Thus, if u1 and
u2 are both solutions of the Dirichlet problem (2.6)-(2.8), the function v = u1 � u2
takes the form (2.7) with f = 0. It follows that

v = xsG

and from the boundary pairing formula with u1 = u2 = v we get f = 0, hence
v 2 L2(X; g), hence v = 0.
A generalization of the boundary pairing formula can be used to show that the

Dirichlet problem (2.6)-(2.8) also has a unique solution when Re(s) > n=2 and
s =2 E . At the exceptional points s 2 E , it is expected that the scattering operator
will have poles. It can also be shown that S(s) is self-adjoint for s real.
Graham and Zworski (see the lecture [4] and paper [5], and see also the beautiful

thesis of Guillarmou [6] and subsequent paper [7]) analyzed the behavior of the
scattering operator near the points s 2 E with Re(s) > n=2 and 2s� n 2 N. In [5],
Graham and Zworski proved two remarkable theorems Denote by Pk the kth confor-
mally invariant power of the Laplacian on the conformal manifold (M; [h]). Recall
that if n = dimM is even, Branson�s Q-curvature [1] is a quantity constructed
from the Riemann curvature tensor and its covariant derivatives that generalizes
the scalar curature in two dimensions and obeys the transformation law.

(2.12) en� bQ = Q+ Pn=2�

The �rst result is

Theorem 2.1. Let (X; g) be an asymptotically hyperbolic manifold of dimension
n + 1 with conformal in�nity (M; [h]), and let S(s) be the scattering operator for
the Laplacian �g. Let s = n=2 + k, suppose that (n=2)2 � k2 is not an eigenvalue
of the Laplacian, and suppose that k � n=2 if n is even. The scattering operator
S(s) has an in�nite-rank pole with residue

Res
s=n=2+k

S(s) = ckPk

The self-adjointness of the operators Pk is an easy consequence.

Theorem 2.2. Suppose that n is even. Then

cn=2Q = S(n)1

From this formula, Graham and Zworski give another proof of the transformation
law (2.12) and show that

R
M
Q dh is a conformal invariant. Subsequently, Graham

and Fe¤erman [3] were able to deduce many of the same results by formal power
series arguments that did not make use of scattering theory.
Graham and Zworski�s analysis is based on a careful consideration of the Poisson

operator P(s). In particular, they show that the Poisson operator is analytic in s
so long as s(n � s) is not an eigenvalue, and that if s = n=2 + l=2 (corresponding
to the crossing of indicial roots)

P(s)f = xn=2�l=2F +Gxn=2+l=2 log x

They further show that the residue of the scattering operator at s = n=2 + l=2,
denoted pl can be calculated from the formula

Gj@X = 2pl
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The Poisson operator can be constructed as follows. Given f 2 C1(@X), we can
construct a smooth function u1 on X having asymptotic series

u1 �
X
j�0

xn�s+jfj(y)

so that
r1 = (�g � s(n� s))u1 2 _C1(X)

The functions fj can be computed iteratively using the form (2.5) of �g. On the
other hand, using the mapping property (2.5), the function

u2 = �R(s)u1
(here we must assume that s(n� s) is not an eigenvalue of �g) has an asymptotic
series of the form

u2 �
X
j�0

xs+jgj(y)

so u = u1 + u2 solves the Dirichlet problem (2.6)-(2.8). The identi�cation of pl as
the residue of the scattering operator, and the calculation of the principal symbol,
follow from a formal power series analysis.

3. Strictly Pseudoconvex Domains

Next, we consider scattering theory for the Laplacian on a pseudoconvex domain.
As we will see there are some remarkable analogies with the case of asymptotically
hyperbolic manifolds but also some important di¤erences. Epstein, Melrose, and
Mendoza [2] constructed the resolvent family R(s) for a large class of manifolds
including the Laplacian on a pseudoconvex domain. Subsequently, Melrose [12]
announced further results on the scattering operator and its meromorphic contin-
uation. Here we will identify certain poles of the scattering operator on a strictly
pseudoconvex domain as conformally invariant di¤erential operators whose princi-
pal symbol is a power of the sub-Laplacian on its boundary. The work described
here is joint with Peter Hislop and Siu-Hung Tang.
Recall that a strictly pseudoconvex domain 
 in Cn is an open subset of Cn

with the following property: there is a smooth function ' with ' < 0 in 
 strictly,
'�1(0) = @
, and the Hermitian matrix

hjk =
@2'

@zj@zk

is strictly positive de�nite in 
. If g = � log(�') then the Hermitian metric

ds2 = gjk dz
jdzk

de�nes a complete Kähler metric on 
. Clearly

gjk =
'jk
�' +

'j'k
'2

The positive Laplacian is the operator

�g = �gjk@j@k
while the Kähler form is given by

! =
i

2

�
@@'

�' +
@' ^ @'
'2

�
:
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Let � :M ! 
 be the natural inclusion. The manifold M carries a CR-structure
given by the form

� = ��(�i@')
By pseudoconvexity, the Levi form

d� = ��(�i@@')
is nondegenerate on H = ker �, the holomorphic tangent bundle for M . The form

(3.1)  = � ^ (d�)n�1 :
is nondegenerate and de�nes a volume element for M .
Changing the de�ning function ' for @
 preserves the conformal class of the

CR-structure on M . If ' is another de�ning function for @
, we have ' = e ' for
a smooth function  . It is not di¢ cult to see that � = e�� and d� = e�d� where
� =  jM .
Lee and Melrose [9] showed that, in boundary normal coordinates (where x =

�' and coordinates y are constant along integral curves of rg') the Laplacian
associated to the Kahler metric takes the form

(3.2) �g = I(x@x) + x
�
�r(x@x)2 +�b + V

�
+ x2R2(x; y; x@x; @y)

where

(3.3) I(x@x) = �(x@x)2 + n(x@x)
is the indicial operator, r is a smooth function,

(3.4) �b = @
�
b@b

is the boundary Laplacian associated to the Levi form, and

V =
1

2
i(n� 1)T

where T is the unique vector �eld on M with �(T ) = 1 and T y d� = 0. There is
a formal similarity with the problem for asymptotically hyperbolic manifolds with
the important di¤erences that (1) the underlying algebra of di¤erential operators
is generated by the vector �elds x@x and @y rather than x@x and x@y and (2) the
boundary operators that occur are degenerate elliptic.
The Laplacian �g has continuous spectrum in [n2=4;1). Epstein, Melrose, and

Mazzeo showed that the resolvent operator (for a large class of problems including
the one considered here!)

R(s) = (�g � s(n� s))�1

admits a meromorphic continuation to the complex s-plane and that the resolvent
has the mapping property

R(s) : _C1(
)! xsC1(
1=2)
where the space C1(
1=2) consists of those functions in C1(X) having Taylor
expansions to all orders in x1=2 (see Proposition 12.10 in [2]). Using the form (3.2)
of the Laplacian, we can re�ne this mapping property to assert that

R(s) : _C1(
)! xsC1(
):
Moreover, using Green�s formulaZ

U

(u1�u2 � u2�u1) !n =
Z
@U

(u1(�u2)� u2(�u1)) � y !n
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where � is the inward unit normal, we can prove a boundary pairing formula essen-
tially identical to (2.11). We obtain the following uniqueness result.

Proposition 3.1. Suppose that Re(s) = n=2, and s 6= n=2. Then the Dirichlet
problem

(�g � s(n� s))u = 0(3.5)

u = xn�sF + xsG(3.6)

F j@
 = f(3.7)

where F and G belong to C1(@
), has a unique solution.

This uniqueness result allows us to de�ne the scattering operator

S(s) : C1(@
)! C1(@
)
for Re(s) = n=2, s 6= n=2 by

(3.8) S(s)f = Gj@

and the Poisson operator

P(s) : C1(@
)! C1(
)
for the same s by

P(s)f = u:

These two maps enjoy many of the same formal properties as their counterparts
on asymptotically hyperbolic manifolds. In particular, the scattering operator is
conformally covariant in the sense that if ex = e x for  2 C1(
) and � =  j@

then

(3.9) eS(s) = e�s�S(s)e(n�s)�:

Moreover, S(s) is unitary for s = n=2 and can be extended to Re(s) > n=2 so long
as s(n� s) is not an eigenvalue of �g and 2s� n =2 N.
The same formal power series arguments use to construct the Poisson operator

for Re(s) > n=2 in the asymptotically hyperbolic case carry over to the case of the
Laplacian on a pseudoconvex domain. The Poisson operator in this range is also
studied (again, for a large class of problems that includes our particular case) in
§15 of [2], although these authors do not construct P(s) for the �exceptional�points
which play a key role here.
By following closely the formal analysis in [5] and using the form (3.2), we have

shown:

Theorem 3.2. Let S(s) be the scattering operator for the Laplacian on a strictly
pseudoconvex domain 
 in Cn. The scattering operator S(s) has residues at s =
n=2 + k of the form

Res
s=n=2+k

S(s) = ckPk

where Pk is a di¤erential operator with principal symbol �(Pk) = �(�2kb ).

From the transformation law (3.9) it follows that the operators Pk are con-
formally covariant. That they are self-adjoint with respect to the volume form
� ^ (d�)n�1 follows from the corresponding self-adjointness statement for the scat-
tering operator.
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Thus, in the special case of pseudoconvex domains, the connection between scat-
tering theory and (conformal) CR-geometry of the boundary persists. In future
work we hope to obtain further information about the conformally invariant op-
erators and extend our results to complete complex manifolds having a natural
�CR-conformal in�nity.�
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