
ABSTRACT OF DISSERTATION

Patrick D. Quillen

The Graduate School

University of Kentucky

2005

GENERALIZATIONS OF AN INVERSE FREE KRYLOV
SUBSPACE METHOD FOR THE SYMMETRIC

GENERALIZED EIGENVALUE PROBLEM

ABSTRACT OF DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements of the degree of Doctor of Philosophy in the

College of Arts and Sciences at the University of Kentucky

By

Patrick D. Quillen

Lexington, Kentucky

Director: Dr. Qiang Ye, Department of Mathematics

Lexington, Kentucky

2005

Copyright c© Patrick D. Quillen 2005

ABSTRACT OF DISSERTATION

GENERALIZATIONS OF AN INVERSE FREE KRYLOV
SUBSPACE METHOD FOR THE SYMMETRIC

GENERALIZED EIGENVALUE PROBLEM

Symmetric generalized eigenvalue problems arise in many physical applications and

frequently only a few of the eigenpairs are of interest. Typically, the problems are

large and sparse, and therefore traditional methods such as the QZ algorithm may

not be considered. Moreover, it may be impractical to apply shift-and-invert Lanczos,

a favored method for problems of this type, due to difficulties in applying the inverse

of the shifted matrix.

With these difficulties in mind, Golub and Ye developed an inverse free Krylov

subspace algorithm for the symmetric generalized eigenvalue problem. This method

does not rely on shift-and-invert transformations for convergence acceleration, but

rather a preconditioner is used. The algorithm suffers, however, in the presence of

multiple or clustered eigenvalues. Also, it is only applicable to the location of extreme

eigenvalues.

In this work, we extend the method of Golub and Ye by developing a block general-

ization of their algorithm which enjoys considerably faster convergence than the usual

method in the presence of multiplicities and clusters. Preconditioning techniques for

the problems are discussed at length, and some insight is given into how these pre-

conditioners accelerate the method. Finally we discuss a transformation which can be

applied so that the algorithm extracts interior eigenvalues. A preconditioner based

on a QR factorization with respect to the B−1 inner product is developed and applied

in locating interior eigenvalues.

KEYWORDS: symmetric generalized eigenvalue problem, block Krylov subspace
methods, interior eigenvalues, preconditioning, incomplete factoriza-
tions

Patrick D. Quillen

27 October 2005

GENERALIZATIONS OF AN INVERSE FREE KRYLOV
SUBSPACE METHOD FOR THE SYMMETRIC

GENERALIZED EIGENVALUE PROBLEM

By

Patrick D. Quillen

Dr. Qiang Ye
Director of Dissertation

Dr. Serge Ochanine
Director of Graduate Studies

27 October 2005

RULES FOR THE USE OF DISSERTATIONS

Unpublished dissertations submitted for the Master’s and Doctor’s degrees and de-
posited in the University of Kentucky Library are as a rule open for inspection, but
are to be used only with due regard to the rights of the authors. Bibliographical ref-
erences may be noted, but quotations or summaries of parts may be published only
with the permission of the author, and with the usual scholarly acknowledgments.

Extensive copying or publication of the dissertation in whole or in part requires also
the consent of the Dean of the Graduate School of the University of Kentucky.

DISSERTATION

Patrick D. Quillen

The Graduate School

University of Kentucky

2005

GENERALIZATIONS OF AN INVERSE FREE KRYLOV
SUBSPACE METHOD FOR THE SYMMETRIC

GENERALIZED EIGENVALUE PROBLEM

DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements of the degree of Doctor of Philosophy in the

College of Arts and Sciences at the University of Kentucky

By

Patrick D. Quillen

Lexington, Kentucky

Director: Dr. Qiang Ye, Department of Mathematics

Lexington, Kentucky

2005

Copyright c© Patrick D. Quillen 2005

ACKNOWLEDGMENTS

I would first like to thank the members of my committee for their unending patience

with me. They are Russell Brown, Michael Cavagnero, Sung Ha Kang, and Jun

Zhang. Most of all, I thank my advisor Qiang Ye for the opportunity to work with

him and the support he has given me during my time at Kentucky.

Secondly, I have been fortunate enough to receive some software from Miroslav

Tůma, Michele Benzi, Menno Verbeek, and Jane Cullum. Without their software, I

would have spent many nights writing my own implementations of their algorithms.

I have spent three summers under the capable tutelage of Noël Nachtigal at Sandia

National Laboratories. He has given me more than I can imagine, and there are not

words to express my gratitude.

Also, Professor Tom Hayden has given me continuous support during my time

at Kentucky, both in and out of the classroom. I am grateful for a truly wonderful

mentor and friend. My academic experience was highlighted and heavily influenced

by Peter Hislop, John Lewis, and Ren-cang Li. I will carry the lessons I have learned

in their classes throughout my career.

My friends, old and new, all deserve to be mentioned, but I’ll mention just a

few. My heartfelt thanks go to John Bagley, Todd Moody, Ziggy Hoffnung, Matt

Ragland, Mike Dobranski, David Feinauer, Jakayla Robbins, and Jennifer Eli. They

have always been there for me when I needed them.

Most of all, I must thank my family for supporting me and believing in me. Thank

you. And I don’t think I would have made it through this, especially the last bit,

without the love and support of my wife Deddie, who has been more patient with me,

and given me more than everyone else put together.

Portions of this work have been supported by NSF Grant CCR-0098133.

iii

Contents

Acknowledgments iii

List of Tables vii

List of Figures viii

List of Algorithms x

Chapter 1 Preliminaries 1

1.1 Introduction . 1

1.2 Classical Results . 5

1.2.1 Simultaneous diagonalization of two quadratic forms 5

1.2.2 The Rayleigh Quotient and Courant-Fischer 6

1.2.3 The Rayleigh-Ritz Method . 7

1.3 Krylov Subspace Methods . 8

1.3.1 The Arnoldi Process . 9

1.3.2 The Lanczos process . 9

1.3.3 The Quality of extracted Ritz pairs 12

Chapter 2 Inverse Free Algorithms for (A,B) 14

2.1 A Generic Eigensolver and Properties 14

2.2 The Inverse Free method of Golub and Ye 18

2.3 Block Inverse Free Algorithms . 19

2.3.1 Block variant I . 20

2.3.2 Revealing an Arnoldi-like structure 21

2.3.3 A Block Arnoldi-like Process and Block variant II 23

2.4 Further considerations . 28

2.4.1 Deflation of converged Eigenvectors 28

2.4.2 Adding the previous Ritz vector 29

2.4.3 Adaptively choosing the block size 29

2.5 Some Implementation Details . 30

2.6 Numerical Examples I . 32

iv

2.6.1 Example: block versus single vector 33

2.6.2 Example: adding the previous Ritz vector 35

2.6.3 Example: comparing basis construction methods 36

2.6.4 Example: choosing the number of inner iterations 36

2.6.5 Example: adaptive block sizing 38

2.6.6 Example: the need for accelerated convergence 40

Chapter 3 Preconditioning Inverse Free Algorithms for (A,B) 43

3.1 Incomplete Factorizations—Background 43

3.1.1 ILU factorizations . 44

3.1.2 ILQ Factorizations . 46

3.2 Sparse Approximate Inverses—Background 47

3.3 Preconditioning Inverse free algorithms 48

3.3.1 Factoring the iteration matrix 50

3.3.2 A fixed preconditioner . 51

3.3.3 Factoring B . 53

3.3.4 A small example . 53

3.4 Numerical Examples II . 55

3.4.1 Example: Harwell-Boeing problems revisited 55

3.4.2 Example: Preconditioning and clustered eigenvalues 58

3.4.3 Example: Comparing Preconditioners and Methods 61

3.4.4 Example: An Algebraic Multigrid Preconditioner 64

Chapter 4 The Interior Eigenvalue Problem 67

4.1 Recasting the problem . 68

4.2 Computing B−1-orthogonal QR factorizations 69

4.2.1 B-unitary matrices . 70

4.2.2 Constructing QR factorizations via Householder-like reflectors 72

4.2.3 Towards B-unitary QR factorizations 73

4.2.4 Towards B−1-unitary QR factorizations 75

4.2.5 B−1-orthonormal QR factorizations 77

4.2.6 Performing the process incompletely 81

4.3 Other preconditioning techniques for (D,B) 82

4.3.1 ILU and ILQ based preconditioners 82

4.3.2 RIF based preconditioners . 84

4.4 Numerical Examples III . 85

4.4.1 Example: The Laplacian on a barbell-shaped domain 85

4.4.2 Example: The Platzman model 90

Chapter 5 Conclusions and Future Work 93

v

Bibliography 94

Vita 99

vi

List of Tables

2.1 Parameters for BLOCKEIGIFP . 32

2.2 Empirically optimal number of inner iterations m̂ for finite difference

discretized Laplacian of order k2. 38

2.3 Convergence characteristics of adaptBlockVarIIp(2, m) applied to some

BCS matrices from the Harwell-Boeing collection. 42

3.1 Convergence characteristics of adaptBlockVarIIp(2, m) applied to some

BCS matrices from the Harwell-Boeing collection with and without

preconditioning. 57

3.2 Preconditioner statistics for Harwell-Boeing matrices. 58

3.3 Convergence characteristics for BlockVarIIp(1,12) applied to BCSST13

with various preconditioners. 63

3.4 Preconditioner statistics of various incomplete factorizations of K from

BCSST13. 63

4.1 Preconditioner statistics for IQR with various drop tolerances τ 86

4.2 Convergence characteristics of adaptBlockVarIIp(2,24) applied to the

pencil (D,M) with various preconditioners. 87

4.3 Preconditioner statistics for SAINV/RIFNR preconditioners with var-

ious drop tolerances. 87

4.4 Convergence characteristics of BlockVarIIp(2, 10) applied to PLAT362

for various preconditioners. 91

4.5 Preconditioner statistics for various preconditioners applied to interior

formulation for PLAT362. 91

vii

List of Figures

2.1 Mesh for barbell shaped domain. 33

2.2 Convergence history of BlockVarII(1,m), m = 2 (solid) 4 (dotted),

8(dashed), 16(dash-dot). 34

2.3 Convergence history of BlockVarII(2,m), m = 2 (solid) 4 (dotted),

8(dashed), 16(dash-dot). 34

2.4 Convergence history of BlockVarIIp(1,4). 35

2.5 Convergence history of BlockVarIIp(2,4). 36

2.6 Convergence histories of two lowest eigenvalues computed by Block-

VarI(2,8) and BlockVarII(2,8). 37

2.7 Outer and total inner iterations versus m. 39

2.8 Mesh for four node domain. 40

2.9 Convergence history of adaptBlockVarIIp(2,4). 41

3.1 Sparsity patterns of two incomplete Cholesky factors 45

3.2 Convergence histories for the diagonal problem with various precondi-

tioners . 54

3.3 Convergence histories using preconditioners generated with variable λ0.

λ0 = 0(solid), λ0 = −10 (dotted), λ0 = −100(dashed), λ0 = −1000

(dash-dotted) . 56

3.4 Convergence histories of the smallest Ritz value computed by Block-

VarIIp(2,4) with K − 24M ≈ LDL∗ preconditioners with various drop

tolerances τ . τ = 1e−01 (solid), τ = 1e−02 (dashed), τ = 1e−03

(dash-dotted), τ = 1e−04 (dotted). 59

3.5 Convergence histories of the smallest Ritz value computed by Block-

VarIIp(2,4) with incomplete LDL∗ factorization preconditioners with

two different drop tolerances. K − 24M ≈ LDL∗, τ = 1e−01 (solid),

K ≈ LDL∗, τ = 1e−01 (dotted). 60

3.6 Convergence history of Eigifp with automatic preconditioning. . . . 61

viii

3.7 Convergence histories of the smallest Ritz value computed by Block-

VarII(1,4) with K − 24M ≈ LDL∗ preconditioners with various drop

tolerances τ . τ = 1e−01 (solid), τ = 1e−02 (dashed), τ = 1e−03

(dash-dotted), τ = 1e−04 (dotted). 62

3.8 Convergence histories of the smallest Ritz value computed by Block-

VarIIp(1,12) (solid), and JDQZ (dotted). Both iterations utilized the

RIF preconditioner. 65

3.9 Convergence of the smallest Ritz value computed by BlockVarIIp(2,4)

with no preconditioner (solid) and preconditioned by AMG with one

V-cycle (dotted). 66

4.1 Spectra of the Transformed Problems 68

4.2 Convergence histories of smallest Ritz value of (D,M) computed by

adaptBlockVarIIp(2,24) preconditioned by IQR(τ, τ) with τ = 1e−01

(solid), τ = 1e−02 (dotted), and τ = 1e−03 (dashed). 86

4.3 Convergence histories of smallest Ritz value of (D,M) computed by

adaptBlockVarIIp(2,24) preconditioned by SAINV/RIFNR. SAINV is

constructed with various tolerances (τ = 1e−01 (solid), τ = 1e−02

(dotted), and τ = 1e−03 (dashed)) and RIFNR is constructed with

fixed drop tolerance and post-filtration tolerance τ = 1e−01. 88

4.4 Convergence histories of smallest Ritz value of (D,M) computed by

adaptBlockVarIIp(2,24) preconditioned by SAINV/RIFNR. RIFNR is

constructed with various drop and post-filtration tolerances (τ = 1e−01

(solid), τ = 1e−02 (dotted), and τ = 1e−03 (dashed)) and SAINV is

constructed with fixed drop tolerance tolerance τ = 1e−01. 89

ix

List of Algorithms

1.1 Rayleigh-Ritz Procedure . 7

2.1 Generic Eigensolver . 14

2.2 Inverse Free Krylov Subspace Algorithm for (A,B) 18

2.3 Block variant I: direct sum of Krylov spaces 20

2.4 Arnoldi-like process for the operator op(X) := AX −BXΘ 24

2.5 Band Arnoldi-like process . 27

2.6 Block variant II: block or band Arnoldi variant 27

2.7 The Implemented Block Algorithm 31

3.1 Preconditioned Arnoldi-like process for op(X) := AX −BXΘ 49

4.1 QR factorization with respect to B−1 inner product 81

4.2 IQR(τ, η) factorization with respect to B−1 inner product 83

x

Chapter 1

Preliminaries

1.1 Introduction

We are interested in the computation of a few eigenpairs of the symmetric generalized

pencil (A,B). That is, given two symmetric matrices, A and B, such that B is positive

definite, we wish to compute a few scalar/vector pairs (λ, x) such that

Ax = λBx. (1.1)

The symmetric generalized eigenvalue problems arises in many physical applications,

such as the dynamic analysis of structures and electronic structure calculations. The

matrices involved are typically very large and sparse; many of the entries in the

matrices are zero. Due to the size of the matrices, classical methods such as the QZ

algorithm are typically infeasible, since over the course of the algorithm, sparsity will

generally be lost, resulting in the need to store much more data than is practical. Also,

in some cases, the action of the matrix A or B may only be available as a function,

and it may not be practical to construct the matrix representing the underlying linear

operator. For these kinds of problems, algorithms which rely only on the ability to

apply a matrix to a vector are very attractive.

The Lanczos algorithm is one of a class of methods called Krylov subspace methods

which compute approximate eigenpairs of (A,B) while only requiring the actions of

the matrices A and B on vectors. The algorithm works by projecting the eigenvalue

problem onto the Krylov subspace

Km(H, x) = span{x,Hx,H2x, . . . , Hm−1x} (1.2)

where H := B−1A, and x is some initial vector. The Lanczos process develops a

basis Z of Km(H, x) and then computes the eigenpairs (θ, u) of the projected problem

(Z∗AZ,Z∗BZ). The eigenvalues θ are called Ritz values and are taken as approximate

eigenvalues of (A,B) with corresponding approximate eigenvectors Zu, which are

called Ritz vectors. In constructing Z, explicit formation of H is not necessary.

1

Instead, the Lanczos process may be carried out with respect to the B inner product

to construct a basis of the subspace (1.2) while only requiring a multiplication by A

and an application of B−1 at each step. The convergence behavior of the Lanczos

algorithm has been widely studied, and it is known that the method produces good

approximations to the well-separated extreme eigenpairs rather quickly. When the

extreme eigenvalues are not well-separated, however, the rate of convergence of the

Ritz values is typically rather poor.

To accelerate convergence, robust implementations of the Lanczos algorithm use

a shift-and-invert technique to get better spectral separation. That is, the Lanczos

algorithm is applied to the pencil

B(A− µB)−1Bx = λ̂Bx, (1.3)

and the eigenvalues λ̂ are then transformed back to the eigenvalues of (A,B). Here

µ is some selected target for the location of the eigenvalues. This algorithm requires

the solution of the shifted linear system (A − µB)y = Bx at each step, but for that

price, it typically enjoys very rapid convergence. Solving the shifted linear systems by

direct methods, however, may be infeasible due to the size of the problem at hand. In

these cases, iterative methods may be employed to compute approximate solutions of

the shifted linear systems. It has been observed, however, that the Lanczos algorithm

is extremely sensitive to perturbations, especially in the early stages of the iteration,

and therefore the shifted systems must be solved very accurately. This limits the

practicality of the shift-and-invert approach. We remark that application of the shift-

and-invert transformation is sometimes called preconditioning. Generally, the term

preconditioning refers to applying some transformation to the original problem which

results in a different problem which is more easily handled by a given method.

Other methods, such as the JDQZ method [17], also make use of a shift-and-

invert strategy, however, they tolerate much lower accuracy approximations to the

solutions of the shifted linear systems. The JDQZ method in particular, takes an

initial approximation to the desired eigenpair and successively solves correction equa-

tions to expand the search subspace. The idea is that the correction equations assist

in choosing the “right” vector for expansion and thereby refine the approximations

to the eigenpair in an optimal way. Here, preconditioning techniques are applicable

in approximating solutions to the correction equations. Frequently, Krylov subspace

methods such as GMRES or BiCG are used, and preconditioning schemes for these

methods have been widely studied [5], [52]. In this framework, the preconditioner has

little to do with the eigenvalue problem.

On the other hand, gradient type methods, such as the steepest descent method

may be used to locate the algebraically smallest eigenvalues. Such methods do not

require inversion of B in any form, however, they frequently suffer from extremely

2

slow convergence when the extreme eigenvalues are not well-separated. Some gradi-

ent methods that have been studied include the LOBPCG method [34], the DACG

method [19], and a variation of inverse iteration called preconditioned inverse itera-

tion [42]. Here, instead of applying a shift-and-invert transformation, a different kind

of preconditioning scheme is used to accelerate the iterations. Frequently, precondi-

tioners which work well for solving linear systems with the matrix A are chosen and

applied in the iterations for the solution of the eigenproblem (A,B). Although in

many cases these methods work well, the role of the preconditioner in accelerating

the eigensolver is unclear.

With these considerations in mind, Golub and Ye [25] presented and analyzed an

inverse-free Krylov subspace method for the computation of the extreme eigenvalues

of a symmetric generalized pencil (A,B). As with gradient type methods, the algo-

rithm does not require application of B−1 at anytime, however, unlike many gradient

methods, this algorithm takes advantage of the optimality offered by Krylov subspace

approximations. Moreover, the analysis in [25] indicates how a transformation may

be applied to accelerate the convergence of the method to the extreme eigenvalues.

Again, we will refer to such transformations as preconditioning. Due to the nature

of vector iterations, the inverse free Krylov subspace algorithm suffers from poor

convergence in the presence of multiple and tightly clustered eigenvalues, though.

Often, the presence of such clusters will also limit the effectiveness of preconditioning

transformations.

The goals of this present work are as follows.

1. Develop a block generalization of the method of [25] which enjoys similar con-

vergence characteristics, even in the presence of multiple and clustered eigen-

values. Moreover, the block generalization should be able to be accelerated by

a well-defined preconditioning scheme.

2. Gain a deeper understanding of exactly how purely algebraic preconditioners

such as those stemming from incomplete factorizations accelerate the conver-

gence of the method.

3. Devise a scheme for the computation of interior eigenvalues, or more specifically,

those eigenvalues nearest to some target µ.

Regarding the interior eigenvalue problem, we note that Ritz approximations from

a given subspace are frequently very good approximations for extreme eigenvalues and

very poor for interior ones. Even if a Ritz value is near an interior eigenvalue, it may

be more proper to view that Ritz value as one which is on its way to the extreme

of the spectrum, but simply has not yet made it. As a result, for large eigenvalue

problems, the only robust method for computing interior eigenvalues currently is the

shift-and-invert Lanczos method.

3

The remainder of this thesis is organized as follows. Chapter 1 contains neces-

sary background material. Some definitions, notation, and classical results regarding

the symmetric generalized eigenvalue problem are presented in Section 1.2. Krylov

subspace methods for eigenvalue approximation are the focus of Section 1.3.

Chapter 2 begins with a description of the inverse-free Krylov subspace algorithm

of Golub and Ye. In Section 2.3 we develop a block generalization of the inverse free

method and we discuss many pertinent implementation details. We derive this new

method by first generalizing the method of Golub and Ye on a vector-by-vector basis,

and by observing an Arnoldi-like relationship, we arrive at the block generalization.

We provide many numerical examples showing the ability of the block algorithm to

compute eigenvalues in clusters and with multiplicities.

Chapter 3 is concerned with accelerating the convergence of the algorithms de-

scribed in Chapter 2 by means of preconditioning. The chapter opens with a review

of some common preconditioning techniques, followed by a discussion about how

these techniques may be applied to solving the eigenvalue problem. In particular,

we demonstrate how to apply preconditioning transformations to the block algorithm

of Chapter 2 and we detail the effects of three different preconditioning schemes on

the rates of convergence of the inverse free algorithms. Ideas from preconditioning

for linear systems regarding the accuracy and stability of incomplete factorization

preconditioners are applied here in the context of our eigensolvers. Chapter 3 closes

with many numerical examples showing the favorable effects of the preconditioning

schemes discussed.

Chapter 4 discusses the application of the algorithms described in Chapter 2

to the problem of finding eigenvalues of the pencil (A,B) nearest to some target

µ ∈ R. We apply a simple transformation to the original problem to make the

eigenvalues of interest extreme eigenvalues. Here, due to the conditioning of the

transformed problem, preconditioning becomes necessary for these methods to be

considered viable at all, and common preconditioning schemes falter. Motivated by

the normal equations like structure of the matrices under consideration, we develop a

new algorithm for computing the QR factorization of a given matrix with respect to

the B−1 inner product via Householder like reflectors. We briefly discuss an approach

to using this factorization as an incomplete factorization preconditioner, and we apply

the incomplete factor as a preconditioner for the interior formulation. Examples

showing the viability of these approaches are given.

Finally, Chapter 5 contains concluding remarks and insights into directions for

future work in this subject.

4

1.2 Classical Results

Most of the material presented here can be found in any standard text. See, for

example, [15], [23], [29], [46].

1.2.1 Simultaneous diagonalization of two quadratic forms

Here we recall a result which echoes the spectral theorem for Hermitian matrices. A

major difference when dealing with symmetric pencils is that the eigenvectors are no

longer orthogonal, but rather B-orthogonal.

Definition 1.2.1. Let x, y ∈ Rn. If B ∈ Rn×n is symmetric positive definite The

quadratic form

〈x, y〉B := x∗By

induces an inner product on Rn called the B inner product. Two vectors x, y ∈ Rn

are said to be B-orthogonal if 〈x, y〉B = 0. The notation x ⊥B y indicates that x and

y are B-orthogonal. With this inner product there is an associated norm called the

B-norm:

‖x‖B :=
√
〈x, x〉B

Finally, a collection of vectors is called B-orthonormal if the vectors are pairwise

B-orthogonal and have unit B-norm.

We may also consider B-unitary and B-orthogonal matrices.

Definition 1.2.2. A matrix Q is said to be B-unitary if

Q∗BQ = B (1.4)

That is, B-unitary matrices are those which preserve the B-inner product. A matrix

Q is said to be B-orthogonal if

Q∗BQ = D (1.5)

where D is some diagonal matrix. If D = I, we say that Q is B-orthonormal.

Throughout, we will discuss B-orthogonal matrices, and we will consider specific

applications of B-unitary operators in Chapter 4.

With these definitions in mind, we present the simultaneous diagonalization the-

orem. See [46] for a proof of this theorem.

Theorem 1.2.3. Suppose A,B are symmetric matrices and B is positive definite.

Then there exists an invertible matrix X (in fact many matrices) such that

X∗AX and X∗BX

are both real and diagonal.

5

We may, in fact, choose X such that X∗BX = I. That is, the eigenvectors of

(A,B) are B-orthonormal and not merely B-orthogonal. Throughout this work the

eigenpairs of (A,B) will be denoted by (λi, xi), 1 ≤ i ≤ n and ordered such that

λ1 ≤ λ2 ≤ · · · ≤ λn. The eigenvectors will be scaled to have unit B-norm unless

otherwise specified.

1.2.2 The Rayleigh Quotient and Courant-Fischer

Of extreme importance in the study of the symmetric eigenvalue problem is a quantity

called the Rayleigh Quotient.

Definition 1.2.4. The Rayleigh quotient of x with (A,B) is defined by

ρ(x;A,B) =
x∗Ax

x∗Bx
.

We frequently shorten the notation to ρ(x) when A,B are clear from context.

The Rayleigh Quotient enjoys many properties, which will be discussed as neces-

sary. The following properties will be exploited throughout this work.

Lemma 1.2.5. Let (A,B) be a definite pencil with eigenpairs (λi, xi), i = 1, . . . , n

such that λ1 ≤ · · · ≤ λn, and ‖xi‖B = 1.

1. λ1 ≤ ρ(x;A,B) ≤ λn

2. Let Xj = span{x1, x2, . . . , xj}. Then

λj = max
x∈Xj

ρ(x;A,B) = min
y⊥BXj−1

ρ(y;A,B)

The above facts about the Rayleigh quotient together with an observation about

subspaces of a finite dimensional vector space lead to the stunning Courant-Fischer

Minmax principle. The principle holds for self-adjoint operators in more general

Hilbert space, however, we will be confined to finite dimensional space throughout

the course of this work. One may consult [29], [46], or one of many other texts for a

proof of this result.

Theorem 1.2.6 (Courant-Fischer Minmax Principle). Let {λj}n
j=1 be the eigen-

values of the pencil (A,B) ordered such that λ1 ≤ · · · ≤ λn. Letting S and C denote

subspaces of Rn with dimensions denoted by subscript, we have

λj = min
Sj

max
x∈Sj

ρ(x;A,B) = max
Cj−1

min
y⊥BCj−1

ρ(y;A,B)

6

1.2.3 The Rayleigh-Ritz Method

The Rayleigh-Ritz procedure is a classical method for approximating the eigenvalues

of a symmetric matrix, or symmetric definite pencil, and is motivated by the following

two lemmas. The first states that the distance between some eigenvalue of the pencil

(A,B) and a given scalar σ is bounded by the B−1-norm of the residual and the

second shows that among all scalars σ, the Rayleigh quotient minimizes the residual.

Again, both of these results may be found in standard texts such as [15], [46], [50].

Lemma 1.2.7. There exists an eigenvalue λ of (A,B) such that for any u ∈ Rn and

any σ ∈ R we have

|λ− σ| ≤ ‖(A− σB)u‖B−1

‖Bu‖B−1

(1.6)

Lemma 1.2.8. For any vector u ∈ Rn and scalar σ ∈ R

‖(A− ρ(u)B)u‖B−1 ≤ ‖(A− σB)u‖B−1

Note further that ‖(A− ρ(u)B)u‖2
B−1 = ‖Au‖2

B−1 − |ρ(u)|2‖Bu‖2
B−1

The Rayleigh-Ritz procedure is presented in Algorithm 1.1.

Algorithm 1.1 Rayleigh-Ritz Procedure

Input: Symmetric A, symmetric positive definite B, a subspace Sm.
1: If necessary, construct a basis Z of Sm.
2: Form Am = Z∗AZ and Bm = Z∗BZ.
3: Compute the eigenpairs (θi, vi) of (Am, Bm).
4: Set yi = Zvi. Approximate eigenpairs of (A,B) are (θi, yi).

The eigenvalues {θi}m
i=1 of the pencil (Z∗AZ,Z∗BZ) are called Ritz values of

(A,B) with respect to Sm. Similarly, the vectors yi = Zvi, 1 ≤ i ≤ m are called Ritz

vectors and the pair (θi, yi) is called a Ritz pair of (A,B) with respect to Sm.

Should a B-orthogonal basis be constructed in step one of Algorithm 1.1, the need

for the computation of Bm in step two is obviated and the problem in step three is

reduced to the standard symmetric eigenvalue problem for Am.

It is straightforward to show that λi ≤ θi for i : 1 ≤ i ≤ m. Moreover, it can

be shown that there exist m eigenvalues of (A,B) such that the distance from each

of those eigenvalues to each of the Ritz values is smaller than a constant times the

residual norm. This result echoes a result found in [46].

Theorem 1.2.9. Let Z be any n×m B-orthonormal matrix and define H = Z∗AZ

and R = AZ − BZH. There are m eigenvalues of (A,B) denoted λj(i), 1 ≤ i ≤ m

such that

|θi − λj(i)| ≤
(
‖B−1‖2

) 1
2 ‖R‖2

7

In fact, if something more is known about the pencil (A,B), we may show some-

thing stronger than Lemma 1.2.7 and Theorem 1.2.9. The result that follows is similar

to one found in [46] and also in [63].

Theorem 1.2.10. Let λ1 ≤ · · · ≤ λn be the eigenvalues of a symmetric definite pencil

(A,B) and let Y ∈ Rn×p be a collection of B-orthonormal Ritz vectors associated with

Ritz values θ1 ≤ · · · ≤ θp. If θp < λp+1 then

|θi − λi| ≤ ‖B−1‖2
‖R‖2

2

|θp − λp+1|

where R = AY −BYΘ.

We point out that Theorem 1.2.9 and Theorem 1.2.10 are included as justification

for the use of residual norms as stopping criteria in the algorithms presented later.

1.3 Krylov Subspace Methods

Krylov subspace methods for the approximation of eigenvalues simply apply the

Rayleigh-Ritz method (Algorithm 1.1) to a Krylov subspace. A Krylov subspace

of dimension less than or equal to m associated with a matrix A and a vector x 6= 0

is defined by

Km(A, x) := span{x,Ax,A2x, . . . , Am−1x}. (1.7)

Each vector u ∈ Km(A, x) may be represented as u = p(A)x where p is a polynomial

of degree less than or equal to m − 1. Of course, the dimension of the Krylov space

depends on the initial vector x; namely, if x is an eigenvector of A, then the Krylov

space Km(A, x) has dimension one, regardless of the value of m. Furthermore, the

dimension of the Krylov subspace Km(A, x) is always less than or equal to the degree

of the minimal polynomial of x with respect to A. It should also be pointed out

that the basis {x,Ax,A2x, . . . , Am−1x} is never used in practice since the vectors

become increasingly dependent, as the sequence {Aix}∞i=0 converges to the dominant

eigenvector for most choices of x. Instead, the Arnoldi process or the Lanczos process

is used to develop an orthonormal basis of the Krylov subspace Km(A, x) with respect

to a certain inner product. Once a suitable basis Qm is constructed and the projected

pencil (Am, Bm) ≡ (Q∗mAQm, Q
∗
mBQm) is formed, Ritz values and Ritz vectors must

be extracted. We discuss the construction of basis and the quality of the extracted

Ritz values, as these topics are pertinent to the discussions in the following chapters.

We omit a discussion concerning the computation of the eigenvalues of the pencil

(Am, Bm) and instead point the interested reader to any one of the valuable references

[23], [46], [53].

8

1.3.1 The Arnoldi Process

Given an inner product, 〈·, ·〉, the Arnoldi process develops an orthonormal basis

{q1, q2, . . . , qm} of the Krylov subspace Km(A, x). Each vector qj+1, 1 ≤ j ≤ m is

generated by the following recurrence

hj+1,jqj+1 = Aqj − h1jq1 − h2jq2 − · · · − hjjqj (1.8)

where hij = 〈qi, Aqj〉. Letting Hm be the square matrix with entries hij and Qm be

the matrix whose jth column is qj, we may rewrite (1.8) to obtain

AQm = QmHm + hm+1,mqm+1e
∗
m (1.9)

where em is the mth canonical basis vector of Rm. Equation (1.9) entirely defines the

Arnoldi process. By construction, Qm is orthogonal with respect to the inner product

〈·, ·〉 and Hm is upper Hessenberg.

To see that the columns of Qm produced by the Arnoldi process do indeed form

a basis for Km(A, x) we proceed inductively. Clearly q1 forms a basis for K1(A, x).

Let us assume that qj 6= 0 for j : 1 ≤ j ≤ m. Suppose now that Qj =
(
q1 · · · qj

)
forms a basis for Kj(A, x), and note that qj+1 is defined as a linear combination of the

columns of Qj and the vector Aqj. It is easy to see therefore that span{q1, . . . , qj+1} ⊆
Kj+1(A, x). Now, since the collection {q1, . . . , qj+1} is orthonormal with respect to

some inner product, then the collection is linearly independent and so it must follow

that span{q1, . . . , qj+1} = Kj+1(A, x).

When hj+1,j = 0 for j : 1 ≤ j ≤ m, the Arnoldi process is said to suffer breakdown.

Encountering such a breakdown is fortuitous as equation (1.9) implies that the Krylov

subspace is A-invariant. Ritz values extracted from the Krylov subspace will therefore

be exact eigenvalues.

Because of the explicit orthogonalization of each new Arnoldi vector against all

previous Arnoldi vectors, the Arnoldi process can be computationally expensive.

1.3.2 The Lanczos process

When the matrix A is symmetric with respect to the inner product used in the Arnoldi

process, that is, when

〈x,Ay〉 = 〈Ax, y〉

the recurrence expressed by (1.8) is greatly simplified. Specifically, for i ≤ j − 2, the

entries hij in the upper Hessenberg matrix Hm are zero. To see this, note that due

to our assumption of symmetry

hij = 〈qi, Aqj〉 = 〈Aqi, qj〉.

9

Furthermore, as Aqi =
∑i+1

k=1 hkiqk we see that

hij = 〈Aqi, qj〉

=

〈(
i+1∑
k=1

hkiqk

)
, qj

〉

=
i+1∑
k=1

hki〈qk, qj〉.

Since 〈qk, qj〉 = 0 for k ≤ j−1, it follows that hij = 0 provided that i+1 ≤ j−1. With

our symmetry assumption, the defining recurrence for the Arnoldi process becomes

hj+1,jqj+1 = Aqj − hj,jqj − hj−1,jqj−1.

Noting that qj+1 has unit length and is orthogonal to all previous Arnoldi vectors we

see that

hj+1,j = hj+1,j〈qj+1, qj+1〉 = 〈Aqj, qj+1〉 = 〈qj, Aqj+1〉 = hj,j+1

and thus the matrix Hm defined by the Arnoldi process is a symmetric tridiagonal

matrix; the symmetry here is with respect to the Euclidean inner product. In the

case of such symmetry, the algorithm is called the Lanczos algorithm and the defining

recurrence is written as

βj+1qj+1 = Aqj − αjqj − βjqj−1. (1.10)

Throughout this work we will refer to the method of generating a basis of a Krylov

subspace by the name Lanczos if the basis may be generated by a short (three-term)

recurrence. Reference to the Arnoldi process will be reserved for a method relying

on a long recurrence for the generation of a basis of a Krylov subspace. Rewriting

(1.10), we obtain

AQm = QmTm + βj+1qj+1e
∗
m (1.11)

where Qm is the matrix whose jth column is qj and Tm is the matrix defined by

Tm =


α1 β2

β2 α2
. . .

. βm

βm αm

 . (1.12)

Again, the matrix Qm generated by the Lanczos process is orthogonal with respect to

the inner product 〈·, ·〉. Most often, the Lanczos process is applied to matrices which

are symmetric with respect to the Euclidean inner product, and therefore the matrix

Qm is an orthogonal matrix with respect to the Euclidean inner product and thus

Q∗mAQm = Q∗mQmTm + βm+1Q
∗
mqm+1e

∗
m = Tm.

10

That is, executing the Rayleigh-Ritz procedure for the pencil (A, I) with respect to

the Krylov subspace Km(A, x) reduces to computing the eigenvalues of an m × m

symmetric tridiagonal matrix, which can be done very efficiently.

We are, however, interested in computing the eigenvalues of the pencil (A,B)

where A and B are symmetric with respect to the Euclidean inner product. If A

is also symmetric with respect to the inner product induced by the operator B, we

may obtain a B-orthonormal basis of the space Km(A, x) via a short-term recurrence.

Again, extraction of the Ritz values of interest relies on computing some eigenvalues

of the pencil (Tm, I) where Tm is symmetric tridiagonal. In general, however, the

operator A will not be symmetric with respect to the B inner product and we will

therefore need to extract eigenvalues of (Q∗mAQm, Q
∗
mBQm) where both matrices

may be dense symmetric matrices. We will discuss strategies for this problem later,

however, we raise this point now to motivate a Lanczos method for (A,B) that builds

a B-orthonormal basis which reduces A to tridiagonal form.

In order to generate such a basis, let M be the symmetric square root of B, and

note that the pencil (A,B) is equivalent to the pencil (M−1AM−1, I). Applying

the Lanczos procedure with the Euclidean inner product to the matrix M−1AM−1

generates orthonormal Qm and symmetric tridiagonal Tm such that

M−1AM−1Qm = QmTm + βm+1qm+1e
∗
m.

Defining zj := M−1qj, 1 ≤ j ≤ m+ 1 we have that

AZm = AM−1Qm = MQmTm + βm+1Mqm+1e
∗
m

= M2ZmTm + βm+1M
2zm+1e

∗
m

= BZmTm + βm+1Bzm+1e
∗
m

where we note that

Z∗mBZm = Q∗mM
−1BM−1Qm = Q∗mQm = I.

It is readily seen, therefore, that the recurrence is simply

βj+1Bzj+1 = Azj − αjBzj − βjBzj−1 (1.13)

where

αj = 〈zj, Azj〉B βj+1 =
√
〈zj+1, zj+1〉B.

Notice that to obtain the Lanczos vector zj+1 we must apply B−1 either explicitly or

implicitly. The need to apply B−1 may be a huge drawback in the implementation

of this method. For example, the matrix B, though symmetric positive definite, may

be difficult to factor, or, may not be available at all. That is, B may exist only as a

11

function which takes a vector x and returns Bx. In this case, one can utilize iterative

methods to approximate B−1y for a given vector y, but much more work than is

feasible may be required to compute a sufficient approximation. Indeed, methods

based on an inexact solution of Bx = y have been studied, (see [10],[26]) and the

Lanczos process has been found to be especially sensitive to perturbations in its early

stages. With this difficulty in mind, Golub and Ye [25] have developed a Krylov

subspace method for approximation of the eigenpairs of the pencil (A,B) which does

not require implicit or explicit application of B−1. This method is the subject of

Chapter 2 and is the method we seek to extend.

1.3.3 The Quality of extracted Ritz pairs

Regardless of the process used to construct a basis of the Krylov space, we may obtain

the following bound on the quality of the Ritz pairs extracted from the space. The

following well-known result can be found in [14], [46], [48], [50], for example.

Theorem 1.3.1. Consider the pencil (A, I) with eigenpairs (λi, qi) such that λ1 ≤
· · · ≤ λn. Let θ1 ≤ · · · ≤ θm be the Ritz values extracted from Km(A, x). If Qj =

span{x1, . . . , xj} then for each j = 1, . . . ,m we have

0 ≤ θj − λj ≤ (λn − λj)

[
sin ∠(x,Qj)

cos ∠(x, qj)
Kj

]2

ε2m,j (1.14)

where

Kj :=

j−1∏
i=1

θi − λn

θi − λj

, (K1 := 1) and εm,j := min
p∈Pm−j ;p(λj)=1

max
λ∈[λj+1,λn]

|p(λ)|.

Here, Pm−j is the collection of polynomials of degree less than or equal to m− j.

For each Ritz value, the bound (1.14) depends on the gap between λj and λj+1.

Thus convergence can suffer when the eigenvalues at the ends of the spectrum are

tightly clustered. This is part of the motivation for block Lanczos methods, which

construct bases for the block Krylov subspace Km(A,X), with X being an n × p

orthonormal matrix, as opposed to a single vector. The major advantage of block

Krylov subspace methods over their single vector counterparts is the ability to deter-

mine multiple eigenvalues. Indeed, due to the unreduced tridiagonal structure of the

projection obtained from a Lanczos method, Ritz values may only have multiplicity

one. In the case of clustered eigenvalues, block methods offer better convergence

rates. This well-known property is summarized by the following theorem which can

be found in [48] and [57], to name just two sources. The result we quote is from [57].

12

Theorem 1.3.2. Consider the pencil (A, I) with eigenpairs (λi, qi) such that λ1 ≤
· · · ≤ λn. Let θ1 ≤ · · · ≤ θp be the Ritz values extracted from Km(A,X) where

X∗X = Ip. If Qp = span{q1, . . . , qp}, and X = span{x1, . . . , xp} then for each

j = 1, . . . , p we have

0 ≤ θj − λj ≤ (λn − λj) tan2 ∠(X ,Qp)ε
2
m,j (1.15)

where

εm,j := min
r∈Pm−1;r(λj)=1

max
λ∈[λp+1,λn]

|r(λ)|. (1.16)

Here, Pm−1 is the collection of polynomials of degree less than or equal to m− 1.

Notably, for the block Lanczos method with block size p, the rate of convergence

(of the first Ritz value to the first eigenvalue) depends on the relative spectral gap
λp+1−λ1

λn−λ1
, thus showing the advantage of block algorithms in the presence of clustered

eigenvalues.

Copyright c© Patrick D. Quillen 2005

13

Chapter 2

Inverse Free Algorithms for (A,B)

The goal of this chapter is the development of a block generalization of the inverse

free preconditioned algorithm of Golub and Ye [25] for the simultaneous computation

of p algebraically smallest eigenpairs for the pencil (A,B). The block generalization

overcomes difficulties experienced by the Golub-Ye algorithm in the presence of multi-

ple or clustered eigenvalues. Numerical examples are provided to illustrate properties

of the block algorithm.

2.1 A Generic Eigensolver and Properties

Many modern iterative methods for the computation of eigenvalues of the large sparse

symmetric pencils are built upon iterated Rayleigh-Ritz. That is, for each k = 1, 2, . . .

a subspace S(k) is constructed and the Rayleigh-Ritz method is performed to obtain

Ritz pairs
(
θ

(k+1)
i , x

(k+1)
i

)
for 1 ≤ i ≤ p. The Ritz vectors are then used as a

starting point for the construction of the next subspace S(k+1) and the process is

iterated. Inspired by the discussion of [2], this process will be referred to as the

generic eigensolver and a template is presented as Algorithm 2.1. Sometimes we will

Algorithm 2.1 Generic Eigensolver

Input: Symmetric A, symmetric positive definite B.
1: for k = 1, 2, . . . do
2: Construct a subspace S(k) of dimension m� n.
3: Perform Rayleigh-Ritz on (A,B) with respect to S(k) to extract the p desired

approximate eigenpairs.
4: end for

refer to this process as an inner-outer iteration process as the construction of the

subspace S(k+1) will usually be performed iteratively.

Provided that each of the iterates x
(k)
1 , . . . , x

(k)
p are included in the space S(k), it

is not difficult to establish the monotonicity and boundedness of the sequences of the

14

Ritz values.

Lemma 2.1.1. Let λ1 ≤ · · · ≤ λn denote the eigenvalues of (A,B). Let the Ritz

values obtained from Algorithm 2.1 at the kth iteration be denoted by θ
(k+1)
1 ≤ · · · ≤

θ
(k+1)
p with corresponding Ritz vectors x

(k+1)
1 , . . . , x

(k+1)
p . Suppose further that

{x(k)
1 , . . . , x(k)

p } ⊆ S(k).

The following relations hold

λi ≤ θ
(k+1)
i ≤ θ

(k)
i , 1 ≤ i ≤ p (2.1)

(A− θ
(k)
i B)x

(k)
i ⊥ S(k), 1 ≤ i ≤ p (2.2)

Proof. We begin by establishing (2.2). Suppose that Z is a basis for S(k). By con-

struction (the Rayleigh-Ritz process), each Ritz vector x
(k)
i is given by x

(k)
i = Zui,

where (θ
(k)
i , ui), 1 ≤ i ≤ p are eigenpairs of the pencil (Z∗AZ,Z∗BZ). Therefore,

Z∗AZui − θ
(k)
i Z∗BZui = 0

Noting that any vector y ∈ S(k) may be written as y = Zc, c ∈ Rm, we have that

y∗(A− θ
(k)
i B)x

(k)
i = c∗(Z∗AZui − θ

(k)
i Z∗BZui) = 0

showing (2.2).

To establish (2.1) recall that by the Courant-Fischer minmax principle (Theo-

rem 1.2.6) we have that

θ
(k+1)
i = min

Si
max

u∈Si,u 6=0

u∗Au

u∗Bu
= min

Si
max

u∈Si,u 6=0

u∗(A− θ
(k)
i B)u

u∗Bu
+ θ

(k)
i

for all subspaces S i ⊆ S(k) of dimension i. Letting x ∈ X = span{x(k)
1 , . . . , x

(k)
i } ⊆

S(k) we have

x∗(A− θ
(k)
i B)x

(k)
j = (θ

(k)
j − θ

(k)
i)x∗Bx

(k)
j 1 ≤ j ≤ i

As the collection {x(k)
1 , . . . , x

(k)
i } is a B-orthogonal set, it follows that

x∗(A− θ
(k)
i B)x =

i∑
j=1

c2j(θ
(k)
j − θ

(k)
i)x

(k)
j

∗
Bx

(k)
j ≤ 0

where the cj is the jth coordinate of x with respect to the basis {x(k)
1 , . . . , x

(k)
i }.

Therefore,

θ
(k+1)
i ≤ max

u∈X ,u 6=0

u∗(A− θ
(k)
i B)u

u∗Bu
+ θ

(k)
i ≤ θ

(k)
i

establishing monotonicity.

That each sequence {θ(k)
i }, 1 ≤ i ≤ p is bounded below by λi is a consequence of

the Rayleigh-Ritz method.

15

If we additionally assume that the residual vectors r
(k)
i := Ax

(k)
i − θ

(k)
i Bx

(k)
i , 1 ≤

i ≤ p are contained in S(k), then we can show that each of the sequences {θ(k)
i }∞k=1

converges to an eigenvalue of (A,B).

Lemma 2.1.2. Take the assumptions of Lemma 2.1.1 and additionally, assume that

the Ritz vectors x
(k)
1 , . . . , x

(k)
p are scaled such that ‖x(k)

i ‖B = 1 and assume that the

residuals r
(k)
i = Ax

(k)
i − θ

(k)
i Bx

(k)
i are elements of S(k) for 1 ≤ i ≤ p.

Then for each j = 1, 2, . . . , p, the sequence
{
θ

(k)
j

}∞
k=1

converges to some eigenvalue

λ̂ of (A,B) and the sequence
{
‖(A− λ̂B)x

(k)
j ‖
}∞

k=1
converges to zero.

Proof. We follow the proof technique of Golub and Ye [25]. Begin by defining the

matrices

Θ(k) := diag(θ
(k)
1 , . . . , θ

(k)
j) and X(k) :=

(
x

(k)
1 · · · x

(k)
j

)
. (2.3)

We note that for each k,

X(k)∗AX(k) = Θ(k) and X(k)∗BX(k) = I. (2.4)

Since each sequence
{
x

(k)
i

}
, 1 ≤ i ≤ j is bounded, it follows that we may develop

convergent subsequences
{
x

(k`)
i

}
, 1 ≤ i ≤ j such that

x
(k`)
i → x̂i as `→∞ (2.5)

and we define the matrix X̂ :=
(
x̂1 · · · x̂j

)
. Similarly, each of the sequences{

θ
(k)
i

}
, 1 ≤ i ≤ j are convergent since they are bounded monotonic sequences, and

we define

λ̂i := lim
k→∞

θ
(k)
i (2.6)

and Λ̂ := diag(λ̂1, . . . , λ̂j). From Lemma 2.1.1 it follows readily that

X̂∗AX̂ = Λ̂ and X̂∗BX̂ = I. (2.7)

Define r̂ := (A − λ̂jB)x̂j and assume that r̂ 6= 0. Otherwise, (λ̂j, x̂j) is an eigenpair

of (A,B) since r̂j = 0 implies that Ax̂j = λ̂jBx̂j. We also, define

Â =
(
X̂ r̂

)∗
A
(
X̂ r̂

)
=

(
Λ̂ X̂∗Ar̂

r̂∗AX̂ r̂∗Ar̂

)
(2.8)

and

B̂ =
(
X̂ r̂

)∗
B
(
X̂ r̂

)
=

(
I X̂∗Br̂

r̂∗BX̂ r̂∗Br̂

)
. (2.9)

16

Without loss of generality, let us assume that λ̂1 < · · · < λ̂j. Otherwise, we may

consider only the unique instances of λ̂i for 1 ≤ i ≤ p. Under this assumption, Sturm

sequencing can be used to show that the matrix

Â− λ̂jB̂ =

(
Λ̂− λ̂jI f

f ∗ r̂∗(A− λ̂jB)r̂

)

=


λ̂1 − λ̂j ∗

. . .
...

λ̂j−1 − λ̂j ∗
0 r̂∗r̂

∗ · · · ∗ r̂∗r̂ r̂∗(A− λ̂jB)r̂

 (2.10)

has j negative eigenvalues. Denoting the jth eigenvalue of (Â, B̂) by θ̂j, it therefore

follows that θ̂j < λ̂j.

On the other hand, for each k, we define r
(k)
j := (A− θ

(k)
j B)x

(k)
j and

Â(k) :=
(
X(k) r

(k)
j

)∗
A
(
X(k) r

(k)
j

)
and B̂(k) :=

(
X(k) r

(k)
j

)∗
B
(
X(k) r

(k)
j

)
.

We note readily that (Â(k`), B̂(k`)) → (Â, B̂) as ` → ∞ and therefore letting θ̂
(k`+1)
j

denote the jth eigenvalue of (Â(k), B̂(k)), we see that θ̂
(k`+1)
j → θ̂j by continuity of

eigenvalues. As the subspace S(k) contains at least the vectors
{
x

(k)
1 , . . . , x

(k)
j , r

(k)
j

}
,

we note that θ
(k`+1)
j ≤ θ̂

(k`+1)
j and therefore

λ̂j = lim
`→∞

θ
(k`+1)
j ≤ lim

`→∞
θ̂

(k`+1)
j = θ̂j < λ̂j (2.11)

which is a contradiction. It follows that r̂j = 0 and therefore (λ̂j, x̂j) is an eigenpair

of (A,B).

The remainder of the proof may be carried out in exactly the same way as the

proof of Proposition 3.1 in [25] in order to show that the Ritz vectors converge in

direction to an eigenvector.

A simple algorithm of the form of our generic eigensolver is the method of steepest

descent. At each outer iteration k, the constructed subspace S(k) is the two dimen-

sional subspace spanned by the Ritz vector x
(k)
1 and the residual r

(k)
1 = (A−θ(k)

1 B)x
(k)
1 .

In the language of traditional steepest descent, the residual vector may be referred

to as the search direction. The method of steepest descent is convergent as each of

Lemma 2.1.1 and Lemma 2.1.2 apply, however, convergence is usually not rapid in

the least. An algorithm of Knyazev called LOBPCG [34] may be seen as an extension

of steepest descent. At each outer iteration k of LOBPCG, the subspace S(k) is the

span of the current Ritz vector, the current residual, and the previous Ritz vector.

This algorithm enjoys considerably faster convergence than the method of steepest

descent. For more details concerning this method, see [34].

17

2.2 The Inverse Free method of Golub and Ye

In their 2002 paper [25], Golub and Ye introduced and analyzed an inverse free

preconditioned Krylov subspace algorithm for the symmetric generalized eigenvalue

problem. The principle on which this algorithm relies is the same as that of the

method of steepest descent. The fundamental difference here, however, is in the choice

of the search direction. Instead of simply choosing the residual r, the method of [25]

seeks the search direction in the Krylov subspace Km(A − ρB, r), where ρ = ρ(x).

The next iterate is therefore selected from the subspace

Km(A− ρB, x) := span{x}+Km(A− ρB, r)

The use of the Krylov subspace Km(A−ρB, r) is further motivated by inexact inverse

iteration as in [24]. The basic procedure is given in Algorithm 2.2. In the language

Algorithm 2.2 Inverse Free Krylov Subspace Algorithm for (A,B)

Input: Symmetric A, s.p.d. B, x(1) with ‖x(1)‖ = 1, and m ≥ 1.
1: ρ(1) = ρ(x(1);A,B)
2: for k = 1, 2, . . . do
3: Construct a basis Zm of Km(A− ρ(k)B, x(k))
4: Form projection Am = Z∗m(A− ρ(k)B)Zm, Bm = Z∗mBZm

5: Compute smallest eigenpair (θ, u) of (Am, Bm)
6: ρ(k+1) = ρ(k) + θ; x(k+1) = Zmu
7: end for

of our generic eigensolver, the constructed subspace at step k of the iteration is

S(k) = Km(A − ρ(k)B, x(k)) and lines four through six perform the Rayleigh-Ritz

procedure. It should also be noted that given an iterate x(k), the next iterate x(k+1)

is defined by

x(k+1) = pk(A− ρ(k)B)x(k)

where pk(z) is some polynomial with degree not exceeding m. Therefore

x(k+1) =

(
k∏

j=1

pj(A− ρ(j)B)

)
x(1) = p(A,B)x(1)

where p(z, w) is a bivariate polynomial of degree at most mk, showing this method

to be a preconditioned eigensolver by the definition of Knyazev [32, 33].

The construction of the basis of the Krylov subspace is accomplished using either

the Lanczos method or the Arnoldi method with the B inner product. With the

choice of the Lanczos method, the projection Z∗m(A − ρ(k)B)Zm is freely available

as the tridiagonal matrix of recurrence coefficients while Z∗mBZm must be explicitly

formed. If m is sufficiently large, however, orthogonality will be gradually lost forcing

18

either the need for reorthogonalization or explicit formation of Am as well. Similarly,

with the choice of B-orthonormal Arnoldi, we must explicitly form Am while Bm = I.

This comes at the price of a longer recurrence and the need for reorthogonalization

or explicit formation of Bm with larger values of m. See [25] for a more detailed

discussion concerning these issues.

The sequence of iterates, {ρ(k)} generated by Algorithm 2.2 converges to some

eigenvalue λ of the pencil (A,B) while the sequence {x(k)} converges in direction to

an eigenvector of the pencil corresponding to λ (see Lemma 2.1.2). Furthermore, an

asymptotic convergence rate for the sequence {ρ(k)} is established in [25]; this result

is recalled in the Theorem 2.2.1.

Theorem 2.2.1 (Theorem 3.4 of [25]). Let λ1 < λ2 ≤ · · · ≤ λn be the eigenvalues

of (A,B) and (ρ(k+1), x(k+1)) the approximate eigenpair obtained by Algorithm 2.2

from (ρ(k), x(k)). Let σ1 < σ2 ≤ · · · ≤ σn be the eigenvalues of A− ρ(k)B and u1 be a

unit eigenvector corresponding to σ1. Assume that λ1 < ρ(k) < λ2. Then

ρ(k+1) − λ1 ≤ (ρ(k) − λ1)ε
2
m + 2(ρ(k) − λ1)

3/2εm

(
‖B‖
σ2

)1/2

+ δk (2.12)

where

0 ≤ δk ≡ ρ(k) − λ1 +
σ1

u∗1Bu1

= O((ρ(k) − λ1)
2)

and

εm = min
p∈Pm,p(σ1)=1

max
i6=1

|p(σi)|

with Pm denoting the set of all polynomials of degree not greater than m.

The quantity ε2m bounds the rate of convergence here and it is well-known that it

may be bounded by

εm ≤ 2

(
1−

√
ψ

1 +
√
ψ

)m

, ψ :=
σ2 − σ1

σn − σ1

Thus, any scheme which increases the value of ψ will accelerate the convergence of

Algorithm 2.2. That is, any transformation which sufficiently separates σ1 from the

rest of the spectrum (of A − ρ(k)B) will correspondingly accelerate the convergence

of the sequence {ρ(k)} to λ1. We will refer to schemes aimed at transforming the

problem to make the quantity ψ larger as preconditioning schemes, and these are the

topic of Chapter 3.

2.3 Block Inverse Free Algorithms

Block methods taking the form of the generic eigensolver described in Section 2.1

include LOBPCG [34], a block variant of DACG [2],[19], and Jacobi-Davidson [17]

19

among others. The recent report by Arbenz et al. gives an overview of such algorithms

[2] with applications to structural dynamics. We seek here to develop a block variant

of Algorithm 2.2.

2.3.1 Block variant I

In order to successfully compute p eigenvalues of the pencil (A,B) using an algo-

rithm based on the generic process, it is clear from Lemma 2.1.1 and Lemma 2.1.2

that inclusion of Ritz vectors and the associated residuals in the search space give a

sufficient condition for convergence. Each of the algorithms mentioned above include

the residuals in the search space. Thus, when considering a method to compute the

p lowest eigenvalues based on Algorithm 2.2, we first examine a method which uses

the subspace S(k) = K with

K :=

p∑
i=1

Km(A− θ
(k)
i B, x

(k)
i). (2.13)

That is, any vector u ∈ K is given by u =
∑p

i=1 ui where ui ∈ Km(A−θ(k)
i B, x

(k)
i). One

may construct a basis for this subspace by first constructing p bases, say Zi for 1 ≤
i ≤ p of the p Krylov subspaces Km(A− θ

(k)
i B, x

(k)
i), 1 ≤ i ≤ p, and then performing

a global orthogonalization to obtain Z, an orthogonal basis of K. We remark that

although the basis formed by the columns of Z may be orthogonal with respect to

an arbitrary inner product, the “correct” inner product to work with here is the B

inner product, as the Ritz vectors are automatically B-orthogonal.The algorithm is

detailed in Algorithm 2.3.

Algorithm 2.3 Block variant I: direct sum of Krylov spaces

Input: Symmetric A, s.p.d. B, X(1) ∈ Rn×p with X(1)∗BX(1) = Ip, and m ≥ 1.
1: Θ(1) = diag(X(1)∗AX(1))
2: for k = 1, 2, . . . do
3: for i = 1, . . . , p do
4: Construct a basis Ẑi of Km(A− θ

(k)
i B, x

(k)
i)

5: end for
6: Orthonormalize

(
Ẑ1 · · · Ẑp

)
to obtain Z

7: Form projection Am = Z∗AZ, Bm = Z∗BZ
8: Compute p smallest eigenpairs (θi, ui), 1 ≤ i ≤ p of (Am, Bm)
9: Θ(k+1) = diag(θ1, . . . , θp); X

(k+1) = ZU , U =
(
u1 · · · up

)
10: end for

Orthonormality of the matrix Z, though not mandated by the Rayleigh-Ritz pro-

cess, is desirable as it contributes stability to the computation of the eigenpairs of the

projected problem. Moreover, the two blocks may together be rank deficient. That

20

is, although Ẑ1 and Ẑ2 are orthonormal matrices by themselves, the larger matrix(
Ẑ1 Ẑ2

)
may fail to have full column rank. The detection (and subsequent deletion)

of linearly dependent collections of vectors from Ẑ =
(
Ẑ1 · · · Ẑp

)
will be a desirable

byproduct of the global orthogonalization step.

The desire for global orthogonality here leads to difficulty in forming the projected

pencil (Z∗AZ,Z∗BZ). This is a distinct weakness of this approach, despite the

inherently parallel process expressed by the loop in lines three through five. In the

case that B = I, however, the Krylov space Km(A − θ2B, x2) = Km(A − θ1B, x2)

for any choices of θ1 and θ2, and the algorithm reduces to the usual Block Lanczos

algorithm. The need for performing the global orthogonalization therefore evaporates;

the method takes care of the orthogonalities. By examining carefully the construction

of the basis Z, we may arrive at a process which obviates the need for the global

orthogonalization in line six of Algorithm 2.3 while still results in an orthogonal

basis, even when B 6= I. Also, by storing some auxiliary vectors throughout the

computation, construction of the projected problem becomes easier. Of course, we

trade storage for floating point operations.

2.3.2 Revealing an Arnoldi-like structure

Using the Arnoldi process to generate bases of Km(A − θ
(k)
i B, x

(k)
i) in line four of

Algorithm 2.3 gives the relations

(A− θiB)Ẑi = ẐiĤi + wie
∗
m 1 ≤ i ≤ p (2.14)

where Ĥi is upper Hessenberg and wie
∗
m is the rank one error term generated by the

Arnoldi process such that Ẑ∗i wi = 0. We have suppressed the superscripts on θi for

readability. Collecting all of the relations (2.14) we obtain

AẐ = ẐĤ + Ŵ +BẐ(Θ⊗ Im+1) (2.15)

where

Ĥ = diag(Ĥ1, · · · , Ĥp) and Ŵ =
(
w1e

∗
m w2e

∗
m · · · wpe

∗
m

)
and we recall that given two matrices A = [aij] and B, the Kronecker product of A

and B is

A⊗B :=


a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
am1B am2B · · · amnB

 .

Equation (2.15) is similar to the usual block Krylov relation, however with one striking

difference. The usual error term for a block Krylov process is an n × (mp) matrix

whose first (m − 1)p columns are zero. Our error term, Ŵ , consists of p blocks of

21

dimension n×m, each of which has the mth column as the only nonzero column. To

give the error term in relation (2.15) a structure similar to that of the usual block

Arnoldi process, we multiply by an appropriately chosen permutation matrix. Indeed,

let {e1, . . . , em} be the canonical basis of Rm and let {ε1, . . . , εp} be the canonical basis

of Rp. Define

P :=


e1ε

∗
1 e2ε

∗
1 · · · emε

∗
1

e1ε
∗
2 e2ε

∗
2 · · · emε

∗
2

...
...

...
e1ε

∗
p e2ε

∗
p · · · emε

∗
p

 (2.16)

and note that P is a p×m block permutation matrix with blocks of dimension m×p.
As Ŵ is a 1 × p block matrix with blocks of dimension n × m, we may form the

product ŴP to obtain

ŴP = w1e
∗
m

(
e1ε

∗
1 e2ε

∗
1 · · · emε

∗
1

)
+ · · ·+ wpe

∗
m

(
e1ε

∗
p e2ε

∗
p · · · emε

∗
p

)
=
(
0 0 · · · w1ε

∗
1

)
+ · · ·+

(
0 0 · · · wpε

∗
p

)
= WE∗m (2.17)

where W =
(
w1 · · · wp

)
and Em is the m × 1 block matrix of p × p blocks whose

mth block is Ip, the identity of order p.

Post-multiplying (2.15) by P , noting that Imp = PP ∗, and applying (2.17) we

obtain

A(ẐP) = (ẐP)(P ∗ĤP) +WE∗m +B(ẐP)P ∗(Θ⊗ Im)P. (2.18)

Investigating further, we find that

P ∗(Θ⊗ Im)P =


ε1e

∗
1 ε2e

∗
1 · · · εpe

∗
1

ε1e
∗
2 ε2e

∗
2 · · · εpe

∗
2

...
...

...
ε1e

∗
m ε2e

∗
m · · · εpe

∗
m



θ1e1ε

∗
1 θ1e2ε

∗
1 · · · θ1emε

∗
1

θ2e1ε
∗
2 θ2e2ε

∗
2 · · · θ2emε

∗
2

...
...

...
θpe1ε

∗
p θpe2ε

∗
p · · · θpemε

∗
p

 . (2.19)

It is easy to see that each off-diagonal block of the product in (2.19) is zero and each

diagonal block is simply

θ1ε1ε
∗
1 + θ2ε2ε

∗
2 + · · ·+ θpεpε

∗
p = Θ. (2.20)

Therefore P ∗(Θ⊗ Im)P = (Im ⊗Θ).

Considering the matrix P ∗ĤP , we note that the ij block of P ∗ĤP is given by

(
ε1e

∗
i ε2e

∗
i · · · εpe

∗
i

)

Ĥ1

Ĥ2

. . .

Ĥp



ejε

∗
1

ejε
∗
2

...
ejε

∗
p

 =

p∑
k=1

(e∗i Ĥkej)εkε
∗
k. (2.21)

22

The ij block of P ∗ĤP is therefore a diagonal matrix whose entries are the ij entries

of each matrix Ĥk, 1 ≤ k ≤ p. Thus, P ∗ĤP is block upper Hessenberg with a lower

bandwidth of p. Revisiting (2.15), we now write

AZ̃ = Z̃H̃ +WE∗m +BZ̃(Im ⊗Θ) (2.22)

where Z̃ = ẐP =
(
Z̃1 · · · Z̃m

)
and H̃ = P ∗ĤP and is, again, block upper Hessen-

berg. The relation (2.22) is even more like that obtained from the Arnoldi process.

Furthermore, we note that by construction, Z̃∗i Z̃j has all zeros for its diagonal entries

when i 6= j and Z̃∗1BZ̃1 = I, but this is still far from the desired global orthogonality.

Following the proposal of Algorithm 2.3, we may choose to explicitly orthogonalize

the columns of Ẑ, or rather, the columns of Z̃. Orthogonalizing the columns of Z̃

yields

Z̃ =
(
Z̃1 Z̃2 · · · Z̃m

)
=
(
Z1 Z2 · · · Zm

)

R11 R12 · · · R1m

0 R22 · · · R2m

.
...

0 Rmm

 = ZR

(2.23)

where R is an upper triangular matrix. We may then substitute Z̃ = ZR into (2.22)

to obtain

AZR = ZRH̃ +WE∗m +BZR(Im ⊗Θ) (2.24)

and therefore

AZ = Z(RH̃R−1) +W (E∗mR
−1) +BZ(R(Im ⊗Θ)R−1). (2.25)

We note that the matrix RH̃R−1 maintains its block Hessenberg and its banded

structure since R is upper triangular. Also, E∗mR
−1 = R−1

mmE
∗
m, so our error term

becomes WR−1
mmE

∗
m. The matrix R(Im ⊗ Θ)R−1 now becomes an upper triangular

matrix as opposed to a simple diagonal one. Thus, although we have obtained a block

Krylov-like relation, it comes at the cost of a global orthogonalization step. Although

in theory this global orthogonalization may not be strictly necessary, without it,

the basis Z may become ill-conditioned and thereby cause the algorithm to perform

poorly.

2.3.3 A Block Arnoldi-like Process and Block variant II

Investigating relation (2.22) on a block-by-block basis reveals that

AZ̃j =

j+1∑
k=1

Z̃kH̃kj +BZ̃jΘ (2.26)

23

for each j : 1 ≤ j ≤ m− 1, and

AZ̃m =
m∑

k=1

Z̃kH̃kj +W +BZ̃mΘ. (2.27)

This is quite reminiscent of the Arnoldi recurrence (1.8), and motivates us to redefine

the block entries in the block upper Hessenberg matrix to impose orthogonality on

the blocks of Z̃. Indeed, (2.26) and (2.27) suggest that we build a basis for a block

Krylov-like subspace by means of an Arnoldi-like process performed with respect to

the linear operator op : Rn×p → Rn×p defined by op(X) := AX −BXΘ. To this end,

suppose that the inner product we wish to work with is defined by the symmetric

positive definite matrix M . Given an arbitrary block Z1 such that Z∗1MZ1 = I, we

develop

W = AZ1 −BZ1Θ− Z1H11 (2.28)

with H11 = Z∗1M(AZ1 − BZ1Θ). We then define Z2 and H21 by W = Z2H21, the

QR factorization of W with respect to the M inner product. We may then continue

to develop Z3, . . . , Zm in a similar Arnoldi-like manner. Indeed, applying Arnoldi to

op(·) to build a block variant of Algorithm 2.2 seems to be a natural block extension

of the algorithm, from merely a notational standpoint. The algorithm is detailed in

Algorithm 2.4. By construction, we obtain an orthonormal matrix Z and a block

Algorithm 2.4 Arnoldi-like process for the operator op(X) := AX −BXΘ

Input: A,B ∈ Rn×n,Θ ∈ Rp×p, s.p.d. M , Z1 ∈ Rn×p, with Z∗1MZ1 = Ip, and m ≥ 1.
1: for j = 1, . . . ,m do
2: Wj = AZj −BZjΘ
3: for i = 1, . . . , j do
4: Hij = Z∗i MWj

5: Wj = Wj − ZiHij

6: end for
7: Compute Wj = Zj+1Hj+1,j, the QR factorization of W with respect 〈·, ·〉M .
8: end for

upper Hessenberg H. Furthermore, we have the Arnoldi-like relation

AZ = ZH +WmE
∗
m +BZ(Im ⊗Θ) (2.29)

where Z∗MWm = 0. It is interesting to note that Algorithm 2.4 does not take

advantage of any of the possible symmetries of A,B, or Θ. Indeed, one would hope

that in our case, where A and B are both symmetric, and Θ is diagonal, we could then

reduce the Arnoldi-like algorithm to a Lanczos-like algorithm, however, the presence

of Θ does not allow this. If Θ is a multiple of the identity, then of course we have such

24

a reduction, but in general this will not be the case. Also, if B = I, the algorithm

reduces to the usual block Lanczos, and we may use a short-term recurrence.

Just as with the usual block Arnoldi/Lanczos processes, for some j, the matrix Wj

generated by Algorithm 2.4 may not have full column rank, or may have nearly lin-

early dependent columns. Indeed, this situation should be revealed when attempting

to compute the QR factorization of Wj, and the offending columns should be deleted

altogether, or replaced. We note that for the usual block Lanczos, Golub and Under-

wood [22] recommend replacing the dependent columns while Cullum and Willoughby

[14] advocate dropping the offenders. In either case, this foists some difficulty onto

the generation of the blocks Zj+1 and Hj+1,j. For this reason, Ruhe [47] and Freund

[18] suggest altering the block algorithm to make this situation somewhat easier to

handle. This modification is known as band Lanczos, and it reduces a matrix to a

banded form as opposed to a block upper Hessenberg form. Band Lanczos has the

advantage of not requiring a QR factorization subprogram, however, we take, in some

measure, a performance hit by moving to level 2 BLAS from level 3. That is, we no

longer form blocks AZi, but rather we must form single vectors Azi.

A band Arnoldi-like process corresponding to Algorithm 2.4 may be derived from a

straightforward adaptation of the algorithm found in [18] and has only one little bit of

extra bookkeeping, namely, that associated with which operator to use in generating

a candidate Arnoldi vector. With a block size of p, the process demands storage of

p candidate vectors. At each step j, a candidate vector is either added to the basis

or dropped from consideration altogether. When the candidate is added to the basis,

another candidate is added so that there are still p candidates. When the candidate

is dropped, no new candidate is considered resulting in an effective reduction of block

size. Perhaps the best way to describe the method is through an example.

Suppose we have a block size p = 2 and two initial vectors z1 and z2. These are

our initial candidate vectors, and as candidate vectors, they should wear hats. The

algorithm is stepped through in the following manner:

1. Determine whether or not to accept ẑ1 as an Arnoldi vector. As it was one of our

initial vectors, it is accepted as z1, the first Arnoldi vector. We then orthogonal-

ize the remaining candidate vectors against the newly accepted Arnoldi vector

z1. Next, as we accepted a new Arnoldi vector, we construct a new candidate

vector ẑ3 and store it where ẑ1 was stored. The rule for forming ẑ3 is

ẑ3 = Az1 −Bz1θ1.

We then orthogonalize the new candidate vector against all of the accepted

Arnoldi vectors. In this case, the only vector to orthogonalize against is z1.

2. We now accept ẑ2 as the next Arnoldi vector z2 as it was one of our initial vectors.

The remaining candidate vectors (only ẑ3 in this case) are orthogonalized against

25

z2. A new candidate vector ẑ4 is constructed as

ẑ4 = Az2 −Bz2θ2

and stored where ẑ2 was stored. The new candidate is now orthogonalized

against all accepted Arnoldi vectors.

3. We now consider whether or not to accept the candidate ẑ3, and let’s suppose

that this candidate is unacceptable as ‖ẑ3‖ < τ , where τ is a deflation tolerance.

We discard this vector, and moreover, we never again use θ1 to build a candidate

vector. More accurately, we never again use A − θ1B as the operator used

in constructing a candidate vector. p is now effectively one, and the process

proceeds as the usual single vector Arnoldi for the operator A− θ2B.

4. Suppose now, that the next candidate ẑ4, is accepted as a new Arnoldi vector

z3. There are now no candidates to orthogonalize against, and a new candidate

ẑ5 is constructed as

ẑ5 = Az3 −Bz3θ2

and subsequently orthogonalized against all accepted Arnoldi vectors.

5. The process continues as usual single vector Arnoldi until either we exhaust the

allotted storage or we need another deflation.

In general with a block size p, p exact deflations implies that the eigenvalues of the

projected problem are eigenvalues of the original problem. With a sufficiently tight

deflation tolerance, this may be used as a stopping criterion for the algorithm. We

also point out that the band Arnoldi variant described here implicitly assumes that

Θ is a diagonal matrix, whereas no such assumption was made in the development

of Algorithm 2.4. A detailed description of the band Arnoldi-like process is given in

Algorithm 2.5.

With the block or band Arnoldi-like process, we may construct a block variant

of Algorithm 2.2 which differs from block variant I only in the choice of subspace at

each step. Indeed, we note that by examining the relation (2.29) on a vector-by-vector

basis, it is easy to see that the subspace spanned by the columns of Z as constructed

by Algorithm 2.4 differs from the subspace K. These subspaces, though different, yield

algorithms which have similar convergence properties, as we shall see in the examples

that follow. This is not too surprising in light of the discussion motivating the block

Arnoldi-like process. We note that the use of either the block or band Arnoldi-like

process allows us to compute and store the products AZ and BZ throughout the

development of the basis. Formation of the projection may be obtained at the cost

of applying Z∗ to each of these stored blocks for a total of 2(mp)2(2n − 1) floating

point operations. For completeness, block variant II is detailed in Algorithm 2.6.

26

Algorithm 2.5 Band Arnoldi-like process

Input: A,B ∈ Rn×n, {ẑ1, . . . , ẑp}, and diagonal Θ ∈ Rp×p.
1: Set d = 0. /* d counts the number of deflations. */
2: Set k = 1. /* k indicates which θ to use. */
3: for j = 1, 2, . . . do
4: if (ẑj should be included in the basis) then
5: Normalize ẑj to obtain the Arnoldi vector zj−d.
6: Orthogonalize the p− 1 remaining candidates against zj−d.
7: else
8: Relabel θi = θi+1 for i : k ≤ i ≤ p− 1.
9: Set p = p− 1, d = d+ 1.

10: if (p == 0) then
11: break
12: else
13: continue
14: end if
15: end if
16: Construct ẑj+p = Azj−d − θkBzj−d

17: Orthogonalize ẑj+1 against all accepted Arnoldi vectors.
18: if (k < p) then
19: k = k + 1
20: else
21: k = 1
22: end if
23: end for

Algorithm 2.6 Block variant II: block or band Arnoldi variant

Input: Symmetric A, s.p.d. B, X(1) ∈ Rn×p with X(1)∗BX(1) = Ip, and m ≥ 1.
1: Θ(1) = diag(X(1)∗AX(1))
2: for k = 1, 2, . . . do
3: Apply block Arnoldi (Algorithm 2.4) or band Arnoldi (Algorithm 2.5) to de-

velop a basis Z.
4: Complete the projection Am = Z∗AZ, Bm = Z∗BZ
5: Compute p smallest eigenpairs (θi, ui), 1 ≤ i ≤ p of (Am, Bm)
6: Θ(k+1) = diag(θ1, . . . , θp); X

(k+1) = ZU
7: end for

27

2.4 Further considerations

To construct a robust black-box eigensolver, we need to be able to declare when

Ritz pairs are accepted as eigenpairs and purge them as necessary. Also, we should

include a strategy for choosing a suitable block size when that information may not

be available, as the distribution of eigenvalues will affect the rate of convergence of

the algorithms. This section provides some details about extra steps taken in the

development of the block algorithm.

2.4.1 Deflation of converged Eigenvectors

Suppose that we have a collection of j Ritz vectors that have converged to the eigen-

vectors corresponding to the j algebraically smallest eigenvalues λ1 ≤ · · · ≤ λj of

the pencil (A,B). Suppose further that we have still not obtained all of the desired

eigenpairs. Iterating the outer loop in either of the block variants with the converged

Ritz pairs will lead to extra computation. To avoid superfluous computation, one

usually removes the converged eigenvectors via a process called deflation, and there

are at least two ways to go about this; deflation schemes are discussed in [14] [46],

[50], and [62].

Explicit deflation removes the j Ritz vectors from the initial block and makes use

of the observation that given any j × j diagonal matrix Σ, the pencil

(A+BXjΣX
∗
jB,B) (2.30)

has eigenvalues λ1 +σ1, λ2 +σ2, . . . , λj +σj, λj+1, . . . , λn. Here, Xj denotes the matrix

whose columns are the j eigenvectors corresponding to the eigenvalues x1, . . . , xj. By

all accounts, this idea is attributed to Hotelling, and is easy to verify by noting that

the matrix X of eigenvectors of (A,B) simultaneously diagonalizes A and B. Thus if

the eigenvectors are normalized such that X∗BX = I, then we have

X∗(A+BXjΣX
∗
jB)X = Λ +



σ1

. . .

σj

0
. . .

0


(2.31)

showing that the eigenvalues are as desired. Indeed, in an implementation of Al-

gorithm 2.2, Money and Ye [40] use this technique to successively compute eigen-

pairs from the left end of the spectrum. They take special care, however, to choose

σ1, . . . , σj such that λp+1 < λi + σi < λn, 1 ≤ i ≤ j so as to preserve the convergence

properties of the algorithm. That is, such choices of σi will not necessarily degrade

28

the convergence of each Ritz pair, as the interval which determines the rate of con-

vergence is interfered with minimally, if at all. The block variant of the algorithm

may be applied to the pencil (2.30) with a block size of p− j in order to resolve the

remaining p− j desired eigenpairs.

Implicit deflation, on the other hand, includes the already converged Ritz vectors

in successive bases, however, their “descendents” are not included. In fact, the band

Arnoldi process described by Algorithm 2.5 has this deflation built in. The algorithm

thus recomputes the Ritz pairs, and Cullum and Willoughby [14] point out that this

has the desirable side effect of possibly refining the eigenvector approximations. This

is in contrast to the approach taken in explicit deflation where Ritz vectors are locked

when convergence is declared. Such refinement comes at the cost of maintaining a

few extra Ritz vectors, which in an explicit deflation scheme, would have been pushed

out to make more room for Arnoldi vectors.

As for determining convergence of the Ritz pairs, we use the residual norms as

motivated by Theorem 1.2.9. We note that due to the restart, at the second inner

iteration, we have a measure of the residual vector for free. That is, when using the

block Arnoldi-like process in block variant II, the block H21 is just the residual. Thus,

we may get the previous residual norms by taking the norms of the columns of H21.

We note that an implicit deflation procedure detects these converged Ritz pairs and

deflates them automatically.

2.4.2 Adding the previous Ritz vector

Knyazev’s LOBPCG algorithm [34] is essentially the steepest descent algorithm with

the previous iterate added. In fact, Knyazev adds the vector p(k) = x(k)−x(k−1) to the

steepest descent subspace, provided that it is significant. Simply adding this vector

gives a significant increase in the rate of convergence. In view of this, Money and Ye

[40] also add the vector p(k) to the subspaceKm(A−ρ(k)B, x(k)), and their experiments

show a similar increase in convergence. We will add the block of difference vectors

to our subspaces in block variants I and II. We point out that as of yet, there is

no theory defining just how addition of this vector affects the rate of convergence

of schemes in the form of our generic eigensolver, although many have observed the

benefit [34], [35], [40], [44]. Moreover, it has been noted that the addition of any more

previous iterates, say the past two or three for example, does not give a corresponding

acceleration.

2.4.3 Adaptively choosing the block size

The block methods described above are easily modified to include a scheme for the

adaptive choice of block size as in [3] and [63]. Indeed, all that is required is a test

29

for clustering of Ritz values and then, if necessary, increase of the block size. Due

to the inner-outer iteration structure of the algorithms, changing the block size does

not complicate construction of the basis in any way; vectors must simply be added to

the initial block. The newly added vectors should be B orthonormal to the current

vectors, and the corresponding eigenvalue approximations should be chosen as the

Rayleigh quotients of the new vectors.

As in the adaptive block Lanczos procedure in [63], we are only interested in

possible clusters which exceed our current block size, since presence of such clusters

degrade convergence of our algorithms. In order to detect such a cluster, we use a

heuristic like the one appearing in Ye’s paper. That is, supposing that we wish to

compute the algebraically smallest eigenvalue λ1, we would begin with a block size of

at least two, and we would examine the quantity

θ2 − θ1

θ3 − θ2

. (2.32)

If the ratio (2.32) is smaller than some user-defined tolerance η that indicates that

the eigenvalues approximated by those Ritz values may be clustered, and increasing

the block size is justified. More generally, if the w algebraically smallest eigenvalues

of (A,B) are desired, and the current block size is p > w, then if

θp − θw

θp+1 − θp

≤ η (2.33)

is satisfied, we increase the block size by one and continue.

Should the algorithm experience misconvergence, that is, if the extreme Ritz values

begin to converge to some eigenvalues but suddenly “step over” those eigenvalues on

their way to converging to the truly extreme eigenvalues then the heuristic (2.33)

may falsely indicate a larger cluster size than is really there when η is sufficiently

large. Therefore, a limit on the block size should be imposed to regulate storage

requirements. Of course, setting the block size to be the size of the largest known

cluster is ideal, however, this may not always possible.

2.5 Some Implementation Details

For the purposes of constructing examples, the algorithms described above have been

implemented as Matlab programs. Portions of these codes will ultimately be woven

into the piece of software from [40] and made available for public distribution. We

discuss a few pertinent issues pertaining to the implementation of these programs and

omit a detailed listing of the programs.

The block algorithm is realized as one driver, with subroutines corresponding to

each of the three algorithms for basis construction described above. There is also

30

a subroutine implementing the addition of the previous Ritz vectors as described

in Section 2.4.2 and this subroutine is meant to be called from the routine which

constructs the basis. A pseudocode listing of the implemented algorithm is given as

Algorithm 2.7.

Algorithm 2.7 The Implemented Block Algorithm

Input: Symmetric A, s.p.d. B, initial vectors X ∈ Rn×p and the parameters outlined
in Table 2.1.

1: Orthonormalize X with respect to the B-inner product to obtain X(1).
2: Compute initial eigenvalue approximations Θ(1) = X(1)∗AX(1).
3: for j = 1 : maxits do
4: Build the basis Z and form the projected problem (Am, Bm). The basis build

routine should add the previous Ritz vector, if requested.
5: Examine the constructed residuals; these are a byproduct of the basis build

routine. If their norms satisfy the tolerance, break;
6: Compute p smallest eigenpairs of (Am, Bm) and form Θ(k+1) and X(k+1).
7: if use adaptive block sizing then

8: Compute the ratio φ(k+1) =
θ
(k+1)
p −θ

(k+1)
w

θ
(k+1)
p+1 −θ

(k+1)
p

9: if φ(k+1) < η then
10: p = p+ 1
11: Add a column to X(k+1) and B-orthonormalize it against the other

columns.
12: Compute θ

(k+1)
p = x

(k+1)
p .

13: end if
14: end if
15: end for

The basis development algorithms are implemented with an eye to minimizing

storage and matrix-vector multiplies (matvecs). We remark, however, that the num-

ber of matrix-vector multiplies returned by the driver routine accounts for all appli-

cations of A or B to a single vector. Thus, if A is applied to an n × p block, this is

counted as p matvecs. Furthermore, calls to modified Gram-Schmidt to orthogonalize

a collection of p vectors with respect to the inner product defined by the matrix B

requires as many as 2p−1 matvecs with B, depending on whether or not full reorthog-

onalization is used. These matvecs are not counted in the total counts reported in the

experiments. Rather, the number of calls to the modified Gram-Schmidt subprogram

is reported.

Regarding storage, the complete basis Z is stored, as well as the matrix BZ. Here

we trade storage for diminishing the number of necessary matvecs, however, with

large values of m, this option may become intractable. Also, only the upper triangles

of the projected matrices Am and Bm are maintained.

31

Parameter Description Default Value

w The number of desired eigenpairs. 1
p The initial block size. 2
m The number of inner iterations. 2
maxits The maximum number of outer iterations. 300
ε The residual norm tolerance. 1e−12
τ The deflation tolerance. 1e−08
δ The difference tolerance. 1e−08
adapt Flag indicating whether or not to use adap-

tive block sizing.
true

η The clustering tolerance (only used if
adapt is true).

1e−01

max p The maximum block size permitted (only
used if adapt is true).

12

add previous Flag indicating whether or not to add the
previous Ritz vector to the basis.

true

Table 2.1: Parameters for BLOCKEIGIFP

This method is far from parameter-free, however, for the most part, sensible de-

fault choices may be made, especially if we allow for adaptive choice of block size. The

necessary parameters are detailed in Table 2.1. Notably, we accept four tolerances

among our parameters, many of which may be defaulted. The residual tolerance ε is

used as a stopping criterion. The deflation tolerance τ is used to determine whether

or not to deflate a candidate vector. The clustering tolerance η is used to determine

whether or not to increase the block size, and the difference tolerance δ is used to

determine whether or not the previous Ritz vector is significant enough to add to the

basis. One remark about the stopping criterion is in order here. We note that the

residual Ax
(k)
i − θ

(k)
i Bx

(k)
i is explicitly computed during the construction of the basis

in step k + 1, and thus there is no need for computation of this quantity at the end

of step k. The usual deflation tolerance τ is not applicable to this vector, and in our

codes, we use ε to determine deflation, as deflation of this vector is tantamount to

declaring that the Ritz pair (θ
(k)
i , x

(k)
i) has converged.

2.6 Numerical Examples I

Here we consider some examples illustrating the performance of the block algorithms

described in Section 2.3 above. In this section, the algorithms are applied without pre-

conditioning. We discuss preconditioning techniques for the algorithms and present

examples illustrating the effects of various techniques in Chapter 3.

32

Figure 2.1: Mesh for barbell shaped domain.

2.6.1 Example: block versus single vector

The first example we consider is the Laplacian eigenvalue problem

−∆u(x) = λu(x) x ∈ Ω (2.34)

u(x) = 0 x ∈ ∂Ω

with Ω being the barbell shaped domain depicted in Figure 2.1. The mesh contains

2713 nodes, of which 2441 are interior nodes. The discretized problem Kx = λMx

is obtained by a finite element model obtained using Matlab’s PDE toolbox. Here

K and M are symmetric positive definite matrices of dimension 2441 × 2441; the

Dirichlet boundary conditions are eliminated in the construction of these matrices.

The pencil (K,M) has eigenvalues occurring in small clusters of two due to the binodal

structure of the domain. In fact the two algebraically smallest eigenvalues match to

five significant digits. Here we illustrate the difficulties the single vector algorithm

experiences in the presence of these clusters, and the remedies afforded by the block

variants. Indeed, running BlockVarII(1,4) fails to converge after 600 outer iterations.

Also, increasing m here fails to give convergence; it merely accelerates the rate at

which we get to stagnation. This is precisely the principle of Theorem 2.2.1; the degree

of the polynomial is simply too small to cope with small gap between the lowest two

eigenvalues of the iteration matrix. The residual norm histories of BlockVarII(1, m)

for m = 2, 4, 8, 16 appears in Figure 2.2. Convergence is obtained for BlockVarII(1,90)

however, this is at the extreme cost of 180 matrix-vector multiplies, and storage of

up to 90 vectors which must be orthogonalized against per outer iteration! Increasing

the block size to p = 2 gives convergence for all choices of m, with convergence

accelerated as m increases. The residual norm histories for the lowest eigenvalue for

BlockVarII(2,m), m = 2, 4, 8, 16 are presented in Figure 2.3.

33

0 100 200 300 400 500 600
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Outer iterations

R
es

id
ua

l n
or

m

Figure 2.2: Convergence history of BlockVarII(1,m), m = 2 (solid) 4 (dotted),
8(dashed), 16(dash-dot).

0 100 200 300 400 500 600
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Outer iterations

R
es

id
ua

l n
or

m

Figure 2.3: Convergence history of BlockVarII(2,m), m = 2 (solid) 4 (dotted),
8(dashed), 16(dash-dot).

34

0 100 200 300 400 500
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Outer iterations

R
es

id
ua

l n
or

m

Figure 2.4: Convergence history of BlockVarIIp(1,4).

2.6.2 Example: adding the previous Ritz vector

In both cases (p = 1 and p = 2), addition of the previous Ritz vector accelerates

convergence. For the single vector case, convergence is obtained, even for the modest

choice m = 4. Convergence here, however, is irregular, owing to the presence of the

cluster. Again, we point out that there is currently no known theory elucidating this

behavior. The convergence history of BlockVarIIp(1,4) is presented in Figure 2.4. For

the case p = 2, 3297 matrix-vector multiplies are required to obtain convergence, as

opposed to the 5006 matrix-vector multiplies required for convergence when p = 1.

We remark that for this price, we have two converged eigenpairs instead of just one

making the cost 1649 matrix-vector multiplies per eigenpair. That is, roughly one-

third of the work is required for the price of storing five extra vectors (four for the

extra block size, and one for adding the previous Ritz vector). The convergence

history of the two lowest eigenpairs obtained from BlockVarIIp(2,4) is presented in

Figure 2.5. We note further that BlockVarII(2,4) in the first example required 9602

matrix-vector products to obtain the two lowest eigenpairs with residuals on the order

of 6e− 09. This is almost three times as many as the number of matvecs required of

BlockVarIIp(2,4) and only offers roughly two-thirds of the accuracy. The negligible

cost of five extra vectors is well worth the work saved.

35

0 50 100 150
10

−15

10
−10

10
−5

10
0

10
5

Outer iterations

R
es

id
ua

l n
or

m

Figure 2.5: Convergence history of BlockVarIIp(2,4).

2.6.3 Example: comparing basis construction methods

The basis used in BlockVarI is different from the basis generated by the block Arnoldi-

like process, however, the convergence characteristics of the two algorithms are re-

markably similar. This is not too surprising in view of the discussion in Section 2.3.

Figure 2.6 shows the convergence histories for BlockVarI(2,8) and BlockVarII(2,8)

applied to the Laplacian eigenvalue problem of Section 2.6.1.

2.6.4 Example: choosing the number of inner iterations

The choice of the number of inner iterations m, certainly has an effect on the quality

of the iteration. Indeed m can be any integer larger than or equal to two, and the

question at hand is what is the optimal choice of the parameter? Is it always the case

that larger values of m gives better convergence? In terms of outer iterations, the

answer is yes. Larger values of m require fewer outer iterations to complete, but at

some point, the number of matrix vector multiplications and the amount of storage

required per outer iteration will become so high that it becomes infeasible to pay

those costs.

We present here some data obtained by running BlockVarIIp(1, m) on a family of

operators obtained from the usual uniform five-point finite difference discretization

36

0 50 100 150
10

−15

10
−10

10
−5

10
0

10
5

Outer Iterations

R
es

id
ua

l N
or

m

(a) BlockVarI

0 50 100 150
10

−15

10
−10

10
−5

10
0

10
5

Outer Iterations

R
es

id
ua

l N
or

m

(b) BlockVarII

Figure 2.6: Convergence histories of two lowest eigenvalues computed by Block-
VarI(2,8) and BlockVarII(2,8).

37

Problem Size (k2) 625 900 1225 1600 2025 2500 3025
m̂ 13 29 12 13 11 20 25
m̂/k 0.520 0.967 0.343 0.325 0.244 0.400 0.500

Table 2.2: Empirically optimal number of inner iterations m̂ for finite difference
discretized Laplacian of order k2.

of the boundary value problem

−∆u(x, y) + ρ(x, y)u(x, y) = λu(x, y) (x, y) ∈ Ω (2.35)

u(x, y) = 0 (x, y) ∈ ∂Ω.

where Ω = [0, 1] × [0, 1] with step sizes ∆x = ∆y = 1
k+1

. We take ρ(x, y) = 0

and form the discretized operator A, which has dimension k2. We then compute

the smallest eigenvalue of A by executing BlockVarII(1,m) for k = 25, 30, . . . , 55

and m = 2, 3, . . . , 72. Figure 2.7 shows the number of outer iterations required for

convergence of the smallest Ritz value when k = 50 plotted against the value of the

parameter m. Also presented is a plot of the total number of inner iterations required

for convergence for the same problem. Table 2.2 shows the inner iteration value,

denoted m̂ which gave the fewest total inner iterations. Also presented is the ratio
m̂
k

= m̂√
n
, and this data is used to justify the selection of m ≈ 1

2

√
n for the more

difficult problems seen later. We stress, however, that generally, the optimal value m

is linked to the relative difficulty of the problem; for easier problems, smaller values of

m give excellent performance, while for more difficult problems, larger values of m are

required. This example indicates that the optimal number may be linked somehow

to the condition number of the matrix as for finite difference discretizations of elliptic

partial differential equations grows as O (k2). This connection is tenuous at best, but

deserves more investigation.

In their package Eigifp, Money and Ye [40] begin iterations with m = 3 and then

increase if the convergence rate they are tracking is not suitable. We include no such

strategy in our codes, but acknowledge the benefit of such a strategy, as for more

difficult problems a small number of inner iterations will not suffice.

2.6.5 Example: adaptive block sizing

Motivated by the work in [63], we have discussed a strategy for adaptively choosing

the block size. Here, we examine the effect of adaptive block sizing on the convergence

of the block algorithm. We again consider the Laplacian eigenvalue problem (2.34),

however, now the domain under consideration is the four node domain depicted in

Figure 2.8. This mesh is less refined, containing only 1553 nodes of which 1217 are

interior nodes. The four node structure of this domain gives the discretized problem

38

0 10 20 30 40 50 60 70 80
0

50

100

150

200

250

Number of Inner Iterations

O
ut

er
 It

er
at

io
ns

0 10 20 30 40 50 60 70 80
300

320

340

360

380

400

420

440

460

480

500

Number of Inner Iterations

To
ta

l I
nn

er
 It

er
at

io
ns

 re
qu

ire
d

Figure 2.7: Outer and total inner iterations versus m.

39

Figure 2.8: Mesh for four node domain.

eigenvalues in clusters of four. As before, the mesh and the resulting finite element

formulation are obtained from the Matlab PDE toolbox. The convergence history

of adaptBlockVarIIp(2, 4) is presented in Figure 2.9. The initial block size in this

case is two, and the final block size is five, corresponding to the clustering of the

four algebraically smallest eigenvalues. To obtain these approximations, 2966 matrix

vector multiplications were required. On the other hand, with a fixed initial block

size of four and no adaptive block sizing, the algorithm required only 2867 matvecs to

converge. Indeed, as pointed out in [63], the algorithms will perform better in general

if a suitable block size is known a priori. Again, such knowledge may not be at hand,

and an adaptive scheme such as this may be necessary in detecting multiplicities.

2.6.6 Example: the need for accelerated convergence

The problems considered above are representative of many engineering problems, how-

ever, they are well-conditioned and usually serve only as model problems. Here we

consider problems from the popular Harwell-Boeing collection [16] obtained from the

40

0 10 20 30 40 50 60 70 80
10

−15

10
−10

10
−5

10
0

10
5

Outer iterations

R
es

id
ua

l n
or

m

Figure 2.9: Convergence history of adaptBlockVarIIp(2,4).

Matrix Market [39]. In particular, we consider the problems from the BCSSTRUC

collection. This collection is intended to be representative of modeling techniques

in the dynamic analysis of structures. We demonstrate how poorly the algorithm

performs on these more realistic problems in an effort to motivate the need for pre-

conditioning, which will be discussed at length in Chapter 3. We note that for some

of these problems (BCSST01, BCSST03, BCSST04, BCSST13), the mass matrix is

only semidefinite and not positive definite as the algorithm theoretically requires.

Since the stiffness matrices associated with these problems are all positive definite,

the algorithm has no trouble, as is demonstrated below. Generally, we may expect no

troubles in the presence of a semidefinite mass matrix provided that the mass matrix

and the stiffness matrix do not have a common null space.

The examples considered here were executed using Block Variant II with the

band Arnoldi-like process as the basis construction method. Adaptive block sizing

was used, and the previous Ritz vectors were added to the subspace in an effort to

accelerate convergence. For all problems, we used m = ceil
(

1
2

√
n
)

as the number of

inner iterations, as motivated by the discussion in Section 2.6.4 above.

The algorithm terminated either when the initial residual norm was reduced by

ten orders of magnitude, or when a maximum of 1000 outer iterations was reached.

Table 2.3 details the number of matrix-vector products (matvecs) required of the

algorithm and the final residual norm. The asterisk (∗) indicates that the maximum

number of outer iterations was reached.

Copyright c© Patrick D. Quillen 2005

41

Problem size m matvecs final residual

BCSST01 48 4 59033 1.518e+03∗

BCSST02 66 5 1761 6.395e−07
BCSST03 112 6 41533 1.785e−01
BCSST04 132 6 30527 2.409e−03
BCSST05 153 7 3873 9.765e−05
BCSST06 420 11 115863 1.516e+01∗

BCSST07 420 11 166481 1.376e−02
BCSST08 1074 17 78029 3.177e−03
BCSST09 1083 17 2076 8.899e−02
BCSST10 1086 17 190166 8.317e−02∗

BCSST11 1473 20 286749 2.419e+00∗

BCSST12 1473 20 179429 1.465e+03∗

BCSST13 2003 23 396390 2.569e+03∗

BCSST19 817 15 188746 1.470e+06∗

BCSST20 485 12 233634 2.908e+06∗

BCSST21 3600 30 103376 3.563e−01
BCSST22 138 6 8519 1.623e−03
BCSST23 3134 28 235638 7.954e+06∗

BCSST24 3562 30 402239 4.728e+05∗

Table 2.3: Convergence characteristics of adaptBlockVarIIp(2, m) applied to some
BCS matrices from the Harwell-Boeing collection.

42

Chapter 3

Preconditioning Inverse Free
Algorithms for (A,B)

Iterative methods such as Krylov methods frequently suffer from slow convergence.

In many cases, it is desirable to accelerate this convergence by applying a precon-

ditioner. Preconditioning a Krylov subspace method usually means that instead of

operating with Km(A, x), we work with the Krylov space Km(M−1A, x), where M is

the preconditioner. Usually M is chosen so that M−1A approximates the identity in

some sense, for in this case, Krylov methods will converge very quickly. M should

also be as inexpensive as possible to construct, and M−1 should be as inexpensive

as possible to apply to a vector. As the only requirement is the action of M−1 on a

vector, preconditioners need not be explicit matrices; they may be operators defined

by methods such as multilevel methods or Krylov methods themselves. In this work,

we investigate the viability of incomplete factorization preconditioners in eigenvalue

computations. For more information regarding preconditioning techniques, we refer

the interested reader to Benzi’s survey [5] and Saad’s book [52]. We begin by review-

ing how incomplete factorization preconditioners are constructed, and move into a

discussion about preconditioning the algorithms of Chapter 2.

3.1 Incomplete Factorizations—Background

For large sparse matrices, computing a complete factorization such as an LU or

QR factorization is usually intractable, since the factors may experience fill-in as the

factorization progresses. That is, the factors of a sparse matrix may have a significant

increase in the number of nonzeros as compared to the number of nonzeros in the

original matrix. For this reason, iterative methods become attractive if not necessary,

and their convergence is accelerated by using incomplete factors as preconditioners.

Two important ideas when considering the quality of preconditioners are the ideas

of accuracy and stability. The accuracy of a preconditioner refers to the difference

43

between the preconditioner and the matrix. Suppose a matrix M is to be used as a

preconditioner for a matrix A; that is, we’ll perform iterations with the matrix M−1A.

Accuracy of the preconditioner is measured by the quantity ‖A −M‖F . Stability,

on the other hand, refers to how well the preconditioned matrix approximates the

identity and is measured by the quantity ‖I −M−1A‖F . Saad points out [52] that

the important quantity to examine is usually not the error (accuracy), but rather

the preconditioned error (stability). The desire to produce more stable incomplete

factors led to the development of sparse approximate inverse preconditioners, which

will be considered in Section 3.2.

There are many flavors of incomplete factorizations corresponding first to the type

of factorization sought, and second, to different dropping strategies. We will briefly

review two basic types of incomplete factorizations—incomplete LU (ILU) factoriza-

tions, and incomplete LQ (ILQ) factorizations. First, however, we note that there

are essentially two dropping strategies—static pattern and dynamic pattern. A static

pattern dropping strategy is one in which a pattern for the nonzero structure of the

incomplete factorization is determined a priori. A good example of a static pat-

tern dropping strategy is a zero-fill strategy. That is, only positions which contained

nonzeros in the matrix to be factored are permitted to be nonzero in the factors.

On the other hand, a dynamic pattern dropping strategy develops a pattern for the

nonzero structure during the computation of the factor. Usually, the dynamic pat-

tern is determined by the relative sizes of the elements being computed; the smaller

elements in a given row or column are dropped after they are computed. Figure 3.1

shows the sparsity pattern of a zero-fill incomplete Cholesky factor and an incom-

plete Cholesky factor obtained with threshold dropping. The factorized matrix is

the symmetric positive definite matrix BCSSTK01 from the Harwell-Boeing sparse

matrix collection [16], and obtained from the Matrix Market [39]. Both of the factors

have exactly the same number of nonzeros, but rather different nonzero structures,

and both perform rather well when used as preconditioners for systems involving the

BCSSTK01 matrix.

3.1.1 ILU factorizations

With regards to specific factorizations, ILU factorizations are generally favored as they

are quite easy to compute even in the case of a sparse matrix. In implementations

involving sparse matrices, special data structures are typically used which store only

the nonzeros. Two very popular such structures are compressed sparse row (CSR)

and compressed sparse column (CSC) structures. The remainder of our discussion

will be based on the assumption that CSC structures are used. For matrices stored in

CSC format, one may use a tailored form of Gaussian elimination known as the jki-

variant which requires the update of only single columns at a time with only requiring

44

(a) Zero-fill factor (b) Threshold dropping factor

Figure 3.1: Sparsity patterns of two incomplete Cholesky factors

the access of the previous columns. The use of a tailored Gaussian elimination makes

the computation of ILU factorizations very efficient.

The most popular static pattern ILU factorizations are based on a concept known

as level of fill and are denoted by ILU(p) where p is an integer indicating the level

of fill. We do not make use of these factorizations here, with the exception of the

ILU(0), the zero-fill ILU, and we point the interested reader to [12],[49],[52]. Instead,

we favor the dynamic pattern ILU factorizations developed via numerical dropping.

Such factorizations are known as threshold ILU factorizations and are denoted by

ILUT(τ) where τ is the drop tolerance. Here, each column of the ILU is computed

and then subjected to a dropping rule. In computing a column w, it is typical to drop

the elements which are smaller than τ‖w‖. Notably, it is impossible to control fill for

an arbitrary tolerance τ and therefore, another parameter, a fill-control parameter

p, may be included. This factorization is called ILUT(τ, p). Once the column is

computed, only the p entries with the largest magnitude are kept in the L factor, and

similarly, the p largest entries are kept in the U factor, including the diagonal entry

which is always kept. Unfortunately, ILUT may fail due to encountering a zero pivot,

or exponential pivot growth. Also, ILUT may produce two factors which though

nonsingular, are entirely unstable. To remedy this, one may implement a partial

pivoting strategy and obtain an algorithm known as ILUTP, where the P stands for

pivoting. Again, we point the interested reader to details found in [51]. Finally we

note that ILUT fails to produce a symmetric matrix and as a result Chow and Saad

exploit yet another variant of Gaussian elimination to develop the ILUS factorization

[13].

When dealing with symmetric positive definite matrices, it is desirable to compute

an incomplete Cholesky (IC) factor, and there has been much work devoted to this

45

particular subject. It is well-known [5], [52] that IC factorizations for a matrix exist

when the matrix is an H-matrix with positive diagonal entries (a generalization of the

concept of M -matrices), otherwise, however, much work may be required to prevent

breakdowns of the incomplete factorization process. A popular method is the method

of Ajiz-Jennings which compensates for the dropping of entries lij by adding |lij| to

the diagonal entries aii and ajj. For details on how this is done exactly, see [1]. We

mention this method here as we will consider it in our numerical examples, thanks to

an implementation obtained from Miroslav Tuma [55].

3.1.2 ILQ Factorizations

We may also produce incomplete triangular-orthogonal factorizations, or ILQ factor-

izations. Preconditioners based on ILQ factorizations are most frequently used in

conjunction with the Conjugate Gradient method applied to the normal equations

for Linear Least squares problems. We briefly review some of the work done in this

area as we will consider normal equations like operators in Chapter 4.

A straightforward ILQ is obtained by performing Gram-Schmidt orthogonalization

incompletely. In computing ILQ factorizations with Gram-Schmidt, we note that the

columns of the orthogonal factor must be kept in order to orthogonalize successive

columns against them. In general, the columns of Q are kept after some dropping

rule has been applied. The application of this dropping rule almost always forces Q

to lose orthogonality, and in fact, the Q factor may even become singular. In view

of this, for the normal equations, Q-free methods are favored. One such method is

called compact incomplete modified Gram-Schmidt (CIMGS) [59], [60], and exploits

the fact that the complete Cholesky factor of AA∗ is exactly the triangular factor of

the LQ factorization of A. During the execution of CIMGS, the rows of the normal

equations operator are formed as needed, and the entire operator is never explicitly

formed. We will not consider preconditioners obtained from CIMGS in this work.

Rather, we consider ILQ factorizations obtained from execution of incomplete

Givens orthogonalization IGO [4], [45]. The advantage of IGO is that it always pro-

duces a unitary Q. For our purposes, Q will not even be necessary, however, implicit

maintenance of the relation Q∗Q = I will be desirable. As with other incomplete fac-

torization techniques, the IGO process is subject to a dropping strategy, either static

or dynamic. In our implementation, we use threshold dropping (a variant called

TIGO in [4], [45]) to determine if an element should be rotated (pre-filtration), and

then threshold dropping is applied to prune the resulting column (post-filtration). Al-

though much attention has not gone to using Householder reflectors in constructing

ILQ factorizations, they may be used as well. Preconditioners based on Householder

ILQ factorizations will be considered in some detail in Chapter 4.

46

3.2 Sparse Approximate Inverses—Background

Another class of preconditioners are the sparse approximate inverse preconditioners

which are motivated by the desire to construct a preconditioner M for a matrix A

which approximates A−1 directly. The foundations of this desire lie in producing a

more stable preconditioner, by eliminating the need to apply M−1. Many methods

have been considered to develop such preconditioners, although it seems that such

preconditioners are not nearly as popular as ILU type preconditioners. We review one

type of sparse approximate inverse preconditioner for symmetric positive definite ma-

trices, as it is the only such preconditioner we will consider. The method we consider

has with it an associated incomplete factorization which we will also consider. For

details and references concerning other sparse approximate inverse preconditioners,

see [5] and [52].

The SAINV [6] and RIF [7] preconditioners arise from the observation that when

A is symmetric positive definite, we may orthogonalize a collection of vectors with

respect to the inner product defined by A to obtain

Z∗AZ = D (3.1)

where D is a diagonal matrix. We may rewrite (3.1) as A = Z−∗DZ−1 and invert to

obtain

A−1 = ZD−1Z∗. (3.2)

Performing the A-orthogonalization incompletely via modified Gram-Schmidt leads

to the SAINV preconditioner. In a typical implementation, Z is initialized to be the

identity and incomplete modified Gram-Schmidt with threshold dropping is used to

incompletely A-orthogonalize the columns of Z. When no dropping is performed, this

process computes a QR factorization of the identity such that the columns of Z are

A-orthogonal. Thus we have formed

I = ZL∗ (3.3)

where L is unit lower triangular (since normalization is not required). It follows, then,

that Z = L−∗ and so we have

A = LDL∗ and A−1 = L−∗D−1L−1.

The RIF preconditioner takes LD
1
2 as the lower triangular incomplete factor. Post-

filtration is applied to the elements of L to maintain a sparser factor. We note that

post-filtration is not required in construction of the SAINV preconditioner, as there

is no need to store the multipliers once they have been used. As all that is required

in the construction of SAINV and RIF preconditioners is computation of A inner

47

products we may construct preconditioners of these types for the normal equations

without ever having to form A∗A explicitly. This is the subject of [8] and will be

considered for our problems in Chapter 4.

3.3 Preconditioning Inverse free algorithms

In [25], Golub and Ye note that when ρ satisfies λ1 < ρ < λ2 then an LDL∗ factor-

ization of A− ρB may be found and scaled such that

L−1(A− ρB)L−∗ = D = diag(−1, 1, 1, . . . , 1). (3.4)

We may then use the L factor as a preconditioner by noting that the pencil

(L−1AL−∗, L−1BL−∗)

has exactly the same eigenvalues as the pencil (A,B). Supposing that ρ as above is

a Ritz value obtained from Algorithm 2.2, the iteration matrix

L−1AL−∗ − ρL−1BL−∗ = L−1(A− ρB)L−∗ = D

has exactly two eigenvalues, namely σ1 = −1 and σ2 = · · · = σn = 1. Algorithm 2.2

therefore enjoys asymptotically quadratic convergence even when m = 1. Of course

in practice, one would not compute a complete LDL∗ factorization at each outer

iteration, however, one may compute an incomplete factorization of A− θkB at each

outer iteration. This is still a costly operation, so Golub and Ye propose instead to

compute an incomplete factorization of A − λ̂B where λ̂ is some approximation to

the smallest eigenvalue λ1. This factor may then be used as a preconditioner to give

improved convergence.

It is also pointed out in [25] that applying Algorithm 2.2 to the pencil (Â, B̂) ≡
(L−1AL−∗, L−1BL−∗) does not require the explicit formation of Â and B̂, however, we

may apply L−1 and L−∗ in such a way as to implicitly construct the desired basis. We

repeat the discussion found in [25] and show that the formulation of B-orthonormal

preconditioned Arnoldi found there applies to the block Arnoldi-like process (Algo-

rithm 2.4) and therefore to the band Arnoldi-like process (Algorithm 2.5).

The block Arnoldi-like recurrence for (Â, B̂) for the construction of a basis Ẑ

orthogonal with respect to the B̂ inner product is given by

Ẑj+1Hj,j+1 = ÂẐj − B̂ẐjΘ−
j∑

i=1

ẐiHij (3.5)

where

Hij = Ẑ∗i B̂(ÂẐj − B̂ẐjΘ). (3.6)

48

Substituting Â := L−1AL−∗ and B̂ := L−1BL−∗ into (3.6) we obtain

Hij = Ẑ∗i L
−1BL−∗L−1(AL−∗Ẑj −BL−∗ẐjΘ). (3.7)

Defining Zj := L−∗Ẑj, we see that

Hij = Z∗i BL
−∗L−1(AZj −BZjΘ), (3.8)

and we have the recurrence

Zj+1Hj,j+1 = L−∗L−1(AZj −BZjΘ)−
j∑

i=1

ZiHij (3.9)

defining the preconditioned block Arnoldi-like process. We note that as (3.5) con-

structs a basis Ẑ which is orthogonal with respect to the inner product defined by B̂,

the relation (3.9) constructs a basis Z which is orthogonal with respect to the inner

product defined by B. To incorporate the preconditioned block Arnoldi-like process,

we form the projected problem (Z∗AZ,Z∗BZ) as usual. For the sake of complete-

ness, we include a statement of the preconditioned block Arnoldi-like process for

op(X) := AX −BXΘ.

Algorithm 3.1 Preconditioned Arnoldi-like process for op(X) := AX −BXΘ

Input: A,B ∈ Rn×n,Θ ∈ Rp×p, s.p.d. M , Z1 ∈ Rn×p, with Z∗1MZ1 = Ip, m ≥ 1,
and L ∈ Rn×n

1: for j = 1, . . . ,m do
2: Wj = L−∗L−1(AZj −BZjΘ)
3: for i = 1, . . . , j do
4: Hij = Z∗i MWj

5: Wj = Wj − ZiHij

6: end for
7: Compute Wj = Zj+1Hj+1,j, the QR factorization of W with respect 〈·, ·〉M .
8: end for

Since all that is required to precondition the block Arnoldi-like process is appli-

cation of the operator L−∗L−1, which presumably approximates A − θB for some θ,

we may consider using various types of preconditioners, not necessarily incomplete

LDL∗ factorizations. We examine three different preconditioning strategies below

and discuss their strengths and weaknesses.

First, we recall that from Theorem 2.2.1, we know that the rate of convergence of

the sequence
{
θ

(k)
1

}
generated by Algorithm 2.2 may be bounded by ε2m where

εm ≤ 2

(
1−

√
ψ

1 +
√
ψ

)m

, ψ :=
σ2 − σ1

σn − σ1

(3.10)

49

where σ1 ≤ σ2 ≤ · · · ≤ σn are the eigenvalues of the iteration matrix A− θ
(k)
1 B. We

call ψ the relative spectral gap. As the bound on εm shows, increasing the relative

spectral gap results in better convergence behavior for the algorithm. As we include

the action of a preconditioner in the algorithm, the iteration matrix we will consider is

L−1(A− θ(k)
1 B)L−∗, and we wish to investigate relative spectral gap ψ of this matrix,

whose eigenvalues we will denote by σi, with 1 ≤ i ≤ n. The following lemma will be

exploited in the study of certain preconditioners.

Lemma 3.3.1. Let L−1(A− θ(k)
1 B)L−∗ = F +G where F and G are symmetric. Let

the eigenvalues of F be denoted by δ1 ≤ · · · ≤ δn and let spread(G) := λn(G)−λ1(G)

be the spread of the eigenvalues of the matrix G. Then, the spectral gap of the iteration

matrix is bounded as

δ2 − δ1 − spread(G)

δn − δ1 + spread(G)
≤ σ2 − σ1

σn − σ1

≤ 1. (3.11)

Proof. By the Weyl monotonicity theorem, for each i such that 1 ≤ i ≤ n we have

that λ1(G) ≤ σi − δi ≤ λn(G). Exploiting this, we see that

δ2 − δ1 − (λn(G)− λ1(G)) ≤ σ2 − σ1 (3.12)

and

δn − δ1 + (λn(G)− λ1(G)) ≥ σn − σ1 (3.13)

The result immediately follows.

We note that spread(G) may be very crudely bounded by

spread(G) ≤ 2‖G‖2 ≤ 2‖G‖F . (3.14)

and so we may write (3.11) as

δ2 − δ1 − 2‖G‖F

δn − δ1 + 2‖G‖F

≤ σ2 − σ1

σn − σ1

≤ 1. (3.15)

3.3.1 Factoring the iteration matrix

The first preconditioner we consider is that obtained from an incomplete LDL∗ factor-

ization of the iteration matrix A−θ(k)
1 B for some θ

(k)
1 . This preconditioning scheme is

considered by Money and Ye [40] and proves to be very effective, however, knowledge

of θ
(k)
1 is absolutely necessary. Moreover, θ

(k)
1 ≥ λ1 and this may cause difficulty in

attempting to form stable incomplete factorizations of A−θ(k)
1 B, as this iteration ma-

trix is indefinite. When λ1 < θ
(k)
1 < λ2, however, the iteration matrix is only slightly

indefinite (it has only one negative eigenvalue), and the quality of the preconditioners

usually does not suffer. For our study, we assume that

A− θ
(k)
1 B = LDL∗ + E (3.16)

50

is an incomplete LDL∗ factorization of A− θ(k)
1 B such that D = diag(±1). Then the

preconditioned iteration matrix has the form

L−1(A− θ
(k)
1 B)L−∗ = D + L−1EL−∗ (3.17)

Now the matrix D is diagonal with eigenvalues ±1. In the case that D has −1 as a

simple eigenvalue, we may apply Lemma 3.3.1 to obtain

2− spread(L−1EL−∗)

2 + spread(L−1EL−∗)
≤ σ2 − σ1

σn − σ1

≤ 1. (3.18)

Again, spread(L−1EL−∗) may be bounded by 2‖L−1EL−∗‖F , and so the bound (3.18)

reduces to
1− ‖L−1EL−∗‖F

1 + ‖L−1EL−∗‖F

≤ σ2 − σ1

σn − σ1

≤ 1. (3.19)

Thus, the stability of the incomplete factorization is key in this case.

We remark that should D have −1 as an eigenvalue of multiplicity two, the best

lower bound we may obtain for the relative spectral gap of the preconditioned iteration

matrix is σ2−σ1

σn−σ1
≥ 0, which gives no useful information. This does not, however,

deem the preconditioner useless, rather, we simply have no a priori expectations of

it. Similarly, when the D has only one distinct eigenvalue, the best lower bound we

obtain is −1, which also fails to provide any meaningful information.

3.3.2 A fixed preconditioner

Another kind of preconditioning scheme which we may consider is that of building an

incomplete factorization preconditioner of A−λ0B where λ0 is a lower bound for the

spectrum of (A,B). In this case, the matrix A − λ0B is symmetric positive definite

and there are many more methods for the construction of incomplete factorizations for

symmetric positive definite matrices than for indefinite ones. Indeed, let us suppose

that

A− λ0B = LL∗ + E (3.20)

is an incomplete factorization of A− λ0B. The preconditioned iteration matrix then

takes the form

L−1(A− θ
(k)
1 B)L−∗ = L−1(A− λ0B − (θ

(k)
1 − λ0)B)L−∗

= I + L−1EL−∗ − (θ
(k)
1 − λ0)L

−1BL−∗. (3.21)

That is,

L−1(A− θ
(k)
1 B)L−∗ =

(
I − (θ

(k)
1 − λ0)L

−1BL−∗
)

+ L−1EL−∗. (3.22)

51

To apply Lemma 3.3.1 to bound the relative spectral gap, we compute the eigenvalues

δ1 ≤ · · · ≤ δn of the matrix
(
I − (θ

(k)
1 − λ0)L

−1BL−∗
)
. To do this, denote the

eigenvalues of the pencil (LL∗, B) by 0 < η1 ≤ · · · ≤ ηn, and note that (θ(k)−λ0) ≥ 0.

Therefore, it follows that

δi = 1− θ
(k)
1 − λ0

ηi

(3.23)

for i such that 1 ≤ i ≤ n. Therefore, for any i 6= 1 we have

δi − δ1 =
θ

(k)
1 − λ0

η1ηi

(ηi − η1) (3.24)

and applying Lemma 3.3.1, we see that

ηn

η2

η2 − η1 − η1η2

θ
(k)
1 −λ0

spread(L−1EL−∗)

ηn − η1 + η1ηn

θ
(k)
1 −λ0

spread(L−1EL−∗)

 ≤ σ2 − σ1

σn − σ1

. (3.25)

Again, we see that to guarantee good convergence characteristics, the quantity

spread(L−1EL−∗) ≤ 2‖L−1EL−∗‖F = 2‖L−1(A− λ0B)L−∗ − I‖F (3.26)

should be made as small as possible. Producing stable incomplete factors will help

to minimize spread(L−1EL−∗). In the presence of “perfect” preconditioning, that is,

A− λ0B = LL∗ + E with E = 0, the lower bound on the relative spectral gap is

ηn

η2

(
η2 − η1

ηn − η1

)
(3.27)

where ηi, 1 ≤ i ≤ n are the eigenvalues of (LL∗, B). As E = 0 in this case, (LL∗, B) ≡
(A− λ0B,B) and so ηi = λi − λ0 for 1 ≤ i ≤ n. The bound (3.27) becomes

λn − λ0

λ2 − λ0

(
λ2 − λ1

λn − λ1

)
(3.28)

thereby showing that the quality of the lower bound λ0 directly influences convergence.

That is, good approximations λ0 ≈ λ1 may give better convergence behavior of the

preconditioned algorithm.

In general, however, it is not desirable to compute a complete factorA−λ0B = LL∗

and so ηi 6= λi − λ0. Again, we may appeal to the Weyl monotonicity theory to see

that

λ2 − λ1 − spread(E,B)

λn − λ1 + spread(E,B)
≤ η2 − η1

ηn − η1

≤ λ2 − λ1 + spread(E,B)

λn − λ1 − spread(E,B)
. (3.29)

The quantity spread(E,B) denotes the difference between the algebraically largest

and algebraically smallest eigenvalues of the pencil (E,B) and indicates, in some

measure, the accuracy of the incomplete factorization A− λ0B = LL∗ +E. We note

that stability of the incomplete factorizations is much more important to the quality

of these types of preconditioners.

52

3.3.3 Factoring B

A third preconditioning style to consider is the construction of an incomplete fac-

torization of the matrix B. The reason for considering such a preconditioner will be

made clear when we examine the interior eigenvalue problem in Chapter 4. Suppose

that we have constructed

B = LL∗ + E. (3.30)

Using L as the preconditioner as described above, our preconditioned iteration matrix

becomes

L−1(A− θ
(k)
1 B)L−∗ = L−1AL−∗ − θ

(k)
1 I − θ

(k)
1 L−1EL−∗. (3.31)

We denote the eigenvalues of the pencil (A,LL∗) by η1 ≤ · · · ≤ ηn and we note that

the eigenvalues δ1 ≤ · · · ≤ δn of the matrix L−1AL−∗ − θ
(k)
1 I are given by

δi = ηi − θ
(k)
1 . (3.32)

As before, we apply Lemma 3.3.1 to obtain a lower bound on the relative spectral

gap. We have

η2 − η1 − |θ(k)| spread(L−1EL−∗)

ηn − η1 + |θ(k)| spread(L−1EL−∗)
≤ σ2 − σ1

σn − σ1

≤ 1. (3.33)

In the case of perfect preconditioning, the bound reduces to

λ2 − λ1

λn − λ1

≤ σ2 − σ1

σn − σ1

≤ 1. (3.34)

That is, the distribution of the eigenvalues of (A,B) give a lower bound on the

effectiveness of the preconditioned iteration. This is not at all surprising, as precon-

ditioning the inverse free algorithm with a complete factor L such that B = LL∗

corresponds to applying restarted Lanczos to the pencil (L−1AL−∗, I). Thus we may

consider this type of preconditioning to be in the class of algorithms for (A,B) which

require an implicit inexact inversion of B at each step. We will discuss reasons for

considering this approach in more detail in Chapter 4.

3.3.4 A small example

To illustrate the effects that each of these preconditioning schemes has on the con-

vergence of the algorithms of Chapter 2, consider the pencil (A,B) where

A =


1

2
. . .

1000

 and B =


1000

999
. . .

1

 . (3.35)

53

0 10 20 30 40 50 60 70 80
10

−20

10
−15

10
−10

10
−5

10
0

10
5

Outer Iterations

R
es

id
au

l N
or

m

Figure 3.2: Convergence histories for the diagonal problem with various precondition-
ers

Since the matrices are diagonal, we demonstrate the effects of perfect preconditioning.

The convergence histories of the preconditioned iterations appear in Figure 3.2. The

eigenvalues of (A,B) are given by λi = i
1001−i

, and for any θ(k), the eigenvalues of the

iteration matrix are σi = i
(
1 + θ(k)

)
− 1001θ(k) giving a relative spectral gap of the

(unpreconditioned) iteration matrix as

σ2 − σ1

σ1000 − σ1

=
1

999
≈ 1e− 03. (3.36)

The solid line in Figure 3.2 represents the convergence history of the unpreconditioned

algorithm.

Using the L factor from a complete LDL∗ factorization of A − θ(k)B will give,

in theory, quadratic convergence, once the approximation θ(k) lies between the two

algebraically smallest eigenvalues. We use the L factor from the complete LDL∗

factorization of A− 1
2
(λ1 + λ2)B to illustrate the kind of convergence one may expect.

The convergence history of the algorithm using this preconditioner is the dotted line

in Figure 3.2.

Noting that A is positive definite, we have λ0 = 0 as a lower bound for the spec-

trum of (A,B) and we may construct a preconditioner as discussed in Section 3.3.2.

As described above, use of the perfect preconditioner gives a lower bound on the

relative spectral gap of the preconditioned iteration matrix as

λ1000 − λ0

λ2 − λ0

λ2 − λ1

λ1000 − λ1

. (3.37)

54

In this case, the bound becomes

1000− 0
2

999
− 0

2
999
− 1

1000

1000− 1
1000

=
1000

2
999

1001

999

1

999999
≈ 1

2
, (3.38)

a quantity much larger than the relative spectral gap of the unpreconditioned iter-

ation matrix. Using this preconditioner, we may expect much better convergence

than experienced by the unpreconditioned iteration. The convergence history of the

algorithm utilizing this preconditioner appears as the dashed line in Figure 3.2.

On the other hand, using a Cholesky factor of B as a preconditioner gives a lower

bound on the relative spectral gap as the relative spectral gap of the eigenvalues of

(A,B). In this case, the bound is

λ2 − λ1

λ1000 − λ1

=
2

999
− 1

1000

1000− 1
1000

≈ 1e− 06, (3.39)

a quantity much smaller than the bound on the relative spectral gap of the unpre-

conditioned iteration matrix. Using this preconditioner, we can expect much worse

convergence behavior than that experienced by the unpreconditioned iteration. In

fact, this is the case as shown by the dash-dotted line in Figure 3.2.

We note that there is almost no difference between the convergence rates of the

algorithm using the preconditioner from the LDL∗ factorization of the iteration ma-

trix and algorithm using the Cholesky factor of A as the preconditioner. However,

as our study above shows, if λ0, the lower bound of our spectrum, is not a decent

approximation of λ1, with respect to the size of λ2 − λ1, then the preconditioner

obtained from the factor of A − λ0B is of lower quality. Figure 3.3 shows the con-

vergence histories of the algorithm for (A, I) preconditioned by factors of A− λ0 for

λ0 = 0,−10,−100,−1000. Notice how the quality of the preconditioner diminishes

as the difference λ1 − λ0 increases.

3.4 Numerical Examples II

We revisit many of the examples from Section 2.6 and demonstrate the effectiveness of

the preconditioning techniques described in this chapter. In running these examples,

we used and benefited from some codes written by Miroslav Tuma and Michele Benzi.

In particular, we have obtained Fortran 90 implementations of RIF, SAINV, RIFNR,

and ICAJ along with wrappers so that they may be called from Matlab.

3.4.1 Example: Harwell-Boeing problems revisited

We begin by revisiting the problems considered in Section 2.6.6 which motivated

the need for preconditioning. All of the problems considered have a positive definite

55

0 5 10 15 20 25 30 35 40
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Outer Iterations

R
es

id
au

l N
or

m

Figure 3.3: Convergence histories using preconditioners generated with variable λ0.
λ0 = 0(solid), λ0 = −10 (dotted), λ0 = −100(dashed), λ0 = −1000 (dash-dotted)

stiffness matrix K, and a positive semidefinite mass matrix M and therefore λ0 = 0 is

a lower bound for the spectrum of (K,M). For each matrix, we used m = ceil(1
4

√
n)

as the number of inner iterations, half the number of inner iterations used in the

examples in Section 2.6.6. For each problem we used the RIF ofK with drop tolerance

1e−01 and post-filtration tolerance 1e−01. Convergence was declared when the

residual norm fell below 1e−06, and a maximum of 1000 outer iterations was allowed.

Table 3.1 reports the results of these test runs. Columns three and four are simply

columns four and five of Table 2.3, and are included for direct comparison. Again,

the asterisk(∗) indicates that the maximum number of outer iterations was reached

before the residual norm fell to the desired level. Note that only four problems

were “unable to be solved” when preconditioning was employed. We note that for

each of these problems, BCSST19, BCSST20, BCSST23, and BCSST24, the stiffness

matrices are very poorly conditioned, with two norm condition numbers all on the

order of 1e+12. Also, the mass matrix from BCSST24 has condition number 1.8e+13.

With this in mind it is unreasonable to expect to get residual norms on the order

of 1e−06 as we requested. For each of these problems, the algorithm resolved the

eigenpairs to the order of the final residual fairly quickly and then stagnated. For

example, for BCSST19, the residual norm at outer iteration number 480 was 9.731e−
05, and the algorithm stagnated there until outer iteration 1000 was reached. It is

worth remarking that the algorithm found four Ritz pairs with residual norms in the

neighborhood of 1e−04 after 1000 outer iterations were completed. The other three

56

No Preconditioner RIF Preconditioner
Problem size matvecs final residual matvecs preapps final residual

BCSST01 48 59033 1.518e+03∗ 240 70 5.072e−07
BCSST02 66 1761 6.395e−07 373 126 8.243e−08
BCSST03 112 41533 1.785e−01 2474 825 8.983e−07
BCSST04 132 30527 2.409e−03 435 147 2.919e−07
BCSST05 153 3873 9.765e−05 491 180 1.966e−07
BCSST06 420 115863 1.516e+01∗ 597 240 6.947e−07
BCSST07 420 166481 1.376e−02 627 252 2.517e−07
BCSST08 1074 78029 3.177e−03 249 108 9.463e−08
BCSST09 1083 2076 8.899e−02 712 306 7.746e−07
BCSST10 1086 190166 8.317e−02∗ 2723 1170 8.786e−07
BCSST11 1473 286749 2.419e+00∗ 16855 7330 8.581e−07
BCSST12 1473 179429 1.465e+03∗ 30257 13160 9.620e−07
BCSST13 2003 396390 2.569e+03∗ 4101 1824 7.328e−07
BCSST19 817 188746 1.470e+06∗ 67518 28432 5.913e−05∗

BCSST20 485 233634 2.908e+06∗ 72770 29112 1.511e−03∗

BCSST21 3600 103376 3.563e−01 789 360 6.419e−07
BCSST22 138 8519 1.623e−03 527 177 2.138e−07
BCSST23 3134 235638 7.954e+06∗ 121760 54992 4.511e−04∗

BCSST24 3562 402239 4.728e+05∗ 127108 57780 1.360e−05∗

Table 3.1: Convergence characteristics of adaptBlockVarIIp(2, m) applied to some
BCS matrices from the Harwell-Boeing collection with and without preconditioning.

57

Problem nnz(K) nnz(L) ‖K − LL∗‖F/‖K‖F ‖I − L−1KL−∗‖F

BCSST01 400 597 6.381e−03 7.188e−01
BCSST02 4356 864 7.073e−02 2.257e+00
BCSST03 640 380 6.815e−03 3.371e+00
BCSST04 3648 3239 1.323e−02 2.286e+00
BCSST05 2423 2470 5.088e−02 3.290e+00
BCSST06 7860 9298 1.508e−02 4.821e+00
BCSST07 7860 9298 1.508e−02 4.821e+00
BCSST08 12960 28043 9.200e−03 2.498e+00
BCSST09 18437 18378 5.214e−02 7.657e+00
BCSST10 22070 18402 3.075e−02 9.810e+00
BCSST11 34241 48234 1.618e−02 1.651e+01
BCSST12 34241 48234 1.618e−02 1.651e+01
BCSST13 83883 168344 3.028e−02 1.228e+01
BCSST19 6853 11401 1.623e−02 9.661e+00
BCSST20 3135 2325 3.531e−03 7.012e+00
BCSST21 26600 47184 3.100e−02 1.139e+01
BCSST22 696 520 1.004e−02 2.745e+00
BCSST23 45178 117262 2.102e−02 1.180e+01
BCSST24 159910 276445 2.419e−02 2.079e+01

Table 3.2: Preconditioner statistics for Harwell-Boeing matrices.

problems expressed similar behavior.

Table 3.2 details some statistics regarding the preconditioners. We include mea-

sures of relative accuracy (‖K − LL∗‖F/‖K‖F), stability (‖I − L−1KL−∗‖F), and

the number of nonzeros in the incomplete factor. Note that all of the precondition-

ers are relatively accurate, but stability varies a bit more. In particular, note that

the problems which have higher stability estimates seem to require more matvecs to

converge. Examples include BCSST11, BCSST12, and BCSST13. Though we can

draw no hard and fast conclusions, these data support our discussion regarding the

primacy of stability.

3.4.2 Example: Preconditioning and clustered eigenvalues

As our second example, we take the example from Section 2.6.1 and we demonstrate

the effectiveness of the preconditioning scheme described in Section 3.3.1. The two

algebraically smallest eigenvalues of the finite element model of the Laplacian on

the barbell shaped domain (Figure 2.1) agree to the first five digits and are slightly

greater than 23. The next algebraically smallest eigenvalues are slightly greater than

58. Suppose that we are endowed with this information a priori, making the pre-

conditioning strategy in Section 3.3.1 attractive. To use said strategy, we form an

58

0 5 10 15 20 25 30 35 40 45
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Outer Iterations

R
es

id
ua

l N
or

m

Figure 3.4: Convergence histories of the smallest Ritz value computed by Block-
VarIIp(2,4) with K − 24M ≈ LDL∗ preconditioners with various drop tolerances τ .
τ = 1e−01 (solid), τ = 1e−02 (dashed), τ = 1e−03 (dash-dotted), τ = 1e−04
(dotted).

incomplete LDL∗ factorization of K − θM , where θ lies between 23 and 58, the

bounds of our eigenvalues. We choose, for the sake of this example θ = 24. Here the

incomplete factorization is computed via Matlab’s luinc function applied without

pivoting and with diagonal replacement. That is, zero entries on the diagonal of the

U factor get replaced with the local drop tolerance in an attempt to avoid construct-

ing a singular factor. Figure 3.4 shows the convergence histories of the smallest Ritz

value for preconditioners described above with different drop tolerances τ . The solid

line is the history for the preconditioned iteration where τ = 1e−01, the dashed is

for τ = 1e−02, the dash-dotted is for τ = 1e−03, and the dotted is for τ = 1e−04.

The experiments were run using BlockVarIIp(2,4). Note that even though the lower

bound on the relative spectral gap in this case should be zero, since generation of the

complete LDL∗ factorization of K − 24M has D = diag(−1,−1, 1, 1, . . . , 1), we still

get excellent convergence when we use block size two.

For comparison, Figure 3.5 shows the convergence history for the smallest Ritz

value preconditioned by the incomplete LDL∗ factorization of K − 24M (solid line)

and the convergence history for the smallest Ritz value preconditioned by the incom-

plete LDL∗ factorization of K (dotted line). Both factorizations were computed with

a drop tolerance of 1e−01 and again, BlockVarIIp(2,4) was used. Note how similar

the two convergence curves are. The advantage to using a preconditioner based on K

59

0 5 10 15 20 25 30 35 40 45
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Outer Iterations

R
es

id
ua

l N
or

m

Figure 3.5: Convergence histories of the smallest Ritz value computed by Block-
VarIIp(2,4) with incomplete LDL∗ factorization preconditioners with two different
drop tolerances. K − 24M ≈ LDL∗, τ = 1e−01 (solid), K ≈ LDL∗, τ = 1e−01
(dotted).

alone is that we do not have to compute an approximation to the smallest eigenvalue

before developing a suitably good preconditioner to use. This example shows that

preconditioners based on a lower bound of the spectrum may be equally competitive.

When used as a black-box, the Eigifp package [40] includes a strategy which

switches preconditioning on once it seems that a reasonable approximation to λ1 has

been determined. We ran this example through the Eigifp software and allowed

the program to switch to preconditioning once a suitable shift was found. Indeed,

the package switched to performing preconditioned iterations when the Ritz value θ

was around 24, and the preconditioner developed was based on the incomplete LDL∗

factorization of K−θM with drop tolerance 1e−01. The algorithm was executed with

a fixed number of inner iterations, 4, and the convergence history of the smallest Ritz

value is presented in Figure 3.6. In this example, preconditioning is switched on at

outer iteration 14. There is a notable increase in the rate of convergence around outer

iteration 35 or so, and then the sawtooth behavior begins. This sawtooth behavior is

caused by the tight clustering of λ1 and λ2, the fact that the method implemented in

Eigifp is the single-vector algorithm, Algorithm 2.2, and the inclusion of the previous

Ritz vector as described in Section 2.4.2. Although the convergence is markedly faster,

than that seen in Figure 2.4, however, the sawtooth behavior seems to imply that

preconditioners may not be able to rescue us from the need for a block algorithm.

60

0 20 40 60 80 100 120
10

−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Outer Iterations

R
es

id
ua

l N
or

m

Figure 3.6: Convergence history of Eigifp with automatic preconditioning.

Indeed, applying BlockVarII(1,4) with the K− 24M ≈ LDL∗ preconditioner con-

structed with drop tolerances τ = 1e−01, 1e−02, 1e−03 fails to give convergence

after 300 outer iterations. Using τ = 1e−04 as the drop tolerance, however, gives

excellent convergence. See Figure 3.7. The preconditioner developed with drop tol-

erance τ = 1e−04 is an order of magnitude more accurate than the preconditioner

constructed with drop tolerance τ = 1e−03, however, both result in D = I, instead

of D = diag(−1,−1, 1, 1, . . . , 1) as they should. Notably, when τ = 1e−05 is used as

the drop tolerance, the correct D is realized.

3.4.3 Example: Comparing Preconditioners and Methods

Here we consider using four different kinds of preconditioners in computing the small-

est eigenvalue of the BCSST13 generalized fluid flow problem from the Harwell-Boeing

collection [16]. This problem has a non-diagonal semidefinite mass matrix associated

with it and the positive definite stiffness matrix is rather poorly conditioned with

a two norm condition estimate of 4.6e+10. As the stiffness matrix is positive def-

inite, we have λ0 = 0 as a lower bound for the spectrum of (K,M), and as such,

we will construct incomplete factorizations of K ≈ LL∗ and use those factors as

the preconditioners. The four types of preconditioners we construct are RIF, SAINV,

ICT (incomplete Cholesky with threshold dropping), and ICAJ (incomplete Cholesky

with Ajiz-Jennings dropping rules). We consider performance of the preconditioners

with respect to drop tolerances, and detail measures of accuracy and stability of

61

0 50 100 150 200 250 300
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Outer Iterations

R
es

id
ua

l N
or

m

Figure 3.7: Convergence histories of the smallest Ritz value computed by Block-
VarII(1,4) with K − 24M ≈ LDL∗ preconditioners with various drop tolerances τ .
τ = 1e−01 (solid), τ = 1e−02 (dashed), τ = 1e−03 (dash-dotted), τ = 1e−04
(dotted).

the factorizations. We remark that it is not appropriate to measure accuracy of the

SAINV preconditioner, as it is a sparse approximate inverse. In this example, we take

m = 12 and we terminate when the residual norm falls below 1e−07, or when 250

outer iterations are reached.

Table 3.3 details the number of matrix vector multiplies and the number of pre-

conditioner applications required for the algorithm to reach termination. The final

residual is also reported. Pertinent preconditioner statistics, such as accuracy, stabil-

ity, and the number of nonzeros in the factors are reported in Table 3.4.

Some comments about the data in the tables are in order. We note that RIF

actually requires two tolerances, a drop tolerance and a post-filtration tolerance. For

the experiments here, the tolerances are taken to be the same.

For this problem, it appears that the best preconditioner is the RIF preconditioner.

In all cases, the algorithm preconditioned with the RIF preconditioner requires the

fewest matvecs to converge. In all fairness, however, it is also one of the densest

preconditioners constructed. Recalling that K here has only about 83000 entries,

we see that the RIF preconditioner constructed with a drop tolerance of 1e−01 has

roughly twice as many entries as K. The RIF preconditioner also enjoys the small-

est stability estimate, with the exception of the ICAJ preconditioner, which has an

extremely small stability estimate in all cases. Why then, does RIF outperform the

62

Method τ matvecs preapps final residual

RIF 1e−01 1621 721 8.357e−07
1e−02 757 337 6.346e−07
1e−03 244 109 2.661e−07
1e−04 136 61 3.260e−09

SAINV 1e−01 4051 1801 7.453e−07
1e−02 1432 637 8.180e−07
1e−03 460 205 2.903e−07
1e−04 244 109 2.584e−07

ICT 1e−01 6748 3000 2.132e+05
1e−02 6748 3000 6.288e+01
1e−03 946 421 2.760e−07
1e−04 352 157 6.041e−07

ICAJ 1e−01 6589 2929 7.880e−07
1e−02 2647 1177 7.993e−07
1e−03 1594 709 8.198e−07
1e−04 568 253 8.029e−07

Table 3.3: Convergence characteristics for BlockVarIIp(1,12) applied to BCSST13
with various preconditioners.

Method τ nnz(L) ‖K − LL∗‖F/‖K‖F ‖I − L−1KL−∗‖F

RIF 1e−01 168344 3.028e−02 1.228e+01
1e−02 318629 2.352e−03 7.320e+00
1e−03 399817 1.380e−04 3.764e+00
1e−04 421398 1.288e−05 1.827e+00

SAINV 1e−01 60656 — 2.426e+01
1e−02 319735 — 1.583e+01
1e−03 699084 — 8.529e+00
1e−04 1093534 — 4.627e+00

ICT 1e−01 16409 2.465e−01 3.444e+14
1e−02 44860 1.330e−01 3.933e+08
1e−03 83104 2.137e−02 2.116e+01
1e−04 143025 3.492e−03 8.840e+00

ICAJ 1e−01 9192 7.294e−01 2.340e−05
1e−02 31617 9.379e−02 3.640e−05
1e−03 79900 1.570e−02 3.299e−05
1e−04 165650 3.064e−03 1.649e−05

Table 3.4: Preconditioner statistics of various incomplete factorizations of K from
BCSST13.

63

ICAJ preconditioner in terms of matvecs across the board? We conjecture that this

is due to the construction of the ICAJ preconditioner in that if L is the ICAJ factor,

we have LL∗ = K + C where C is a positive semidefinite matrix [1],[5]. Computing

the Cholesky factor of K +C may be not so far from computing the Cholesky factor

of K − λ0M where λ0 < 0 is a looser bound on the spectrum of (K,M). As we

saw in Section 3.3.4, in the presence of perfect preconditioning, an factor of K will

outperform a factor of K − λ0M , when λ0 < 0. In this case, then, it may be that a

very stable factorization of K − λ0M , λ0 < 0 may not be as effective as a less stable

factorization of K in terms of matrix-vector multiplications.

We now give a limited comparison between BlockVarIIp(1,m) and JDQZ, a Jacobi-

Davidson code obtained from Gerard Sleijpen’s web page, implementing the algorithm

found in [17]. For the purposes of comparison, we endowed both methods with the

same initial vector and the same preconditioner. Giving the same preconditioner to

Jacobi-Davidson makes sense in that the preconditioner there is used in solution of

the correction equation, and as such, should be an approximation to K − σM where

σ is the target for eigenvalue location. The target we provide JDQZ is σ = 0, and we

set jmin to be the same as m, and jmax = m+ 5, the default value in the code. We

also set the test space to be the search space.

In comparing BlockVarIIp with JDQZ, we applied each algorithm to the problem

using the RIF preconditioner with drop tolerance τ = 1e−02. Figure 3.8 shows the

convergence history of the smallest Ritz value obtained by BlockVarIIp(1,12) with

RIF as the solid line and the convergence history of the smallest Ritz value computed

by JDQZ with an RIF preconditioner as the dotted line. Some comments are certainly

in order here. For JDQZ, each outer iteration corresponds to using preconditioned

GMRES to solve a correction equation. Here, we have forced GMRES to take 12

steps, in an effort to have a legitimate baseline. JDQZ as executed here, required

1796 matvecs and 1932 applications of the preconditioner, where BlockVarIIp(1,12)

required only 757 matvecs and 337 preconditioner applications. We also stress that

we count each application of K and M as separate matvecs, where it appears that

the count in JDQZ combines the actions of K and M .

3.4.4 Example: An Algebraic Multigrid Preconditioner

As our last example, we include an algebraic multigrid (AMG) preconditioner. The

code implementing AMG used here is found in the AMGToolBox [58] and was

obtained from Menno Verbeek and Jane Cullum. The package implements the Ruge-

Stüben AMG algorithm to construct coarse levels and apply V-cycles. We apply the

solver as a preconditioner by calling the setup routine to construct an AMG solver

for K − λ0M , where we are interested in the algebraically smallest eigenvalues of

(K,M) and λ0 is a lower bound for the eigenvalues of interest. We then precondition

64

0 20 40 60 80 100 120 140
10

−10

10
−5

10
0

10
5

10
10

10
15

Outer Iterations

R
es

id
ua

l N
or

m

Figure 3.8: Convergence histories of the smallest Ritz value computed by Block-
VarIIp(1,12) (solid), and JDQZ (dotted). Both iterations utilized the RIF precondi-
tioner.

the block Arnoldi-like process by applying a fixed number of V-cycles to the newly

computed residual block. This is in place of the application of L−∗L−1 in line two

of Algorithm 3.1. As an example, we turn again to the finite element model of the

Laplacian on the barbell shaped domain. We seek the two algebraically smallest

eigenpairs and declare convergence once we have achieved a residual norm smaller

than 1e−12. Again, four inner iterations are used. Figure 3.9 presents the convergence

histories of the smallest Ritz value obtained from BlockVarIIp(2,4) preconditioned by

AMG with one V-cycle. The AMG preconditioned iteration required only 134 matvecs

to converge, compared to the 3192 matvecs required by BlockVarIIp(2,4) without

preconditioning. This did come at the cost of a setup phase, however, this cost is

negligible compared to the speed-up experienced by the algorithm. We stress that

this example serves only to illustrate the viability of preconditioning the algorithms

discussed in Chapter 2 with a multigrid method. We also note that the discretized

Laplacian is precisely the problem for which multigrid methods were developed, and

it is not too surprising that we get this kind of behavior using the AMGToolBox

solver as a black box as we did. We do remark that for other problems, finding a good

coarsening algorithm may be more difficult and not yield the kind of convergence we

see here. See [2], [36] for more discussions concerning application of multigrid as a

preconditioner for eigensolvers.

Copyright c© Patrick D. Quillen 2005

65

0 50 100 150
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Outer iterations

R
es

id
ua

l n
or

m

Figure 3.9: Convergence of the smallest Ritz value computed by BlockVarIIp(2,4)
with no preconditioner (solid) and preconditioned by AMG with one V-cycle (dotted).

66

Chapter 4

The Interior Eigenvalue Problem

The methods described in Chapter 2 are suitable for computing the extreme eigen-

values; i.e. those at either end of the spectrum. In some applications, however, it is

necessary to compute a few eigenvalues in the interior of the spectrum.

In general, computation of interior eigenvalues is very difficult, as good approxi-

mations to them from small subspaces are hard to come by. From the Courant-Fischer

principle, it is clear that the algebraically smallest eigenvalue is the global minimum

of the Rayleigh quotient, and the algebraically largest eigenvalue is the global maxi-

mum. Interior eigenvalues, on the other hand are minima or maxima over some lower

dimensional subspace subject to a number of constraints. For this reason, they are

typically more difficult to locate, unless they are made to be extreme eigenvalues by

a suitable transformation. This is the heart of the shift-and-invert Lanczos method,

which is currently the only truly viable method for finding interior eigenvalues.

There exist other approaches based on harmonic Ritz approximations developed

for the symmetric eigenvalue problem in [41] and investigated by many others. The

algorithm does not require applications of an inverse anywhere, but convergence can

be very slow. The JDQZ method also includes a harmonic projection, however the

same troubles are experienced there. Convergence is usually slow, if it happens at all.

For a discussion concerning the convergence of harmonic Ritz pairs, see [30].

This chapter presents two approaches which transform the interior eigenvalue

problem to an extreme eigenvalue problem to which we may apply the algorithms

of Chapter 2. We remark that due to the transformation we consider the algorithm

will no longer be inverse free, but will rely only on the ability to apply B−1. As B

is positive definite, applying B−1 is frequently a much simpler task than applying

(A− µB)−1 when µ lies in the interior of the spectrum.

67

(a) Spectrum of (C,D) on the vertical
axis; spectrum of (A,B) on the hori-
zontal axis

(b) Spectrum of (D,B) on the vertical
axis; spectrum of (A,B) on the hori-
zontal axis

Figure 4.1: Spectra of the Transformed Problems

4.1 Recasting the problem

We consider the problem of locating the eigenvalues of (A,B) nearest to some target

µ ∈ R. Here, it is assumed that µ will be supplied to the algorithm by the user.

Consider the two operators

C := A− µB and D := (A− µB)B−1(A− µB) ≡ CB−1C (4.1)

and the pencils (C,D) and (D,B). We note that since B is positive definite, it follows

that D is as well, and the algorithms of Chapter 2 may be applied to compute the

extreme eigenvalues of the pencils (C,D) and (D,B). If (λ, x) is an eigenpair of

(A,B), it is easy to see that (λ̂, x) is an eigenpair of (C,D) where

λ̂ =
1

λ− µ
. (4.2)

Thus the eigenvalues of (A,B) immediately to the left of µ correspond to the al-

gebraically smallest eigenvalues of (C,D). Indeed, if µ lies in the interior of the

spectrum, the matrix C will be indefinite, and the algebraically smallest eigenvalues

of (C,D) will be negative. On the other hand, the eigenvalues of (A,B) immediately

larger than µ will be the algebraically largest eigenvalues of (C,D) and will be pos-

itive. Similarly, an eigenpair (λ, x) of (A,B), corresponds to an eigenpair (λ̃, x) of

(D,B) via the relation

λ̃ = (λ− µ)2. (4.3)

Here the eigenvalues of (A,B) nearest to µ correspond to the algebraically smallest

eigenvalues of (D,B), regardless of which side of µ they appear on. Due to the positive

68

definiteness of D, all of the eigenvalues of (D,B) are in fact positive. In view of the

discussion in Chapter 3, this may be more favorable for preconditioning. We note

that the use of the pencil (D,B) in computation of interior modes is similar to the

folded spectrum approach of Wang and Zunger found in, for example, [11] and [61].

Visualizations of sample distributions of eigenvalues of (C,D) and (D,B) are found

in Figure 4.1.

Both of these formulations have their advantages and disadvantages, so which

is the one to choose? In view of the discussion in Section 3.3, constructing effective

preconditioners for (D,B) will be, in general, easier than constructing preconditioners

for (C,D). That is, of course, unless a good lower bound for the spectrum (C,D) is

known. If this method is being used in a black-box fashion, this is highly unlikely.

Even if a good lower bound λ0 for the spectrum of (C,D) is known, it may be difficult

to form incomplete factorizations of C − λ0D without explicitly forming D.

If µ is close to some eigenvalues of (A,B), then the matrix D may be highly ill-

conditioned, making it very difficult to construct accurate incomplete factorizations.

We point out again that it is stability which is of prime importance here, and accu-

racy does not matter nearly as much for the quality of convergence. On the other

hand, when µ is close to some eigenvalues of (A,B), the eigenvalues of (C,D) show

excellent separation, inviting us to consider the preconditioning scheme discussed in

Section 3.3.3. This may not be as attractive as it seems, however, since the eigen-

values on either side of µ will get well separated to opposite ends of the spectrum

resulting in an extremely large spread λn(C,D)−λ1(C,D), and therefore a small rel-

ative spectral gap, even though the quantity λ2(C,D)− λ1(C,D) may be large. For

these reasons, we will favor the use of the pencil (D,B) and this will be considered

throughout the remainder of this chapter.

4.2 Computing B−1-orthogonal QR factorizations

In constructing factorizations of D, we wish to avoid the explicit formation of D =

(A − µB)B−1(A − µB), and we seek to exploit the normal equations structure of

the matrix. Indeed, if B = I, then D = (A − µB)(A − µB) and we may compute

an LQ factorization of A − µB and thereby implicitly obtain the Cholesky factor

of D. On the other hand, if B 6= I and we compute A − µB = QR where Q is a

B−1-orthonormal matrix, that is, Q∗B−1Q = I, then

D = (A− µB)B−1(A− µB) = R∗Q∗B−1QR = R∗R (4.4)

and we have implicitly computed a Cholesky factor of D.

One approach to constructing B-orthogonal QR factorizations of a matrix is to

use the Gram-Schmidt process with-respect to the B inner product. This process is

69

straightforward to implement and will produce the factorization we seek at the cost

of storing the entire matrix Q, which for our purposes will be unnecessary. Moreover,

the inner product we would like to work in is the B−1 inner product, requiring many

applications of B−1. Also, as discussed in [4], incomplete Gram-Schmidt frequently

produces poor-quality preconditioners. We will instead build B−1-orthogonal factor-

izations viaB−1-unitary Householder-like matrices. We recall briefly thatB−1-unitary

matrices are those which preserve the B−1 inner product. Thus Q is B−1-unitary if

Q∗B−1Q = B−1. As we will see, the connection between B-unitary and B−1-unitary

matrices is very strong, and thus we first discuss the B-unitary tools required.

4.2.1 B-unitary matrices

Some elementary facts concerning B-unitary matrices follow, which are included for

completeness. We will specifically exploit property 3 to build B−1-unitary QR fac-

torizations, without having to rely on the ability to apply B−1 in its entirety. The

proof of the proposition is elementary and is therefore omitted.

Proposition 4.2.1. Suppose Q and V are B-unitary. Then

1. QV is B-unitary.

2. Q is nonsingular, Q−1 is B-unitary, and Q−1 = B−1Q∗B

3. Q∗ is B−1-unitary.

That is, the set of B-unitary matrices form a group with respect to matrix multipli-

cation.

Motivated by the Householder reflectors with respect to the usual inner product,

we make the following definition and note some immediate results.

Definition 4.2.2. Suppose B is a symmetric positive-definite matrix. Let Q = I−2P

where P := u(u∗Bu)−1u∗B, for some vector u ∈ Rn. We call Q a Householder-like

transformation.

Proposition 4.2.3. Let Q be a Householder-like transformation.

1. Q is B-unitary.

2. Given x, y two vectors such that ‖x‖B = ‖y‖B, then choosing u = x− y defines

Q so that Qx = y.

3. Given x, y two vectors such that ‖x‖B−1 = ‖y‖B−1, then choosing u = B−1(x−y)
defines Q so that Q∗x = y.

70

Proof. Note first that P = u(u∗Bu)−1u∗B is a projector onto span{u}. Furthermore

BP = Bu(u∗Bu)−1u∗B = P ∗B

indicating that P is orthogonal with respect the B-inner product. Simple calculations

following from the properties of the projector P reveal that Q is indeed B-unitary.

Q∗BQ = (I − 2P)∗B(I − 2P)

= B − 2P ∗B − 2BP + 4P ∗BP

= B − 4BP + 4BP

= B

Now suppose that x and y are two vectors such that ‖x‖B = ‖y‖B. With u = x−y,
we see that

Qx = x− 2u(u∗Bu)−1u∗Bx = x− 2u∗Bx

u∗Bu
u.

Now

u∗Bu = (x− y)∗B(x− y) = x∗Bx− 2x∗By + y∗By = 2 (x∗Bx− y∗Bx) = 2u∗Bx

and therefore Qx = x− (x− y) = y.

Similarly, if x and y are two vectors such that ‖x‖B−1 = ‖y‖B−1 , then

Q∗x = x− 2Bu(u∗Bu)−1u∗x = x− 2u∗x

u∗Bu
Bu.

Now

u∗Bu = (B−1(x− y))∗BB−1(x− y)

= x∗B−1x− 2x∗B−1y + y∗B−1y

= 2
(
x∗B−1x− y∗B−1x

)
= 2u∗x

and so Q∗x = x−B(B−1(x− y)) = x− (x− y) = y.

Definition 4.2.2 and Proposition 4.2.3 are both very specific instances of definitions

and results found in [37] and [38] which develop Householder-like reflectors, among

other transformations, with respect to not only inner products, but rather more gen-

eral scalar products. It bears mentioning that we are concerned here with the choice

of y in order to preserve the upper-triangular structure of R that we covet—a topic

which is not explicitly addressed in either [37] or [38].

71

4.2.2 Constructing QR factorizations via Householder-like
reflectors

We recall that the construction of a QR factorization of a matrix A with respect to

the usual Euclidean inner product, requires the choice of u = x− y at each step j of

the algorithm in order to introduce zeros in the j + 1 through n positions of column

j in the matrix R, where R is initialized to be A. At step j of the construction of

the QR factorization, x =
(
0 · · · 0 rj,j rj+1,j · · · rn,j

)∗
and y is chosen to be

±‖x‖ej. We refer to these choices of x and y as the usual choices for x and y. With

the usual choices of x and y we have u =
(
0 · · · 0 uj · · · un

)∗
with associated

Householder reflector

I − 2u(u∗u)−1u∗ =

(
Ij−1

In−j+1

)
− 2(u∗u)−1

(
0 0
0 ûû∗

)
=

(
Ij−1

In−j+1 − 2û(û∗û)−1û∗

)
where û =

(
uj · · · un

)∗
. It is plain to see that application of this Householder

matrix preserves the upper-triangular structure already formed in the previous j − 1

columns of R.

When using B-unitary Householder-like transformations as defined by defini-

tion 4.2.2, however, we do not necessarily get this same structure preservation by

choosing x and y in the usual manner. As Proposition 4.2.3 shows, u = x − y will

define a B-unitary Householder-like transformation Q such that Qx = y, and

u =



0
...
0
uj
...
un


=

(
0
û

)

when we choose x and y in the usual manner. At the jth step of the algorithm, this

transformation has the structure

Q = I − 2u(u∗Bu)−1u∗B =

(
Ij−1

In−j+1

)
− β

(
0
û

)(
z∗1 z∗2

)
=

(
Ij−1 0
−βûz∗1 In−j+1 − βûz∗2

)
where β = 2(u∗Bu)−1 and z =

(
z∗1 z∗2

)∗
= Bu. It should be clear that pre-

multiplication by such a Q will destroy the structure of the leading upper-triangular

part of R. A first remedy to this situation lies in a more shrewd choice of y which,

72

though expensive, guarantees a transformation which will not destroy the structure of

the first j−1 columns of R. On the other hand, application of Q∗, a B−1-unitary oper-

ator, will not destroy the upper triangular structure of the first j−1 columns of R, but

the usual choice for y may not suffice, as we must guarantee that u ∈ span{ej, . . . , en}
to maintain the structure.

Although the typical choice of y is y = ±‖x‖ej, this may not allow for the preser-

vation of the upper-triangular structure of R as discussed above. Instead, at the jth

step of a QR factorization algorithm, we may choose y ∈ span{e1, e2, . . . , ej}, subject

to the constraint ‖y‖ = ‖x‖. In the following, we discuss how to choose y to develop

a B-unitary or B−1-unitary QR factorization of a nonsingular matrix. This discus-

sion will not be exactly pertinent to our goal of constructing a B−1-orthogonal QR

factorization, however, we include it for completeness, and believe it to be of interest

since we have not found a method like this in the literature.

4.2.3 Towards B-unitary QR factorizations

Suppose first we wish to construct A = QR with Q being B-unitary for a nonsingular

A. The correct choice of u is u = x − y as noted above, however, we wish that

Bu = z ∈ span{ej, . . . , en} while y ∈ span{e1, . . . , ej}, with Bu = Bx−By. Choosing

u in this way will preserve the upper-triangular structure in the first j − 1 columns

while reducing the jth column (x) to be an element of span{e1, . . . , ej}, namely y.

Now, let y =
(
ŷ∗ 0∗

)∗
where ŷ ∈ Rj and let

Bj−1 =

 b1,1 · · · b1,j−1
...

...
bj−1,1 · · · bj−1,j−1

 B̂j−1 =

 b1,1 · · · b1,j−1 b1,j
...

...
...

bj−1,1 · · · bj−1,j−1 bj−1,j


Finally, let d = Bx and denote the first j − 1 entries of d by the vector d̂. Now to

construct u as desired, we require that

B̂j−1ŷ = d̂

To this end, let ŷ = v̂ + αŵ where

B̂j−1v̂ = d̂ B̂j−1ŵ = 0

and α is chosen so that ‖y‖B = ‖x‖B as required by Proposition 4.2.3. Since B is

positive definite, the leading principal submatrices, such as Bj−1 are nonsingular, and

therefore the choice of ŷ, and therefore y, is unique up to choice of α. That is, we let

v̂ =

(
ṽ
0

)
, ṽ = B−1

j−1d̂ ∈ Rj−1

73

and

ŵ =

(
w̃
−1

)
, w̃ = B−1

j−1b̂j ∈ Rj−1, b̂j =

 b1,j
...

bj−1,j

 .

Now with v̂ and ŵ defined above, we define

y = v + αw =

(
v̂
0

)
+ α

(
ŵ
0

)
Note that

y∗By = (v + αw)∗B(v + αw)

= v∗Bv + 2αw∗Bv + α2w∗Bw

To ensure that ‖y‖B = ‖x‖B, we choose α to be a root of the quadratic

(w∗Bw)α2 + (2w∗Bv)α+ (v∗Bv − x∗Bx) (4.5)

This quadratic is never degenerate, as w 6= 0 by construction. Moreover, when A is

nonsingular with real entries, then this quadratic has real roots. We state this as the

following lemma.

Lemma 4.2.4. Under the assumption that A is nonsingular, the quadratic (4.5) has

two real roots, one positive and one negative.

Proof. The result follows if the quantity (w∗Bw)(v∗Bv− x∗Bx) < 0. Since B is pos-

itive definite, all we must show is that (v∗Bv− x∗Bx) < 0. Now let B be partitioned

as

B =

(
Bj−1 B12

B∗12 Bn−j+1

)
Partitioning x =

(
x̂∗ x̃∗

)∗
so that d̂ = Bj−1x̂+B12x̃ we get that

v =

(
ṽ
0

)
=

(
B−1

j−1d̂
0

)
=

(
x̂+B−1

j−1B12x̃
0

)
With this formula, we note that

v∗Bv =

(
x̂+B−1

j−1B12x̃
0

)∗(
Bj−1 B12

B∗12 Bn−j+1

)(
x̂+B−1

j−1B12x̃
0

)
= x̂∗Bj−1x̂+ x̃∗B∗12x̂+ x̃∗B12x̂+ x̃∗B∗12B

−1
j−1B12x̃

=

(
x̂
x̃

)∗(
Bj−1 B12

B∗12 B∗12B
−1
j−1B12

)(
x̂
x̃

)

74

Therefore,

v∗Bv − x∗Bx =

(
x̂
x̃

)∗(
0 0
0 B∗12B

−1
j−1B12 −Bn−j+1

)(
x̂
x̃

)
= x̃∗(B∗12B

−1
j−1B12 −Bn−j+1)x̃

Noting that(
Bj−1 0

0 Bn−j+1 −B∗12B
−1
j−1B12

)
=(
I 0

−B∗12B−1
j−1 I

)(
Bj−1 B12

B∗12 Bn−j+1

)(
I −B−1

j−1B12

0 I

)
it follows that Bn−j+1 −B∗12B

−1
j−1B12 is positive definite and thus

v∗Bv − x∗Bx = −x̃∗(Bn−j+1 −B∗12B
−1
j−1B12)x̃ < 0

provided that x̃ 6= 0. Our assumption of nonsingularity of A guarantees for all j > 1

that x̃ 6= 0.

Development of an algorithm for the construction of a B-unitary QR factoriza-

tion of a matrix A now follows immediately by iteratively applying the process de-

scribed above to reduce the jth column of A to be a vector which is an element of

span{e1, . . . , ej}. As the goal of our work is not the construction of B-unitary QR

factorizations, we omit a detailed listing of the algorithm here.

4.2.4 Towards B−1-unitary QR factorizations

Now when attempting to form A = QR with Q being B−1-unitary, when reducing the

jth column of A, we wish to form u = B−1(x − y) ∈ span{ej, . . . , en}. Furthermore,

we require that y ∈ span{e1, . . . , ej} and so the conditions we impose are

y = x− z, y ∈ span{e1, . . . , ej}, z = Bu ∈ span{bj, . . . , bn}, ‖y‖B−1 = ‖x‖B−1 .

These conditions stem from the desire to maintain the upper-triangular structure gen-

erated by reduction of the previous columns, while reducing the current column to be

an element of span{e1, . . . , ej}. Denoting x̂ =
(
xj+1 · · · xn

)∗
, û =

(
uj · · · un

)∗
,

and

Bn−j =

bj+1,j+1 · · · bj+1,n
...

...
bn,j+1 · · · bn,n

 B̂n−j =

bj+1,j bj+1,j+1 · · · bj+1,n
...

...
...

bn,j bn,j+1 · · · bn,n


our conditions necessitate

B̂n−jû = x̂

75

To this end, we let û = v̂ + αŵ where

B̂n−j v̂ = x̂ B̂n−jŵ = 0

and α is chosen so that ‖y‖B−1 = ‖x‖B−1 as required by Proposition 4.2.3. Again,

since B is positive definite, the principal submatrices, such as Bn−j are nonsingular,

and therefore the choice of û, and therefore u, is unique up to choice of α. That is,

we let

v̂ =

(
0
ṽ

)
, ṽ = B−1

n−jx̂ ∈ Rn−j

and

ŵ =

(
−1
w̃

)
, w̃ = B−1

n−j b̂j ∈ Rn−j, b̂j =

bj+1,j
...
bn,j


Now with v̂ and ŵ defined above, we define

u = v + αw =

(
0
v̂

)
+ α

(
0
ŵ

)
Note that

y∗B−1y = y∗B−1(x−Bu)

= y∗(B−1x− u)

= (x−Bu)∗(B−1x− u)

= x∗B−1x− x∗u− u∗x+ u∗Bu

and therefore ‖y‖B−1 = ‖x‖B−1 if and only if

2u∗x = u∗Bu (4.6)

With u = v + αw, we have that

u∗Bu = v∗Bv + 2αw∗Bv + α2w∗Bw

2u∗x = 2v∗x+ 2αw∗x

Equating these two as (4.6) requires, we obtain α by finding roots of the quadratic

(w∗Bw)α2 + 2w∗(Bv − x)α+ (v∗Bv − 2v∗x) (4.7)

Lemma 4.2.5. Under the assumption that A is nonsingular, the quadratic (4.7) has

two real roots, at least one of which is nonzero.

76

Proof. Begin by assuming that v 6= 0. In this case, we have two real roots, one

positive and one negative if (w∗Bw)(v∗Bv − 2v∗x) < 0. Since B is positive definite,

we simply require that v∗Bv − 2v∗x < 0. Partitioning B appropriately, we have that

v∗Bv =

(
0
ṽ

)∗(
Bj B12

B∗12 Bn−j

)(
0
ṽ

)
= ṽ∗Bn−j ṽ

= ṽ∗Bn−j(B
−1
n−jx̂)

= ṽ∗x̂ = v∗x

Thus

v∗Bv − 2v∗x = v∗Bv − 2v∗Bv = −v∗Bv < 0.

On the other hand, if v = 0, then our quadratic degenerates to

(w∗Bw)α2 − 2w∗xα

which has one zero root and the root

α =
2w∗x

w∗Bw
(4.8)

which is nonzero provided that w∗x 6= 0. Now, v = 0 if and only if x̂ = 0. Therefore,

w∗x = −xj + w̃∗x̂ = −xj. By our assumption of nonsingularity, if x̂ = 0, then xj

must be nonzero, and therefore α 6= 0.

As before, we omit a detailed listing of the B−1-unitary QR factorization, and

point out that it will follow immediately if each column of A is reduced using the

structure preserving choices developed above.

4.2.5 B−1-orthonormal QR factorizations

Here we discuss the construction B−1-orthonormal QR factorizations, the goal of our

work. Should we successfully construct C = QR such that Q∗B−1Q = I, we will

implicitly construct a Cholesky factor R of the matrix D = C∗B−1C, since

C∗B−1C = R∗Q∗B−1QR = R∗R (4.9)

Equivalently, should we carry out this construction in an incomplete manner, we could

use the R in place of an incomplete Cholesky preconditioner without ever having to

explicitly form C∗B−1C. We begin with a proposition which gives insight to the

structure of B−1-orthonormal matrices.

Proposition 4.2.6. Suppose that Q is B−1-orthonormal and L is the Cholesky factor

of B, that is B = LL∗. Then Q = UL where U is a unique B−1-unitary matrix.

77

Proof. Suppose Q is B−1 orthonormal. Then, by definition,

Q∗B−1Q = I

Then if L is the Cholesky factor of B, we have that

L−TQ∗B−1QL−1 = L−TL−1 = B−1

That is, U = QL−1 is a B−1-unitary matrix. Therefore, we may express Q as Q = UL.

Uniqueness of U follows from uniqueness and nonsingularity of the Cholesky factor

L.

Proposition 4.2.7. Suppose Q is B−1-orthonormal.

1. Q is nonsingular, and Q−T is B-orthonormal.

2. If V is orthogonal (i.e. V ∗V = I), then QV is B−1-orthonormal.

Proof. Now since Q is B−1-orthonormal, it follows that

(det(Q))2 = det(B) 6= 0

implying that Q is nonsingular. This may also be seen by through Proposition 4.2.6.

That Q−T is B-orthonormal follows from inverting the formula

Q∗B−1Q = I

to obtain

I = Q−1BQ−T = (Q−T)∗BQ−T

Now if V is orthogonal, then

(QV)∗B−1(QV) = V ∗Q∗B−1QV = V ∗V = I

showing that the product QV is B−1-orthonormal.

In view of Proposition 4.2.6, we see that constructing a B−1-orthonormal matrix

may be achieved by simply constructing a B−1-unitary matrix and post multiplying

by the Cholesky factor of B. Since there is nothing practical about computing our

B−1-unitary QR factorization, we instead interlace the applications of our Cholesky

factor. This allows us to build a B−1-orthonormal QR factorization, with relative

ease. As we saw, in constructing the B−1-unitary QR we had to apply the inverse

of an (n − j) × (n − j) matrix twice per step. In constructing the B−1-orthonormal

factorization, we will require only one such application.

78

The basic process used in building the B−1-orthonormal QR factorization of a

given matrix C is this

Form Q̂ such that Q̂(Ce1) = αe1 and Q̂BQ̂∗ =

(
1 0
0 B1

)
We may continue the process as we would in the usual Householder process, this time

using B1 as the matrix defining the inner product. That B1 defines an inner product

is clear by the relation (4.2.5) and the positive definiteness of B. We are free of the

difficulties of choosing u in the B−1-unitary case as described above, since every time

we wish to construct such a u, it is like the first step of a B−1-unitary process where

we have no constraints on u. This freedom comes at the price of changing our inner

product at each step.

Throughout the remainder of our discussion, suppose that B = L∆L∗ is an LDL∗

factorization of B, with L = L1L2 · · ·Ln−1 and Li is unit lower triangular and ∆ =

diag(δ1, . . . , δn). Furthermore, let ∆1 = diag(δ1, 1, 1, . . . , 1). Now if we let

Q̂ = ∆− 1
2L−1

1 Q (4.10)

where Q is B−1-unitary, then

Q̂BQ̂∗ = ∆− 1
2L−1

1 QBQ∗L−∗1 ∆− 1
2 = ∆− 1

2L−1
1 BL−∗1 ∆− 1

2 =

(
1 0
0 B1

)
. (4.11)

Thus, we must develop a B−1-unitary matrix Q such that

∆− 1
2L−1

1 Qx = αe1, (4.12)

or

Qx = αL1∆
1
2 e1 = α

√
b11L1e1. (4.13)

Following Proposition 4.2.3, we compute

u = B−1(x− y) (4.14)

where y = α
√
b11L1e1 and α is chosen so that ‖y‖B−1 = ‖x‖B−1 . We begin by

computing α. Note that

‖y‖2
B−1 = α2b11‖L1e1‖2

B−1

and

‖L1e1‖2
B−1 = e∗1L

∗
1B

−1L1e1 = e∗1(L
−1
1 BL−∗1)−1e1 =

1

b11

since

L−1
1 BL−∗1 =

(
b11 0
0 B1

)
.

79

It follows that

α = ±‖x‖B−1 .

Now to resolve u, we must compute B−1L1e1. To do this, we note again that B =

L1

(
b11 0
0 B1

)
L∗1. Therefore

B−1L1e1 = L−∗1

(
1

b11
0

0 B−1
1

)
L−1

1 L1e1 = L−∗1

1

b11
e1 =

1

b11
e1

since L1 is unit lower triangular. Now then, B−1y is given by

B−1y = ±‖x‖B−1

√
b11

(
1

b11
e1

)
= ±‖x‖B−1√

b11
e1 (4.15)

and so u is given by

u = B−1x± ‖x‖B−1√
b11

e1. (4.16)

Note that in the case that B = I this corresponds to the usual choice of u. As in the

usual process, we may choose the sign of coefficient so as to avoid cancellation. In

this case, we should choose the sign to be the opposite of the sign of the first entry

of the vector B−1x.

Once the Householder-like reflector Q defined by the vector u matrix is applied, we

must apply L−1
1 followed by ∆

− 1
2

1 . In this manner, one step of the B−1-orthonormal

QR factorization process is completed. Again, to continue, we would require an LDL∗

factorization of the matrix B1. Fortunately, this is already available; simply strip the

leading row and column off of L from the LDL∗ factorization of B to obtain the L

factor for B1, and similarly for ∆1.

The complete process is detailed in Algorithm 4.1. Throughout the development

of the algorithm, let

Lj =


1

lj+1,j 1

lj+2,j 0
. . .

...
...

. . . 1
ln,j 0 0 1

 ∈ R(n−j+1)×(n−j+1),

L̂j =


1

lj+1,j 1

lj+2,j lj+2,j+1
. . .

...
...

. . . 1
ln,j ln,j+2 ln,n−1 1

 ∈ R(n−j+1)×(n−j+1),

∆j = diag(δj, 1, . . . , 1) ∈ R(n−j+1)×(n−j+1)

and ∆̂j = diag(δj, δj+1, . . . , δn) ∈ R(n−j+1)×(n−j+1).

80

Similarly, let

Cj =


cj,j cj,j+1 · · · cj,n
cj+1,j cj+1,j+1 · · · cj+1,n

...
...

...
cn,j cj,j+1 · · · cn,n


denote the (n− j + 1)× (n− j + 1) lower principal submatrix of C.

Algorithm 4.1 QR factorization with respect to B−1 inner product

Input: C, symmetric positive definite B = L∆L∗.
1: for j = 1, 2, . . . , n− 1 do
2: x =

(
cj,j · · · cn,j

)
3: u = L̂−∗j ∆̂−1

j L̂−1
j x.

4: β =
√
x∗u

5: γ = β√
δj

sign(−u1)

6: u1 = u1 − γ
7: σ = 1

β2−γx1

8: z = ∆
− 1

2
j L−1

j x− βe1

9: Cj = ∆
− 1

2
j L−1

j Cj − σzu∗Cj

10: end for

Some comments regarding Algorithm 4.1 are in order. The coefficient σ corre-

sponds to 2
u∗Bu

. To see this, note that

u∗Bu =
(
B−1x− γe1

)∗
(x− γBe1) = ‖x‖2

B−1 − 2γe∗1x+ γ2b11.

Now, γ2 = β2

b11
and so γ2b11 = β2 = ‖x‖2

B−1 . It follows that

u∗Bu = 2‖x‖2
B−1 − 2γe∗1x,

and the expression for σ follows. The expression for z on line eight is a simplification

of z = ∆
− 1

2
j L−1

j Bu

4.2.6 Performing the process incompletely

Of course, for the large, sparse problems we consider, it is infeasible to use the com-

plete factor obtained from Algorithm 4.1. Thus we must find some way to apply

it incompletely, while maintaining sparsity and orthogonality with respect to some

inner product.

A major problem of Algorithm 4.1, with respect to developing sparse factors, is

that Cholesky factors of sparse matrices are frequently not sparse. Therefore, instead

of using the complete Cholesky factor of B, we may consider using an incomplete

81

Cholesky factor, or an RIF. Moreover, application of the inverse of a sparse triangular

matrix to a sparse vector is more expensive than necessary when we only wish to apply

the inverses approximately. One method of approximate application of the inverse is

to appeal to a truncated Neumann series for the matrix, as is done in ILUS [13]. This

has the advantage of allowing computation in sparse-sparse mode. That is, sparse

vectors are being multiplied by sparse matrices, and presumably resulting in sparse

vectors.

Another strategy would be to use a factored sparse approximate inverse of B, in

place of the Cholesky factors. With this approach, we would always work in sparse-

sparse mode thereby develop sparser factors.

The version we implement is detailed in Algorithm 4.2 and makes use of an in-

complete Cholesky factorization for B. That is, B ≈ B̃ = L∆L∗ is input as the

factorization for B. The vector u is then computed and subjected to a numerical

dropping rule. The relative threshold dropping rule we apply appears in line 4. The

vector x is recomputed so as to maintain the B̃-orthogonality of the transformation

being applied. The algorithm proceeds as in Algorithm 4.1 until the last step in the

for loop, where numerical dropping is applied to the most recently computed column

of R to introduce more sparsity. This step is referred to as post-filtration. This algo-

rithm will be denoted by IQR(τ, η), where τ is the drop tolerance applied to u, and

η is the post-filtration tolerance. In our examples, however, we will frequently use

η = τ . We also drop the entries in the strict lower triangle to enforce reduction to

an upper triangular form. We note that a strategy such as that found in [20] may

be implemented to make the reflectors competitive with Givens rotations for sparse

matrices.

4.3 Other preconditioning techniques for (D, B)

In addition to the incomplete B−1-orthogonal QR factorization, we present a few

techniques to construct incomplete factorization type preconditioners for D using

existing techniques.

4.3.1 ILU and ILQ based preconditioners

A first approach to constructing an incomplete factorization for D is to construct an

ILU factorization of A − µB and exploit symmetry to precondition. That is, if the

factors are complete, and B = TT ∗ is a Cholesky factor of B, we have

D = (A− µB)B−1(A− µB) = (U∗L∗T−∗)(T−1LU). (4.17)

The preconditioner may then be used in block Arnoldi-like method by applying

(T−1LU)−1(U∗L∗T−∗)−1 = U−1L−1BL−∗U−∗. (4.18)

82

Algorithm 4.2 IQR(τ, η) factorization with respect to B−1 inner product

Input: C, symmetric positive definite B ≈ L∆L∗, drop tolerance τ , post-filtration
tolerance η.

1: for j = 1, 2, . . . , n− 1 do
2: x =

(
cj,j · · · cn,j

)
3: u = L̂−∗j ∆̂−1

j L̂−1
j x.

4: droptol = τ
√
x∗u

5: if |ui| < droptol then
6: Drop ui.
7: end if
8: Recompute x = L̂j∆̂jL̂

∗
ju

9: β =
√
x∗u

10: γ = β√
δj

sign(−u1)

11: u1 = u1 − γ
12: σ = 1

β2−γx1

13: z = ∆
− 1

2
j L−1

j x− βe1

14: Cj = ∆
− 1

2
j L−1

j Cj − σzu∗Cj

15: if |cij| < β ∗ η, for 1 ≤ i < j then
16: Drop cij.
17: end if
18: Drop cij if i > j to enforce upper triangularity.
19: end for

83

In general, we may expect µ to be well inside the spectrum, thereby making the

matrix A−µB highly indefinite. In this case, special care must be taken to construct

ILU factorizations which exist and are sufficiently stable. Pivoting may be required

to keep stability, thereby destroying symmetry. To preserve symmetry, we may have

to turn to the ILUS factorization summarized in Section 3.1 and detailed in [13]. In

general, constructing stable ILU factors for highly indefinite operators is difficult at

best, and we refer the interested reader to [5], [12], [13], [52] and the references therein.

In our case, the stability problem is exacerbated by the necessity of performing two

triangular solves with each factor!

Due to the normal equations structure of the operatorD, it is attractive to consider

factorizations of the form A− µB ≈ LQ, particularly when B = I. Should B not be

the identity, we may compute an ILQ factorization of (A−µB)Z where B−1 ≈ ZZ∗.

Here, ZZ∗ may be taken to be a sparse approximate inverse of B. As application of

D necessitates the action of B−1 to a vector as exactly as possible, we may have a

complete (or nearly so) Cholesky factor of B on hand. Using this in place of Z may

still not be desirable, as we wish to maintain sparsity of the factors. In the case that

we have a complete LQ factorization of (A− µB)Z where ZZ∗ = B−1, we see that

D = (A− µB)B−1(A− µB) = LQQ∗L∗ = LL∗ (4.19)

and so we have implicitly produced a Cholesky factor of D without the need to

explicitly form D. A preconditioner based on this kind of ILQ requires two triangular

solves: one with L followed by one with L∗. As discussed in Section 3.1.2, there

are many methods for constructing incomplete LQ factorizations of a given matrix.

The method we favor here is TIGO [4] [45], and this is the method we execute in

the examples in Section 4.4. Like the ILU factorization, however, there are stability

problems with ILQ factors as well, especially when the matrix to be factored is poorly

conditioned.

4.3.2 RIF based preconditioners

In a strategy similar to that using ILQ factorizations above, we may construct pre-

conditioners based on the RIF process for the normal equations as described in [8].

An advantage to using RIF is that due to the link with SAINV, the factors fre-

quently demonstrate much more stable behavior than other incomplete factorization

preconditioners, especially when applied to ill-conditioned operators. As before, we

take a sparse approximate inverse for B, say B ≈ ZZ∗ and we construct the RIF

of (A− µB)ZZ∗(A− µB) by collecting the multipliers formed in performing incom-

plete orthogonalization with respect to the (A − µB)ZZ∗(A − µB) inner product.

Note that constructing the RIF in this way does not require explicit formation of

84

(A−µB)ZZ∗(A−µB). Upon completion, we will have implicitly formed a Cholesky

factor of (A− µB)ZZ∗(A− µB), which we may use to precondition D.

4.4 Numerical Examples III

Here we provide examples illustrating the effectiveness of the preconditioning schemes

for the interior formulation.

4.4.1 Example: The Laplacian on a barbell-shaped domain

We return to the problem of Section 2.6.1, only this time we seek the eigenvalues

nearest the target µ = 10000. This is indeed a rather contrived example, we simply

use it to illustrate the effectiveness of various preconditioning techniques, for the

formulation (D,M), where M is the mass matrix, taking the role of B, and D =

CM−1C with C = K − 10000M .

The first preconditioner we consider is the factor obtained from the incomplete

M−1 QR factorization of C. Due to the structure of the matrix and the inefficiencies

of our codes implementing the incomplete version of Algorithm 4.1, we first apply a

reverse Cuthill-McKee ordering to C and M before computing the incomplete House-

holder QR decomposition with respect to the M−1 inner product. We note that in

our experiences, the convergence behavior seen with and without application of pre-

orderings is very similar for these types of problems; pre-ordering simply affords more

sparsity and should, in general be applied.

The convergence histories for the first Ritz value obtained from adaptBlock-

VarIIp(2,24) with IQR preconditioners with different drop tolerances are displayed

in Figure 4.2. The pertinent preconditioner statistics are reported in Table 4.1. In

all cases, the post-filtration tolerance is taken to be the same as the drop tolerance.

Also, in all cases, the algorithm ran 250 outer iterations before reducing the residual

to the desired level of 1e−07. The algorithm preconditioned by IQR(1e−03, 1e−03)

(dashed) came close, however, and in view of these examples, it seems that should

a good dropping strategy be applied to Algorithm 4.1, it may serve as an excellent

preconditioner, not only for problems such as this, but also for Schur complement

systems arising in the solution of saddle point problems.

In view of the entries in Table 4.1, it is abundantly clear that our post-filtration

strategy is implemented over aggressively, and should probably be relaxed to allow

for higher quality preconditioners. We also note that none of the factorizations are

particularly stable, yet the factor developed with drop tolerance τ = 1e−03, performs

moderately well. It is not stable enough, however, to be truly effective, especially in

view of the examples that follow.

85

0 50 100 150 200 250
10

−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

Outer Iterations

R
es

id
ua

l N
or

m

Figure 4.2: Convergence histories of smallest Ritz value of (D,M) computed by
adaptBlockVarIIp(2,24) preconditioned by IQR(τ, τ) with τ = 1e−01 (solid), τ =
1e−02 (dotted), and τ = 1e−03 (dashed).

τ nnz(R) ‖D −R∗R‖F/‖D‖F ‖I −R−∗DR−1‖F

1e−01 2541 8.512e−01 4.486e+05
1e−02 3289 8.274e−01 1.717e+09
1e−03 27779 2.217e−01 7.178e+11

Table 4.1: Preconditioner statistics for IQR with various drop tolerances τ .

86

SAINV RIFNR matvecs preapps final residual

1e−01 11725 5520 9.319e−08
1e−01 1e−02 4483 2212 7.238e−08

1e−03 1425 672 7.554e−08
1e−01 12796 6024 7.002e−08

1e−02 1e−02 5095 2400 5.446e−08
1e−03 1425 672 7.554e−08
1e−01 12490 5880 7.303e−08

1e−03 1e−02 4840 2280 8.475e−08
1e−03 1527 720 1.587e−08

Table 4.2: Convergence characteristics of adaptBlockVarIIp(2,24) applied to the pen-
cil (D,M) with various preconditioners.

SAINV RIFNR nnz(L) ‖D − LL∗‖F/‖D‖F ‖I − L−1DL−∗‖F

1e−01 100037 3.663e−01 2.612e+01
1e−01 1e−02 368251 3.678e−01 2.333e+01

1e−03 687361 3.697e−01 2.186e+01
1e−01 100037 3.663e−01 2.612e+01

1e−02 1e−02 368251 3.678e−01 2.333e+01
1e−03 687361 3.697e−01 2.186e+01
1e−01 101070 3.534e−01 2.563e+01

1e−03 1e−02 360828 3.580e−01 2.269e+01
1e−03 681953 3.600e−01 2.109e+01

Table 4.3: Preconditioner statistics for SAINV/RIFNR preconditioners with various
drop tolerances.

We also considered the SAINV/RIFNR preconditioner for this problem, however,

here we did not use a pre-ordering. We recall the process briefly. First, an SAINV

approximation is formed for B, that is, B−1 ≈ ZZ∗. This is followed by RIFNR (RIF

applied to the normal equations) [8] for Z∗C. Details concerning the convergence

of adaptBlockVarIIp(2,24) are presented in Table 4.2. Preconditioner statistics are

reported in Table 4.3. Notably, here all of these operators have about the same sta-

bility and accuracy measurements, however, it is clear from Figure 4.3 and Figure 4.4

that the important quality of the preconditioners is due to the quality of the RIF. In

fact the factorized SAINV for M is the same for both τ = 1e−01 and τ = 1e−02,

and therefore we see the same stability and accuracy measurements at both levels.

87

0 10 20 30 40 50 60 70 80 90
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

Outer Iterations

R
es

id
ua

l N
or

m

Figure 4.3: Convergence histories of smallest Ritz value of (D,M) computed by
adaptBlockVarIIp(2,24) preconditioned by SAINV/RIFNR. SAINV is constructed
with various tolerances (τ = 1e−01 (solid), τ = 1e−02 (dotted), and τ = 1e−03
(dashed)) and RIFNR is constructed with fixed drop tolerance and post-filtration
tolerance τ = 1e−01.

88

0 10 20 30 40 50 60 70 80
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

10
6

10
8

Outer Iterations

R
es

id
ua

l N
or

m

Figure 4.4: Convergence histories of smallest Ritz value of (D,M) computed by
adaptBlockVarIIp(2,24) preconditioned by SAINV/RIFNR. RIFNR is constructed
with various drop and post-filtration tolerances (τ = 1e−01 (solid), τ = 1e−02 (dot-
ted), and τ = 1e−03 (dashed)) and SAINV is constructed with fixed drop tolerance
tolerance τ = 1e−01.

89

4.4.2 Example: The Platzman model

We first consider the eigenvalue problem from Platzman’s oceanographic models. This

problem is part of the Harwell-Boeing collection [16], and we obtained it from the

Matrix Market [39]. This problem is well-known as a difficult eigenvalue problem as

is discussed in [27], among other places. The eigenvalues of interest are located in the

interval (0.0001, 0.024), and these correspond to interior eigenvalues of the problem

(A, I). The original formulation is skew-symmetric, and we are dealing with the

negative square of that, therefore the eigenvalues come in pairs, with the exception

of an isolated singleton at zero.

For our experiments, we seek the eigenvalues near 0.024 and use the (D,B) for-

mulation as described above. We are working with the matrix corresponding to the

North Atlantic submodel. We consider n preconditioning strategies: the ILU strategy

for D, the ILQ strategy, and the RIFNR strategy, all described in Section 4.3, and the

IQR via incomplete Householder strategy described in Section 4.2. BlockVarIIp(2,

10) was executed and details of the runs are contained in Table 4.4. Statistics for the

preconditioners considered are collected in Table 4.5. For these preconditioners, the

relative accuracy and stability measurements were computed in the following manners.

For the RIFNR and the ILQ preconditioners, we computed ‖A∗A−LL∗‖F/‖A∗A‖F ,

and ‖I − L−1A∗AL−∗‖F as relative accuracy and stability respectively. Similarly, for

the IQR we computed ‖A∗A−R∗R‖F/‖A∗A‖F as the relative accuracy measure and

‖I − R−∗A∗AR−1‖F as the stability measure. In the case of the ILU preconditioner,

however, relative accuracy was measured by the quantity

‖AA∗ − LUU∗L∗‖F/‖AA∗‖F (4.20)

and stability by

‖I − U−1L−1AA∗U−∗L−∗‖F . (4.21)

Also, since C = A − 0.024I is highly indefinite, both the L and U factors had to be

stored, as we cannot expect that the two are related.

For the RIFNR and the IQR preconditioners, the post-filtration tolerances were

taken to be the same as the drop tolerances τ . Also, the two numbers in column three

for the ILU preconditioner correspond to the number of nonzero elements in L and

U respectively. The IQR preconditioner constructed with drop tolerance τ = 1e−02

contained an element on the order of 1e−17 as the last entry in the diagonal, making

the factorization extremely unstable. This factorization was repaired by putting an

element on the order of the drop tolerance in the last diagonal entry. Statistics are

reported for the repaired factor, and this is the reason for the ∗ marking. In gen-

eral, however, the IQR preconditioner outperformed the others in terms of matvecs

at all levels, despite its instability. It was also the densest preconditioner by far. We

90

Method τ matvecs preapps ‖r1‖ ‖r2‖
NONE — 12565 5422 5.322e−10 9.799e−10
RIFNR 1e−01 4665 2022 6.243e−10 7.142e−10

1e−02 878 382 6.259e−10 8.563e−10
1e−03 279 122 1.650e−11 4.050e−11
1e−04 186 82 1.700e−14 5.311e−15

ILU 1e−01 10702 4642 4.561e−10 9.146e−10
1e−02 463 202 2.385e−10 2.346e−10
1e−03 186 82 9.818e−13 4.607e−13
1e−04 141 62 7.529e−12 5.643e−10

ILQ 1e−01 18356 7902 4.768e−10 9.586e−10
1e−02 1984 862 7.532e−10 8.662e−10
1e−03 232 102 6.850e−11 6.185e−10
1e−04 186 82 3.041e−13 5.082e−13

IQR 1e−01 1293 562 6.605e−10 7.559e−10
1e−02 232 102 3.125e−10 6.484e−10
1e−03 140 62 2.162e−10 2.112e−10
1e−04 94 42 6.861e−11 1.280e−10

Table 4.4: Convergence characteristics of BlockVarIIp(2, 10) applied to PLAT362 for
various preconditioners.

Method τ nnz relative accuracy stability

RIFNR 1e−01 769 2.960e−02 4.564e+01
1e−02 3251 4.539e−03 1.207e+01
1e−03 10850 6.789e−04 4.609e+00
1e−04 31018 8.656e−05 1.849e+00

ILU 1e−01 2222, 2416 1.683e−02 1.899e+10
1e−02 7886, 10467 2.313e−03 8.268e+01
1e−03 30706, 30225 3.163e−04 4.644e+00
1e−04 42412, 41997 2.124e−05 1.210e−01

ILQ 1e−01 2990 1.539e−02 2.519e+05
1e−02 16106 6.038e−03 1.838e+05
1e−03 33107 1.014e−03 1.746e+02
1e−04 43131 1.391e−04 4.335e+00

IQR 1e−01 15800 5.227e−03 1.076e+10
1e−02∗ 40064 9.376e−03 2.268e+08
1e−03 47357 5.621e−05 1.287e+00
1e−04 48508 2.088e−06 4.661e−02

Table 4.5: Preconditioner statistics for various preconditioners applied to interior
formulation for PLAT362.

91

again stress that should a dropping strategy with an eye for sparsity be developed

while maintaining the quality we see here, in terms of reducing the number of matrix-

vector multiplies required to get convergence, we feel that this method could be very

competitive. The RIFNR preconditioner performed well, giving good convergence

performance while maintaining moderate sparsity. Finally, we would be terribly re-

miss if we failed to mention that shift-and-invert Lanczos algorithms perform very

well on this particular example, see [27] for discussions specific to this problem.

Copyright c© Patrick D. Quillen 2005

92

Chapter 5

Conclusions and Future Work

We have presented a block generalization of the algorithm found in [25] which is

capable of resolving multiple and clustered eigenvalues while maintaining good con-

vergence. We have also developed an adaptive version of this algorithm which moves

towards the goal of constructing a black-box inverse free algorithm for computing

a few of the algebraically smallest eigenpairs of a symmetric definite pencil. More-

over, we have presented and analyzed some preconditioning schemes which accelerate

the convergence of this method. With respect to preconditioning, we have shown

some ways of constructing preconditioners so that a simple transformation may be

applied which allows application of our block algorithm to the task of locating interior

eigenvalues of a symmetric definite pencil.

There are many directions for future research based on this work. First of all, more

work should be done to make the incomplete B−1-orthogonal Householder process of

Chapter 4 truly viable. As mentioned in Section 4.2.6, one way of doing this may be

to appeal to truncated Neumann series as in ILUS [13]. Also, we may consider using

a factored sparse approximate inverse to apply B−1 at each step of the iteration.

Constructing good preconditioners for the matrix D = (A−µB)B−1(A−µB) does

not, however, give a truly inverse free method for locating the eigenvalues nearest the

target µ. An inverse free method may be obtainable by appealing to harmonic Ritz

pairs [30], [41], however, convergence is very frequently poor, and preconditioning

would play a very large role. As of yet, it is not clear how to properly construct

preconditioners to yield good harmonic Ritz pairs. We hope that understanding how

to extract good approximations to interior eigenpairs will lead to an algorithm for

more general pencils.

Although the convergence of the block algorithm mimics that of the algorithm

upon which it is based, a formal convergence theory such as that in [25] has yet to

be established. Formalizing our understanding of the convergence behavior of the

algorithm is a top priority.

Finally, we anticipate polishing our research codes and distributing them publicly.

93

Bibliography

[1] M. A. Ajiz and A. Jennings, A robust incomplete Choleski-conjugate gradient

algorithm, Int. J. Numer. Methods. Eng., 20 (1984), pp. 949–966.

[2] P. Arbenz, U. L. Hetmaniuk, R. B. Lehoucq, and R. S. Tuminaro,

A Comparison of Eigensolvers for Large-scale 3D Modal Analysis using AMG-

Preconditioned Iterative Methods, Technical Report SAND 2005-0282J, Sandia

National Laboratories, 2005.

[3] Z. Bai, D. Day, and Q. Ye, ABLE: An Adaptive Block Lanczos Method for

Non-Hermitian Eigenvalue Problems, SIAM J. Matrix Anal. Appl., 20 (1999),

pp. 1060–1082.

[4] Z.-Z. Bai, I. S. Duff, and A. J. Wathen, A class of incomplete Orthogonal

factorization methods. I: methods and theories, Report 99/13, Oxford University

Computing Laboratory, 1999.

[5] M. Benzi, Preconditioning Techniques for Large Linear Systems: A Survey, J.

Comp. Phys., 182 (2002), pp. 418–477.

[6] M. Benzi, J. K. Cullum, and M. Tůma, Robust Approximate Inverse Pre-

conditioning for the conjugate gradient method, SIAM J. Sci. Comp., 22 (2000),

pp. 1318–13xx.

[7] M. Benzi and M. Tůma, A Robust Incomplete Factorization Preconditioner

for Positive Definite Matrices, Num. Lin. Alg. Appl., 10 (2003), pp. 385–400.

[8] , A Robust Preconditioner with Low Memory Requirements for Large Sparse

Least Squares Problems, SIAM J. Sci. Comp., 25 (2003), pp. 499–512.

[9] L. Bergamaschi, G. Gambolati, and G. Pini, Asymptotic Convergence of

Conjugate Gradient Methods for the Partial Symmetric Eigenproblem, Num. Lin.

Alg. Appl., 4 (1996), pp. 69–84.

[10] A. Bouras and V. Fraysse, A Relaxation Strategy for the Arnoldi Method in

Eigenproblems, Technical Report TR/PA/00/16, CERFACS, 2000.

94

[11] A. Canning, L. wang Wang, A. Williamson, and A. Zunger, Parallel

Empirical Pseudopotential Electronic Structure Structure Calculations for Mil-

lion Atom Systems, J. Comp. Phys., 160 (2000), pp. 29–41.

[12] E. Chow and Y. Saad, Experimental study of ILU preconditioners for indefi-

nite matrices, J. Comput. Appl. Math., 86 (1997), pp. 387–414.

[13] , ILUS: An Incomplete LU Preconditioner in Sparse Skyline Format, Tech-

nical Report UMSI-95-78, University of Minnesota Supercomputing Institute,

1997.

[14] J. K. Cullum and R. A. Willoughby, Lanczos Algorithms for Large Sym-

metric Eigenvalue Computations Vol. I: Theory, vol. 41 of Classics in Applied

Mathematics, Society for Industrial and Applied Mathematics (SIAM), Philadel-

phia, PA, 2002. Reprint of the 1985 original.

[15] J. W. Demmel, Applied Numerical Linear Algebra, SIAM, Philadelphia, PA,

1997.

[16] I. S. Duff, R. G. Grimes, and J. G. Lewis, Users’ Guide for the Harwell-

Boeing Sparse Matrix Collection (Release I), Technical Report TR/PA/92/86,

CERFACS, 1992.

[17] D. R. Fokkema, G. L. G. Sleijpen, and H. A. V. D. Vorst, Jacobi-

Davidson style QR and QZ algorithms for the reduction of Matrix Pencils, SIAM

J. Sci. Comput., 20 (1998), pp. 94–125.

[18] R. Freund, Band Lanczos Method (Section 4.6), in Templates for the Solu-

tion of Algebraic Eigenvalue Problems: A Practical Guide, Z. Bai, J. Demmel,

J. Dongarra, A. Ruhe, and H. van der Vorst, eds., Philadelphi, PA, 2000, SIAM.

[19] G. Gambolati, G. Pini, and F. Sartoretto, An Improved iterative op-

timization technique for the leftmost eigenpairs of large symmetric matrices, J.

Comp. Phys., 74 (1988), pp. 41–60.

[20] A. George and J. Liu, Householder Reflectors versus Givens Rotations in

Sparse Orthogonal Decompositions, Lin. Alg. Appl., 88/89 (1987), pp. 223–238.

[21] R. Geus, The Jacobi-Davidson algorithm for solving large sparse symmetric

eigenvalue problems with application to the design of accelerator cavities, PhD

Thesis, ETH Zürich, 2002.

[22] G. H. Golub and R. Underwood, The Block Lanczos Method for Computing

Eigenvalues, in Mathematical Software III, J. R. Rice, ed., New York, NY, 1977,

Academic Press, pp. 361–377.

95

[23] G. H. Golub and C. F. VanLoan, Matrix Computations, Johns Hopkins

University Press, Baltimore, MD, 3rd ed., 1996.

[24] G. H. Golub and Q. Ye, Inexact Inverse Iteration for Generalized Eigenvalue

Problems, BIT, 40 (2000), pp. 671–684.

[25] , An Inverse Free Preconditioned Krylov Subspace Method for Symmetric

Generalized Eigenvalue Problems, SIAM J. Sci. Comp., 24 (2002), pp. 312–334.

[26] G. H. Golub, Z. Zhang, and H. Zha, Large sparse symmetrci eigenvalue

problems with homogeneous linear constraints: The Lanczos process with inner-

outer iterations, Lin. Alg. Appl., 309 (2000), pp. 289–306.

[27] R. G. Grimes, J. G. Lewis, and H. D. Simon, A Shifted Block Lanczos

Algorithm for Solving Sparse Symmetric Generalized Eigenproblems, SIAM J.

Matrix. Anal. Appl., 15 (1994), pp. 228–272.

[28] L. Hoffnung. Private Communication, 2005.

[29] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University

Press, Cambridge, UK, 1985.

[30] Z. Jia, The convergence of harmonic Ritz values, harmonic Ritz vectors, and

refined harmonic Ritz vectors, Math. Comp., 156–156 (2004), pp. 289–309.

[31] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin,

1966.

[32] A. V. Knyazev, Preconditioned Eigensolvers—an oxymoron?, Electron. Trans.

Numer. Anal., 7 (1998), pp. 104–123.

[33] , Preconditioned Eigensolvers (Section 11.3), in Templates for the Solution

of Algebraic Eigenvalue Problems: A Practical Guide, Z. Bai, J. Demmel, J. Don-

garra, A. Ruhe, and H. van der Vorst, eds., Philadelphi, PA, 2000, SIAM.

[34] , Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block

Preconditioned Conjugate Gradient, SIAM J. Sci. Comp., 23 (2001), pp. 517–

541.

[35] A. V. Knyazev and K. Neymeyr, A geometric theory for preconditioned

inverse iteration III: A short and sharp convergence estimate for generalized

eigenvalue problems, Lin. Alg. App., 358 (2003), pp. 95–114.

96

[36] , Efficient Solution of Symmetric Eigenvalue Problems using Multigrid Pre-

conditioners in the Locally Optimal Block Conjugate Gradient Method, Elec.

Trans. Num. Anal., 15 (2003), pp. 38–55.

[37] D. S. Mackey, N. Mackey, and F. Tisseur, G-reflectors: analogues of

Householder transformations in scalar product spaces, Numerical Analysis Report

420, Manchester Centre for Computational Mathematics, 2003.

[38] D. S. Mackey, N. Mackey, and F. Tisseur, Structured Tools for Structured

Matrices, Electronic J. Linear Algebra, 10 (2003), pp. 106–145.

[39] Matrix Market. http://math.nist.gov/MatrixMarket/.

[40] J. H. Money and Q. Ye, Algorithm 845: EIGIFP: A MATLAB Program for

Solving Large Symmetric Generalized Eigenvalue Problems, ACM Trans. Math.

Softw., 31 (2005), pp. 270–279.

[41] R. B. Morgan, Computing interior eigenvalues of large matrices, Lin. Alg.

Appl., 74 (1991), pp. 1441–1456.

[42] K. Neymeyr, A geometric theory for preconditioned inverse iteration I: Extrema

of the Rayleigh quotient, Lin. Alg. App., 332 (2001), pp. 61–85.

[43] , A geometric theory for preconditioned inverse iteration II: Convergence

estimates, Lin. Alg. App., 332 (2001), pp. 87–104.

[44] , A Hierarchy of Preconditioned Eigensolvers for Elliptic Differential Opera-

tors, Habilitationsschrift, Mathematishces Institut, Universität Tübingen, 2001.

[45] A. T. Papadopoulos, I. S. Duff, and A. J. Wathen, Incomplete Or-

thogonal Factorization Methods Using Givens Rotations II: Implementation and

Results, Report 02/07, Oxford University Computing Laboratory, 2002.

[46] B. N. Parlett, The Symmetric Eigenvalue Problem, vol. 20 of Classics in

Applied Mathematics, Society for Industrial and Applied Mathematics (SIAM),

Philadelphia, PA, 1998. Corrected reprint of the 1980 original.

[47] A. Ruhe, Implementation Aspects of Band Lanczos Algorithms for Computation

of Eigenvalues of Large Sparse Symmetric Matrices, Math. Comp., 33 (1979),

pp. 680–687.

[48] Y. Saad, On the Rates of Convergence of the Lanczos and the Block-Lanczos

Methods, SIAM J. Num. Analysis., 17 (1980), pp. 687–706.

97

[49] , Preconditioning techniques for nonsymmetric and indefinite linear systems,

J. Comput. Appl. Math., 29 (1988), pp. 89–105.

[50] , Numerical methods for large eigenvalue problems, Algorithms and Architec-

tures for Advanced Scientific Computing, Manchester University Press, Manch-

ester, 1992.

[51] , ILUT: A dual threshold incomplete LU factorization, Numer. Linear Alge-

bra Appl., 1 (1994), pp. 387–402.

[52] , Iterative Methods for Sparse Linear Systems, PWS Publishing Company,

Boston, MA, 1996.

[53] B. Smith, J. Boyle, B. Garbow, Y. Ikebe, V. Klema, and C. B. Moler,

Matrix Eigensystem Routines—EISPACK Guide, vol. 6 of Lecture Notes in Com-

puter Science, Springer-Verlag, Berlin, 1974.

[54] Y. Sun, The Filter Algorithm for Solving Large-Scale Eigenproblems from Ac-

celerator Simulations, PhD Thesis, Stanford University, 2003.

[55] M. Tůma. Private Communication, 2005.

[56] U. Trottenberg, C. Oosterlee, and A. Schüller, Multigrid, Academic

Press, London, 2001.

[57] R. Underwood, An Iterative Block Lanczos Method for the Solution of Large

Sparse Symmetric Eigenproblems, PhD Thesis, Stanford University, 1975.

[58] M. Verbeek, J. Cullum, and W. Joubert, AMGToolBox, 2002.

[59] X. Wang, Incomplete Factorization Preconditioning for Linear Least Squares

Problems, PhD Thesis, University of Illinois at Urbana-Champaign, 1993.

[60] X. Wang, K. A. Gallivan, and R. Bramley, CIMGS: An Incomplete Or-

thogonal Factorization Preconditioner, SIAM J. Sci. Comput., 18 (1997), pp. 516–

536.

[61] L. wang Wang and A. Zunger, Solving Schroedinger’s equation around a

desired energy: Application to silicon quantum dots, J. Chem. Phys., 100 (1994),

pp. 2394–2397.

[62] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press,

New York, 1965.

[63] Q. Ye, An adaptive block Lanczos algorithm, Numerical Algorithms, 12 (1996),

pp. 97–110.

98

Vita

1. Background.

(a) Date of Birth: 21 November 1977

(b) Place of Birth: Clearwater, FL

2. Academic Degrees.

(a) B.S., Mathematics (Computer Science minor), University of Arkansas,

1999.

(b) M.S., Mathematics, University of Kentucky, 2002.

3. Professional Experience.

(a) Teaching Assistant, Mathematics Department, University of Kentucky,

Fall 1999–Spring 2005

(b) Research Assistant under Dr. Qiang Ye, University of Kentucky, Spring

2003–Fall 2004, Summer 2005.

(c) Software Engineering Intern, Raytheon E-Systems, St. Petersburg, FL,

Summer 1996, 1997

(d) Software Engineering Intern, Honeywell, Clearwater, FL, Summer 1998,

1999

(e) Intern under Dr. Noël M. Nachtigal, Sandia National Laboratories, Liver-

more, CA, Summer 2001, 2002, 2003

4. Publications.

(a) A Network Diversion Vulnerability Problem. (with Ariel Cintron-Arias,

Norman Curet, Lisa Denogean, Robert Ellis, Corey Gonzalez, and Shobha

Oruganti) IMA Mathematical Modeling in Industry Summer 2000 Program

for Graduate Students, University of Minnesota, Technical Report 1752-5.

February 2001.

99

	Abstract
	Title Page
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	List of Algorithms
	Chapter 1 Preliminaries
	Introduction
	Classical Results
	Simultaneous diagonalization of two quadratic forms
	The Rayleigh Quotient and Courant-Fischer
	The Rayleigh-Ritz Method

	Krylov Subspace Methods
	The Arnoldi Process
	The Lanczos process
	The Quality of extracted Ritz pairs

	Chapter 2 Inverse Free Algorithms for (A,B)
	A Generic Eigensolver and Properties
	The Inverse Free method of Golub and Ye
	Block Inverse Free Algorithms
	Block variant I
	Revealing an Arnoldi-like structure
	A Block Arnoldi-like Process and Block variant II

	Further considerations
	Deflation of converged Eigenvectors
	Adding the previous Ritz vector
	Adaptively choosing the block size

	Some Implementation Details
	Numerical Examples I
	Example: block versus single vector
	Example: adding the previous Ritz vector
	Example: comparing basis construction methods
	Example: choosing the number of inner iterations
	Example: adaptive block sizing
	Example: the need for accelerated convergence

	Chapter 3 Preconditioning Inverse Free Algorithms for (A,B)
	Incomplete Factorizations---Background
	ILU factorizations
	ILQ Factorizations

	Sparse Approximate Inverses---Background
	Preconditioning Inverse free algorithms
	Factoring the iteration matrix
	A fixed preconditioner
	Factoring B
	A small example

	Numerical Examples II
	Example: Harwell-Boeing problems revisited
	Example: Preconditioning and clustered eigenvalues
	Example: Comparing Preconditioners and Methods
	Example: An Algebraic Multigrid Preconditioner

	Chapter 4 The Interior Eigenvalue Problem
	Recasting the problem
	Computing B-1-orthogonal QR factorizations
	B-unitary matrices
	Constructing QR factorizations via Householder-like reflectors
	Towards B-unitary QR factorizations
	Towards B-1-unitary QR factorizations
	B-1-orthonormal QR factorizations
	Performing the process incompletely

	Other preconditioning techniques for (D, B)
	ILU and ILQ based preconditioners
	RIF based preconditioners

	Numerical Examples III
	Example: The Laplacian on a barbell-shaped domain
	Example: The Platzman model

	Chapter 5 Conclusions and Future Work
	Bibliography
	Vita

