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Abstract

For a given set of data points lying on a low-dimensional manifold embed-
ded in a high-dimensional space, the dimensionality reduction is to recover a
low-dimensional parametrization from the data set. The recently developed
Hessian Eigenmaps is a mathematically rigorous method that also sets a the-
oretical framework for the nonlinear dimensionality reduction problem. In
this paper, we develop a discrete version of the Hessian Eigenmaps method
and present an analysis, giving conditions under which the method works as
intended. As an application, a procedure to modify the standard construc-
tions of k-nearest neighborhoods is presented to ensure that Hessian LLE
can recover the original coordinates up to an affine transformation.

Keywords: Hessian Eigenmaps, Dimensionality Reduction, Null Space,
Hessian Matrix

1. Introduction

High dimensional data sets arise in many real-world applications. They
may be obtained from various measurements or sensing systems, such as
systems of digital cameras, video surveillance, text document processing, and
digital sound analysis. These data points may lie approximately on a low

∗Corresponding author
Email addresses: qye3@uky.edu (Qiang Ye), wzhi@ucdavis.edu (Weifeng Zhi)

1



2

dimensional manifold embedded in a high dimensional space. Dimensionality
reduction (or called manifold learning) is to recover a set of low-dimensional
parametric representations for the high-dimensional data points, which may
be used for further processing or visualization of the data.

Mathematically, consider a d-dimensional parameterized manifoldM em-
bedded in R

n (d < n) characterized by a possibly nonlinear map ψ: C ⊂
R

d → R
n, where C is a compact and connected subset of Rd. Here R

n is the
high-dimensional data space with M = ψ(C) being the manifold containing
data points and R

d is the low-dimensional parameter space. Suppose we have
a set of data points m1, . . . , mN sampled from the manifold M with

mi = ψ(τi), i = 1, . . . , N, (1)

for some τi ∈ C. Then the dimensionality reduction (or manifold learning)
problem is to recover the parameter points τi’s and/or the map ψ from mi’s.
Clearly, this problem is not well defined for a general nonlinear map ψ. How-
ever, as is shown by Donoho and Grimes in the derivation of the Hessian
Eigenmaps method [1], if ψ is a local isometric map, then τ = ψ−1(m) is
uniquely determined up to a rigid motion and hence captures the geometric
structure of the data set. In this paper, we consider the noise-free data (1)
and assume for the theoretical purpose that ψ is a local isometry.

Traditionally, the linear dimensionality reduction problem has been con-
sidered where the data set lies close to an affine subspace, i.e. ψ is a lin-
ear map. Such a problem can be solved by the principal component anal-
ysis (PCA) for example. However, only limited data problems admit a
linear structure. Recent interests have focused on nonlinear dimensional-
ity reductions where ψ is nonlinear. Since the publications of two meth-
ods for nonlinear dimensionality reductions called Locally Linear Embed-
ding (LLE) [2] and Isometric Mapping (Isomap) [3] in 2000, several other
methods and generalizations have been proposed, which include Laplacian
Eigenmaps [4], Hessian Eigenmaps [1], and Local Tangent Space Align-
ment (LTSA) [5] among many others [6, 7, 8, 9]; see also [10] for a review.
While theoretical analysis has been developed for some of these methods
[11, 12, 13, 14, 15, 16, 17, 18, 19, 20], theoretical understanding of many of
them remains limited.

The Hessian Eigenmaps [1] is a mathematically rigorous method based on
a theory that also sets a theoretical framework for the nonlinear dimension-
ality reduction problem. For each function f : M 7→ R, a Hessian operator
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Hf(m) of f can be defined at m ∈ M as the Hessian matrix of an exten-
sion of f through a projection on the tangent plane at m. From this, the
quadratic form H(f) =

∫
M

‖Hf(m)‖2Fdm called H-functional is introduced.
If ψ is a local isometric map, it is proved in [1] that the H-functional H(f)
has a (d + 1)-dimensional null space spanned by the constant function and
the d component functions of ψ−1; see [1] or Section 2 for details. Note that
for each m ∈ M, τ = ψ−1(m) is the original coordinate. Hence, the locally
isometric coordinate, up to a linear transformation1, is uniquely determined
and can be recovered by computing the null space of the H-functional. This
method called the Hessian Eigenmaps is however only a theoretical method
as it is based on the continuous setting.

For a practical problem with a discrete data set (1), a numerical procedure
called Hessian LLE is derived in [1] to construct some form of approximate
H-functional. This involves constructing local neighborhoods and computing
local tangent space coordinates for points in a small neighborhood for the
use of constructing some equivalent form of the local Hessian operator, from
which an H-functional is constructed; see [1] or Section 2 for details. As
a result of various approximations and necessary modifications of definition
to the discrete setting, it is not clear whether an approximate H-functional
so obtained still approximately recovers the original isometric coordinates.
Indeed, for 1-dimensional problems (d = 1), Hessian LLE usually fails with
some commonly used constructions of local neighborhoods such as k-nearest
neighborhoods; see discussion in Section 4 and numerical examples in Section
5. One way to address this difficulty is a modified construction of k-nearest
neighborhoods introduced in the implementation in [21].

In this paper, we present a discrete version of the Hessian Eigenmaps
method, which is theoretically equivalent to the Hessian LLE method, an
implementation of the Hessian Eigenmap in the discreet setting introduced
in [1]. The main feature of our formulation is the introduction of a discrete
Hessian operator defined from points in a small neighborhood. Given N
data points in (1), by using the discrete Hessian operators defined for a set
of small neighborhoods, a matrix Ψ is constructed that represents a quadratic
form generalizing the H-functional and is called a Hessian alignment matrix.
Provided that local coordinates used to define the discrete Hessian operators

1With an additional step of matching with local coordinates in one local neighborhood
[1, 16], the uncertainty can be reduced to an orthogonal transformation, i.e. a rigid motion.
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are computed correctly, we will show under certain conditions on the local
neighborhoods that

null(Ψ) = span([e, T T ]),

where T = [τ1, . . . , τN ] and e is the vector of all 1’s. Then, the matrix T or
the original coordinates τi can be recovered, up to a linear transformation,
from the null space of Ψ. This generalizes Donoho and Grimes’ theorem
on the null space of H(f) and provides a theoretical analysis of the Hessian
LLE . As an implication of this analysis, we propose a modified neighborhood
construction to improve robustness of Hessian LLE. Numerical examples will
be presented to illustrate the improvements.

The paper is organized as follows. In Section 2, we describe the continu-
ous Hessian Eigenmaps method and the associated numerical procedure for
implementation as presented in [1]. In Section 3, we formulate Hessian LLE
as a discrete version of the Hessian Eigenmaps and provide an analysis for
Hessian alignment matrix. In Section 4, we discuss constructions of local
neighborhoods and present a method to expand neighborhoods for proper
recovery of original coordinates based on our result. We will also present
a numerical example in Section 5, followed by some concluding remarks in
Section 6.

Notation. Throughout, e denotes a column vector of all ones, the dimension
of which should be determined from the context. null(·) is the null space of
a matrix, and span(·) denotes the subspace spanned by all the columns of
argument matrices. A† denotes the Moore-Penrose pseudoinverse of A.

For two matrices A = (aij)m×n ∈ R
m×n and B = (bij)p×q ∈ R

p×q,
A
⊗

B ∈ R
mp×nq represents the Kronecker product of A and B [22, p.274].

For two row vectors a = [a1, . . . , an] ∈ R
1×n and b = [b1, . . . , bn] ∈ R

1×n, we
also define

a
⊙

b = [c1, . . . , cn(n+1)
2

] ∈ R
1×

n(n+1)
2 , (2)

where c k(k−1)
2

+ℓ
= akbℓ for 1 ≤ ℓ ≤ k ≤ n.

We call a finite subset S of Rd an ordered set if an order is associated
with its elements. Then the set can be represented by an ordered list as
S = {τ1, . . . , τk}. The matrix

T = [τ1, . . . , τk] (3)

with its columns given by the vectors in S in the given order is called the
corresponding matrix.
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2. Hessian Eigenmaps

In this section, we first describe the Hessian Eigenmaps method of [1]
in the continuous setting. Given that the map ψ defined in (1) is a local
isometric embedding, the map φ = ψ−1 : M ⊂ R

n → R
d provides a (locally)

isometric coordinate system for M. Each component of φ is a function
defined on M that provides one coordinate. The main idea of the Hessian
Eigenmaps is to introduce a Hessian operator and a functional called the
H-functional defined for functions on M, for which the null space consists of
the d coordinate functions and the constant function.

Let f : M 7→ R be a function defined on M and let m0 be an interior
point of manifold M. We can define a function h : C 7→ R as h(τ) = f(ψ(τ)),
where C = φ(M) ⊂ R

d and τ = [t1, . . . , td]
T ∈ C. h is called a pullback of

f to C. Let τ0 = φ(m0). We call the Hessian matrix of h at τ0 the Hessian
matrix of function f at m0 in the isometric coordinate and we denote it by

H iso
f (m0). Then (H iso

f )i,j(m0) =
∂2h(τ0)
∂ti∂tj

. From the Hessian matrix, we define

a H-functional of f in isometric coordinates, denoted by Hiso(f), as

Hiso(f) =

∫

M

‖H iso
f (m)‖2

F
dm, (4)

where dm is a probability measure on M which has strictly positive density
everywhere on the interior of M. It is clear that Hiso of the d component
functions of φ are zero as their pullbacks to C are linear functions. Indeed,
Hiso(·) has a (d + 1)-dimensional null space, consisting of the span of the
constant functions and the d component functions of φ; see [1, Corollary 4].

The Hessian matrix and the H-functional in isometric coordinates intro-
duced above are unfortunately not computable without knowing the isometric
coordinate system φ first. To obtain a functional with the same property but
independent of the isometric coordinate system φ, a Hessian matrix and the
H-functional in local tangent coordinate systems are introduced in [1]. We
describe it now.

For a smooth manifold M and an interior point m0 ∈ M, let Tm0(M)
denote the tangent space at m0. Let Nm0 be the set of points m ∈ M in
a small neighborhood of m0. Consider the tangent space as a plane at m0

(or a linear subspace R
n with the origin at m0). There is an orthonormal

basis {vi, 1 ≤ i ≤ d} for Tm0(M), where vi ∈ R
n. If Nm0 is a sufficiently

small neighborhood, then for any point m ∈ Nm0, there is a unique point
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v(m) ∈ Tm0(M) that is closest to m. For m0, the closest point in Tm0(M)
is m0 itself. We can write v(m) in the basis {vi} as

v(m) = x
(tan,m0)
1 (m)v1 + · · ·+ x

(tan,m0)
d (m)vd.

In this way, each m ∈ Nm0 is uniquely defined by

x(tan,m0)(m) = [x
(tan,m0)
1 (m), . . . , x

(tan,m0)
d (m)]T ∈ R

d,

which we call a local tangent coordinate (parametrization) of m ∈ Nm0.
Now, let f ∈ C2(M) : M 7→ R. It induces g(x) : x ∈ U0 → R defined by

g(x) = f(m),

where x = x(tan,m0)(m) ∈ R
d for m ∈ Nm0 and U0 ⊂ R

d is a small neigh-
borhood of 0 ∈ R

d such that there is a one-to-one correspondence between
x ∈ U0 and m ∈ Nm0 . From this, we define the Hessian matrix of f at m0

in the local tangent coordinates as the ordinary Hessian matrix of g(x) at
0 ∈ R

d and denote it by H tan
f (m0) =

(
(H tan

f )i,j(m0)
)
. Then,

(H tan
f )i,j(m0) =

∂2g

∂xi∂xj
(x)|x=0 i, j = 1, . . . , d.

While the Hessian defined above depends on the coordinate systems and the
basis chosen for the tangent space, it is easy to see that the Hessians de-
fined under different coordinate systems are orthogonally similar. Thus, it is
uniquely defined up to an orthogonal similarity transformation. In particular,

H(f) =

∫

M

‖H tan
f (m)‖2

F
dm

is well defined and is called H-functional. The following is the main theorem
of [1].

Theorem 2.1. (Donoho and Grimes [1]) Suppose M = ψ(C) where C is an
open connected subset of Rd, and ψ is a locally isometric embedding of C into
R

n. Then H(f) = Hiso(f) and they have a d + 1 dimensional null space
consisting of the constant function and a d-dimensional space of functions
spanned by the original isometric coordinates (i.e the component functions of
φ).
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In a practical setting, we are given N high dimensional data points M =
{m1, · · · , mN} ⊂ R

n. The following five step numerical procedure called
Hessian LLE is introduced in [1] to implement Theorem 2.1.

Step 1 Identify Local Neighbors. For every mi, identify its k nearest point
neighborhood Nmi

= {mi1, . . . , mik}, Mi = [mi1 , . . . , mik ]
T . Let M̄i =

[mi1 − m̄i, . . . , mik − m̄i]
T , where m̄i =

1
k

∑k

j=1mij .

Step 2 Obtain Local Tangent Coordinates. Let the singular value de-

composition of M̄i be M̄i = U (i)Σ(i)V (i)T , where U (i) = [u
(i)
1 , . . . , u

(i)
k ] ∈

R
k×k, Σ(i) = diag(σ1, . . . , σk) ∈ R

k×n with σ1 ≥ σ2 ≥ · · · ≥ σk and
V (i) ∈ R

n×n. The first d columns of V (i) span approximately the tan-
gent space at mi and the tangent coordinates of points in Nmi

are

[θ
(i)
1 , . . . , θ

(i)
k ] := diag(σ1, . . . , σd)[u

(i)
1 , . . . , u

(i)
d ]T . (5)

Step 3 Develop Hessian Estimator. For each i, construct

X(i) =




1 d q

1 θ
(i)
1

T
θ
(i)
1

T ⊙
θ
(i)
1

T

1 θ
(i)
2

T
θ
(i)
2

T ⊙
θ
(i)
2

T

...
...

...
1 θ

(i)
k

T
θ
(i)
k

T ⊙
θ
(i)
k

T


,

where q = d(d+ 1)/2 and the operation
⊙

is defined according to (2).
Perform the Gram-Schmidt orthonormalization process on the columns
of X(i) and let GT

i ∈ R
k×q be the matrix of the last q orthonormal

columns. Gi is called a Hessian estimator.

Step 4 Construct Approximate H-functional. Ψ = ΣN
i=1EiG

T
i GiE

T
i , where

Ei = [ei1 , . . . , eik ] ∈ R
N×k.

Step 5 Find Basis of Null Space. Compute the d + 1 eigenvectors corre-
sponding to the d + 1 smallest eigenvalues of Ψ with e being the one
corresponding to the eigenvalue 0. Let Z be the matrix consisting of
the d eigenvectors corresponding to the 2nd to (d + 1)-st eigenvalues,
where Z ∈ R

d×N . Find an orthogonal matrix U such that the restric-
tion of ZU to a fixed local neighborhood has orthonormal columns.
Then the columns of T = UTZT are approximate global coordinates.

In light of the use of Hessian estimators as an ad hoc approximation
of the Hessian operator, one of the theoretical difficulties with the above
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procedure is how well they approximate the continuous counterparts. In the
next section, we formally define a discrete Hessian operator and analyze a
discrete version of the Hessian Eigenmaps.

3. Discrete Hessian Eigenmaps Method

In this section, we present a discrete version of the Hessian Eigenmaps
method. Specifically, we introduce the discrete Hessian operator and a gener-
alization of the H-functional and prove generalizations of Theorem 2.1. The
discrete Hessian Eigenmaps method is essentially the same as the numerical
procedure of Hessian LLE [1] described in Section 2, but is formulated as a
direct generalization of the original Hessian Eigenmaps method. By estab-
lishing a discrete version of Theorem 2.1 with analysis, we directly provide a
theoretical basis of the discrete procedure.

We are interested in reconstructing the coordinate set {τ1, τ2, · · · , τN} for
a given data set M = {m1, . . . , mN}. We partition M into subsets {M i, i =
1, . . . , s} with M i = {mi1 , . . . , miki

} (i1 < i2 < · · · < iki) consisting of points
in a small neighborhood so that a coordinate system on the local tangent
space can be approximately obtained. For theoretical purpose, we assume
thatM i is a subset such that a local isometric coordinateΘi = {θ(i)1 , . . . , θ

(i)
ki
}

can be constructed such that ‖θ(i)p − θ
(i)
q ‖2 = ‖τip − τiq‖2 (which is also equal

to the geodesic distance between mip , miq along M) for any 1 ≤ p, q ≤ ki.
(In the context of Hessian Eigenmaps, the local tangent coordinate is an
approximation of the local coordinate defined here). The essence of the
Hessian Eigenmaps method is to reconstruct τi’s from the local coordinates
using Hessian operators.

3.1. Hessian Operator

Let S0 = {τ1, . . . , τk} ⊂ R
d be an ordered set and let T0 = [τ1, . . . , τk] be

the corresponding matrix as in (3). For our purpose, S0 is a coordinate set
and we first define its dimension.

Definition 3.1. The coordinate set S0 = {τ1, . . . , τk} ⊂ R
d is said to be of

dimension p if
rank[τ1 − τ̄ , τ2 − τ̄ , . . . , τk − τ̄ ] = p

where τ̄ = (Σk
j=1τj)/k. We write dim(S0) = p.
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Clearly, dim(S0) = p is the dimension of the space spanned by centered
S0 or an affine plane through S0. Recall that e is a column vector of all ones.
The following lemma is shown in [16].

Lemma 3.1. dim(S0) = p if and only if rank(
[
e, T T

0

]
) = 1 + p.

Definition 3.2. Let S0 = {τ1, . . . , τk} ⊂ R
d be an ordered subset and let

T0 = [τ1, τ2, · · · , τk] be the corresponding matrix. Let

Z0 = Y0 − [e, T T
0 ][e, T

T
0 ]

†Y0, (6)

where

Y0 =




τT1
⊙

τT1
τT2

⊙
τT2

...
τTk

⊙
τTk


 ∈ R

k×q with q =
d(d+ 1)

2
(7)

and the operation
⊙

is defined in (2). We say

H0 = Z†
0

is the discrete Hessian operator as defined by S0.

Remark 3.1. The discrete Hessian operator H0 depends on the order in
S0. If we permute the vectors in S0 to get another ordered set Ŝ0 with the
corresponding matrix T̂0 = T0P for some permutation matrix P (see [22,
p.38]), it is easy to check that Ĥ0 = H0P where Ĥ0 is the discrete Hessian
operator defined by Ŝ0. Therefore, permuting the vectors in S0 results in
permuting the columns of the discrete Hessian operator.

The justification for this definition of discrete Hessian operator will be
given in Theorem 3.1 below. We note first that the columns of [e, T T

0 ] consist
of the vectors [f(τi)]

k
i=1 with f : Rd → R being the constant or the d basic

linear functions. Y0 consists of [f(τi)]
k
i=1 with f : Rd → R being the basic

quadratic functions. The next lemma demonstrates a simple property of the
Hessian.

Lemma 3.2. Let S0 = {τ1, . . . , τk} ⊂ R
d be an ordered subset and let

T0 = [τ1, τ2, · · · , τk]. Let H0 be the discrete Hessian operator for S0. We
have span([e, T T

0 ]) ⊂ null(H0).
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Proof: From Definition 3.2, we have [e, T T
0 ]

TZ0 = 0 where Z0 = H†
0 =

Y0 − [e, T T
0 ][e, T

T
0 ]

†Y0 and Y0 is defined in (7). Then ZT
0 [e, T

T
0 ] = 0. Hence

Z†
0[e, T

T
0 ] = 0.

Now, consider a function h(τ) : R
d 7→ R and we are interested in an

approximation of the Hessian of h at some point τ0 using the values of h(τi).
Performing the Taylor expansion for h(τ) at τ0, we have

h(τ) = h(τ0) + (τ − τ0)
T∇h(τ0) +

1

2
(τ − τ0)

THh(τ0)(τ − τ0) +R(τ),

where R(τ) is the remainder term and Hh(τ0) is the Hessian matrix of the
function h(τ) at τ = τ0. Let

hh(τ) = [a1(τ), . . . , aq(τ)]
T ∈ R

q, (8)

where

ak(k−1)
2

+ℓ
(τ) =

{
1
2
∂2h
∂t2

k

(τ) if k = ℓ;
∂2h

∂tk∂tℓ
(τ) if k > ℓ;

and q = d(d + 1)/2. Then hh(τ) is a vector form of the Hessian matrix
containing the entries of the lower triangular part (including diagonal) of the
Hessian. Now, considering the Taylor expansion of h(τi) for i = 1, 2, · · · , k
and combining them together, we can write



h(τ1)
h(τ2)
...

h(τk)


 =




1 (τ1 − τ0)
T (τ1 − τ0)

T
⊙

(τ1 − τ0)
T

1 (τ2 − τ0)
T (τ2 − τ0)

T
⊙

(τ2 − τ0)
T

...
...

...
1 (τk − τ0)

T (τk − τ0)
T
⊙

(τk − τ0)
T







h(τ0)
∇h(τ0)
hh(τ0)


+




r1
r2
...
rk


 ,

(9)
where ri = R(τi). Note that if h ∈ C3(Rd), |ri| ≤ C‖τi − τ0‖3 for some
constant C > 0.

Theorem 3.1. Let h ∈ C3(Rd) : Rd 7→ R and H0 be the discrete Hessian
operator as defined by the ordered set S0 = {τ1, . . . , τk} ⊂ R

d. Let hh(τ0) be
the column form of the Hessian matrix of function h(τ) at τ0 as defined in
(8). If H0 has full row rank, we have

H0




h(τ1)
h(τ2)
...

h(τk)


 = hh(τ0) +H0




r1
r2
...
rk


 , (10)
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where ri is such that |ri| ≤ C‖τi − τ0‖3 for some constant C > 0.

Proof: Set

h =




h(τ1)
h(τ2)
...

h(τk)


 ∈ R

k, and r =




r1
r2
...
rk


 ∈ R

k.

By noting that each element of (τ − τ0)
T
⊙

(τ − τ0)
T is a basic quadratic

function plus a linear function in the entries of τ , we rewrite (9) as

h = [e, T T
0 − eτT0 ]

(
h(τ0)
∇h(τ0)

)
+
(
Y0 + [e, T T

0 ]R0

)
hh(τ0) + r,

where Y0 is defined in (7) and R0 ∈ R
(d+1)×q is some matrix. Equivalently,

h = [e, T T
0 − eτT0 ]

(
h(τ0)
∇h(τ0)

)
+
(
I − [e, T T

0 ][e, T
T
0 ]

†
)
(Y0 + [e, T T

0 ]R0)hh(τ0)

+ [e, T T
0 ][e, T

T
0 ]

†(Y0 + [e, T T
0 ]R0)hh(τ0) + r.

(11)
Multiplying (11) by H0, we obtain

H0h = H0[e, T
T
0 − eτT0 ]

(
h(τ0)
∇h(τ0)

)
+H0(I − [e, T T

0 ][e, T
T
0 ]

†)(Y0 + [e, T T
0 ]R0)hh(τ0)

+H0[e, T
T
0 ][e, T

T
0 ]

†(Y0 + [e, T T
0 ]R0)hh(τ0) +H0r.

Noticing H0[e, T
T
0 ] = 0 by Lemma 3.2 and (I − [e, T T

0 ][e, T
T
0 ]

†)Y0 = H†
0, we

have
H0h = H0H

†
0hh(τ0) +H0r.

Since H0 has full row rank, we have H0H
†
0 = I. (10) is proved.

This theorem shows that applying H0 to the function values at the k dis-
crete points [h(τ1), h(τ2), · · · , h(τk)]T gives an approximation to the Hessian
at τ0. This justifies the definition of the discrete Hessian operator.

The discrete Hessian operator H0 as defined is not easy to compute. How-
ever, what is really needed in the Hessian Eigenmaps method is P = H†

0H0,
which is the projection operator onto span(HT

0 ) and has the same null space
as H0. This projection operator can be easily obtained by computing an
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orthonormal basis for span(Z0), where Z0 is defined in (6). Specifically, as-
suming S0 has dimension d, perform the Gram-Schmidt orthogonalization
process on the columns of Y (0) = [e, T T

0 , Y0], where Y0 is given in (7). Not-
ing that [e, T T

0 ] has full column rank, let Q0 be matrix whose columns are
obtained from the columns of Y0 in the Gram-Schmidt process. The next
theorem shows that we can compute P = H†

0H0 from Q0. Indeed, Q0 is the
Hessian estimator in Hessian LLE.

Theorem 3.2. Given an ordered subset S0 ⊂ R
d of dimension d, perform

the Gram-Schmidt orthogonalization process on [e, T T
0 , Y0], where T0 is the

matrix corresponding to S0 and Y0 is defined in (7), and let V0 be the matrix
of the first d + 1 orthonormal vectors obtained and Q0 be the matrix of the
remaining orthonormal vectors. Then we have

span(Q0) = span(HT
0 ) and H†

0H0 = Q0Q
T
0 ,

where H0 ∈ R
q×k is the discrete Hessian operator for S0.

Proof: Since dim(S0) = d, [e, T T
0 ] has full column rank and hence V0 is ob-

tained from the Gram-Schmidt process on [e, T T
0 ] and span(V0) = span([e, T T

0 ]).
Then, the columns of Q0 are obtained from the Gram-Schmidt process on
(I − V0V

T
0 )Y0. As (I − V0V

T
0 )Y0 = Z0, we have span(Q0) = span(Z0), where

Z0 = (I − [e, T T
0 ][e, T

T
0 ]

†)Y0 as defined in (6). It follows from H0 = Z†
0 that

span(Z0) = span(H†
0) = span(HT

0 ). Therefore span(Q0) = span(HT
0 ). This

immediately implies that H†
0H0 = Q0Q

T
0 .

We now discuss two properties of the discrete Hessian operators which
will be used in later sections. First, the discrete Hessian operator is defined
from a given coordinate set but, as in the continuous case, its column space
is invariant under a linear transformation on the coordinate set (i.e. change
of basis), as is shown in the next lemma.

Lemma 3.3. Let G0 and H0 be the discrete Hessian operators for the or-
dered subsets Θ0 = {θ1, . . . , θk} and S0 = {τ1, . . . , τk}, respectively. Set
Θ0 = [θ1, . . . , θk] and T0 = [τ1, . . . , τk]. If Θ0 = V1T0 + ceT where c ∈ R

d and
V1 ∈ R

d×d is a nonsingular matrix, we have G0 = V2H0 for some nonsingular
matrix V2.

Proof: Let
X(0) = [e,ΘT

0 , X0] and Y (0) = [e, T T
0 , Y0], (12)
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where

X0 =




θ1
T
⊙

θ1
T

θ2
T
⊙

θ2
T

...

θk
T
⊙

θk
T


 and Y0 =




τ1
T
⊙

τ1
T

τ2
T
⊙

τ2
T

...
τk

T
⊙

τk
T


 .

To simplify some calculations, we also let

X̃0 =




θ1
T
⊗

θ1
T

θ2
T
⊗

θ2
T

...
θk

T
⊗

θk
T


 and Ỹ0 =




τ1
T
⊗

τ1
T

τ2
T
⊗

τ2
T

...
τk

T
⊗

τk
T


 .

Noting that, for two vectors a and b, a
⊙

b and a
⊗

b have the same set

of elements with a
⊗

b containing some repeated entries. Then, X̃0 and X0

contain the same set of column vectors with X̃0 containing some repeated
ones. Therefore,

span(X0) = span(X̃0) and span(Y0) = span(Ỹ0). (13)

Using θi = V1τi + c for i = 1, . . . , k and the properties of the Kronecker
product [22, Lemma 6.3], we have

θi
T
⊗

θi
T

=(τTi V
T
1 + cT )

⊗
(τTi V

T
1 + cT )

=(τTi
⊗

τTi )(V
T
1

⊗
V T
1 ) + cT

⊗
(τTi V

T
1 ) + (τTi V

T
1 )

⊗
cT + cT

⊗
cT

=(τTi
⊗

τTi )(V
T
1

⊗
V T
1 ) + (cT

⊗
τTi )(I

⊗
V T
1 ) + (τTi

⊗
cT )(V T

1

⊗
I)

+cT
⊗

cT ,

for i = 1, . . . , k. It follows that

X̃0 = Ỹ0(V
T
1

⊗
V T
1 ) + [e, T T

0 ]R (14)

for some matrix R ∈ R
(d+1)×d2 . Since V1 is a nonsingular matrix, we have

V T
1

⊗
V T
1 is a nonsingular matrix by [22, Lemma 6.3]. It also follows from

Θ0 = V1T0 + ceT that

I − [e,ΘT
0 ][e,Θ

T
0 ]

† = I − [e, T T
0 ][e, T

T
0 ]

†. (15)
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Combining (14) and (15), we have

span
(
(I − [e,ΘT

0 ][e,Θ
T
0 ]

†)X̃0

)
= span

(
(I − [e, T T

0 ][e, T
T
0 ]

†)Ỹ0

)
. (16)

span
(
(I − [e,ΘT

0 ][e,Θ
T
0 ]

†)X0

)
= span

(
(I − [e, T T

0 ][e, T
T
0 ]

†)Y0
)
from (13) and

(16). Then span(G†
0) = span(H†

0). It follows that span(GT
0 ) = span(HT

0 ) or
G0 = V2H0 for some nonsingular matrix V2.

We finally discuss possibly zero discrete Hessian operatorH0. Note that if
S0 contains only d+1 points and is of dimension d, then its discrete Hessian
operator H0 is necessarily 0 as [e, T T

0 ] is a square nonsingular matrix; see the
lemma below. Therefore, we need to have at least d + 2 points to define a
nontrivial Hessian. The following lemma shows that this is also sufficient.

Lemma 3.4. Given an ordered subset S0 = {τ1, . . . , τk} of dimension d with
k distinct points, let H0 be the discrete Hessian operator for S0. We have
that H0 6= 0, i.e. rank(H0) ≥ 1 if and only if k ≥ d+ 2.

Proof: First, since S0 is of dimension d, we have k ≥ d + 1 by Lemma
3.1. If rank(H0) ≥ 1 and k < d + 2, we have k = d + 1. Then [e, T T

0 ] is a
square matrix with full column rank, where T0 = [τ1, . . . , τk]. Thus it follows
from the definition (or Lemma 3.2) that its discrete Hessian operator H0 is
necessarily 0, which is a contradiction. Therefore k ≥ d+ 2.

Now, assume k ≥ d+2. Since rank([e, T T
0 ]) = d+1 (Lemma 3.1), we can

find a permutation matrix P , a nonsingular matrix R and a vector c such
that

P [e, T T
0 ]

( 1 d

1 1 cT

d 0 R

)
=




1 d

1 1 0
d e Id
k−(d+1) e A


 ≡ [e, T̃ T

0 ], (17)

i.e. we can reduce [e, T T
0 ] to the form (17) through a row permutation and

a column Gaussian elimination. Let S̃0 be the ordered subset consisting of
all the column vectors of T̃0. We generate a matrix Ỹ (0) = [e, T̃ T

0 , Ỹ0] ∈
R

k×(1+d+q) for S̃0 as in (12), where Ỹ0 ∈ R
k×q and q = d(d + 1)/2. Let

H̃0 be the discrete Hessian operator defined by S̃0. We now prove H̃0 6= 0
by showing there is a column in Ỹ0 that can not be expressed as a linear
combination of the columns of [e, T̃ T

0 ].

Since T T
0 has distinct rows, so does T̃ T

0 . Consider the first row of A = [aij ]

(i.e. the (d + 2)-nd row of T̃ T
0 ) and let it be a1 = [a11, . . . , a1d], which must
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be different from the top d+1 rows of matrix T̃ T
0 . Then a1 6= 0 as otherwise

the row is the same as the first row of T̃ T
0 . Without loss of generality, assume

a11 6= 0. We consider the following two cases.

Case 1 If a11 = 1, there is at least another element of {a1i, 2 ≤ i ≤ d}
is nonzero since the row a1 is different from the second row of T̃ T

0 .
Without loss of generality, we assume that a12 6= 0. Then, the entrywise
multiplication of the first two columns of T̃ T

0 , which forms one of the

columns of Ỹ0, is




(d+1) 0

1 a11a12
1 a21a22
...

...
1 a(k−(d+1)),1a(k−(d+1)),2




=




(d+1) 0

1 a12
1 a21a22
...

...
1 a(k−(d+1)),1a(k−(d+1)),2




By inspecting the first d + 2 entries, this column vector can not be
represented as a linear combination of the columns of [e, T̃ T

0 ]. Therefore

H̃0 6= 0.

Case 2 If a11 6= 1, then the entrywise square of the first column of T̃ T
0 , which

forms one of the columns of Ỹ0, is

[
0, eT1 , a211, a221, · · · , a2(k−(d+1)),1

]T

where e1 = (1, 0, . . . , 0)T ∈ R
d. Again, by inspecting the first d+ 2 en-

tries, this column vector can not be represented as a linear combination
of the columns of [e, T̃ T

0 ]. Therefore H̃0 6= 0.

Thus, we have proved that H̃0 6= 0. Finally, from (17), we have T̃0 =

RTT0P
T + ceT . Then rank(HT

0 ) = rank(H̃T
0 ) by Lemma 3.3 and Remark

3.1. It follows that H0 6= 0.

3.2. Hessian Alignment Matrix

We now generalize the definition of the H-functional in the continuous
case to the discrete case and present a generalization of Theorem 2.1. In the
discrete setting, the construction of the quadratic form or the corresponding
symmetric matrix is more closely related to that of the alignment matrix in
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the LTSA method [5, 16]. Indeed, they have some similar spectral properties
as well. Hence we call it the Hessian alignment matrix.

Let {Si, 1 ≤ i ≤ s} be a collection of ordered subsets of a given ordered
set S = {τ1, . . . , τN}. Write

Si = {τi1 , . . . , τiki}, i1 < i2 < . . . < iki,

and let
T = [τ1, · · · , τN ] ∈ R

d×N and Ti = [τi1 , · · · , τiki ]
be the corresponding matrices. We say Ti is a section of T . Let

Ei = [ei1 , . . . , eiki ] ∈ R
N×ki, (18)

where ei ∈ R
N is the i-th column of IN . Then we have TEi = Ti. Ei is called

the selection matrix for Si.
In the context of manifold learning, each Si is a coordinate set for points

in a small neighborhood, from which a discrete Hessian operator can be
defined. Assembling them together, the following is a generalization of the
definition of the H-functional.

Definition 3.3. Given an ordered set S = {τ1, . . . , τN} and a collection of
ordered subsets {Si, 1 ≤ i ≤ s}, let

Φ =
s∑

i=1

EiH
†
iHiE

T
i ,

where Hi (1 ≤ i ≤ s) is the discrete Hessian operator for Si (1 ≤ i ≤ s) and
Ei is the selection matrix for Si (see (18)). We call Φ the Hessian alignment
matrix for {Si, 1 ≤ i ≤ s}.

Remark 3.2. A direct generalization of theH-functional (4) is actually Φ̂ =∑s

i=1EiH
T
i HiE

T
i , with which all the results we present later on Φ will also be

valid. However, we have adopted Definition 3.3 in the discrete case because
HT

i Hi is not easily computable while H†
iHi is by Theorem 3.2.

Remark 3.3. We note that Hi depends on the order of the vectors in Si

but it is easy to check that EiH
†
iHiE

T
i is not. Hence Φ is independent of the

order of the vectors in Si. Thus, the discrete Hessian operator is defined for
a collection of subsets Si (1 ≤ i ≤ s) that are not necessarily ordered.
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Lemma 3.5. Given an ordered set S = {τ1, . . . , τN} and a collection of
subsets {Si, 1 ≤ i ≤ s}, let T and Ti be their corresponding matrices. Let
Ei be the selection matrix for Si (see (18)) such that Ti = TEi. If Hi is the
discrete Hessian operator for Si and Φ is the Hessian alignment matrix for
{Si, 1 ≤ i ≤ s}, then we have

null(HiE
T
i ) ⊃ {x|ET

i x ∈ span([e, T T
i ])} (19)

and

null(Φ) =
s⋂

i=1

null(HiE
T
i ).

Moreover, we have span([e, T T ]) ⊂ null(Φ).

Proof: First, it is easily checked that (19) follows from Lemma 3.2. The rest
of the proof for this lemma is the same as the proof of Lemma 2.1 of [16].
We omit it here.

The main result of this section is to determine under what conditions
that we have span([e, T T ]) = null(Φ). For that, we need to introduce some
definitions.

Definition 3.4. Let S1 and S2 be two ordered subsets of Rd with a non-
trivial intersection. Let T1 and T2 be the corresponding matrices. Let H2

be the discrete Hessian operator for S2 and let H2\1 be the submatrix of H2

consisting of the columns of H2 that correspond2 to the vectors in S2 \ S1

(i.e. H2\1 = H2E2\1 where E2\1 is a selection matrix (18) such that T2E2\1 is
the submatrix of T2 corresponding to the set S2 \ S1). We say S2 is rigidly
connected to S1 if H2\1 has full column rank.

In the definition, an empty matrix H2\1 is considered to have full column
rank. Based on the above relation of two subsets, we can associate a directed
graph with {S1,S2, . . . ,Ss} as follows.

Definition 3.5. Given a collection of ordered subsets {S1,S2, . . . ,Ss} with
Si ⊂ R

d, its associate graph is a directed graph G with s vertices representing
the s subsets, where there is a directed edge from vertex i to vertex j if the
subset Si is rigidly connected to the subset Sj .

2Note that each column of the discrete Hessian H2 corresponds to a column of T2 (or
a vector in S2).
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Definition 3.6. Given an ordered set S = {τ1, . . . , τN} ⊂ R
d of dimension

d and a collection of subsets {Si, 1 ≤ i ≤ ℓ} with S =
⋃ℓ

i=1Si, let Φ
be the Hessian alignment matrix for {S1, . . . ,Sℓ}. We say the collection
{S1, . . . ,Sℓ} is a full spanning collection, if rank(Φ) = N − (d+ 1).

Assuming that S is of dimension d, it follows from Lemma 3.5 that
{S1, . . . ,Sℓ} is a full spanning collection if and only if null(Φ) = span([e, T T ]).

Lemma 3.6. Let S = {τ1, . . . , τN} ⊂ R
d be an ordered set of dimension

d and let {Si, 1 ≤ i ≤ ℓ} be a collection of subsets with S =
⋃ℓ

i=1 Si. If
{Si, i = 1, . . . , ℓ−1} is a full spanning collection and Sℓ is rigidly connected to
some subset Sj (with 1 ≤ j ≤ ℓ−1), then {S1,S2, . . . ,Sℓ} is a full spanning
collection .

Proof: Let Si = {τi1 , . . . τiki} and write Ti = [τi1 , . . . τiki ] and T = [τ1, . . . τN ].

Let Hi ∈ R
q×ki (1 ≤ i ≤ ℓ) be the discrete Hessian operator for Si. Let Ei be

the selection matrix defined in (18) such that Ti = TEi and let H̃i = HiE
T
i

be the embedding of Hi into R
q×N . Set

H =




H̃1
...

H̃ℓ


 .

We have null(H) =
⋂ℓ

i=1 null(H̃i). It follows that null(H) = null(Φ) by Lemma
3.5.

Let 0 ≤ k < N be such that there are N − k vectors in Ŝ1 =
⋃ℓ−1

i=1 Si

and there are k vectors in Ŝ2 =
⋃ℓ

i=1 Si \ Ŝ1. Without loss of generality,

we assume that Ŝ1 = {τ1, τ2, . . . , τN−k} and Ŝ2 = {τN−k+1, . . . , τN}. Set
T̂1 = [τ1, τ2, . . . , τN−k] and T̂2 = [τN−k+1, . . . , τN ]. Embedding Hi (1 ≤ i ≤
ℓ − 1) into R

q×(N−k) according to the embedding of Ti into T̂1, we have
Ĥi = HiÊ

T
i , where Êi is the selection matrix such that Ti = T̂1Êi. Then

Φ̂1 =
∑ℓ−1

i=1 ÊiPiÊ
T
i is the Hessian alignment matrix for the collection {Si, 1 ≤

i ≤ ℓ − 1}, where Pi = H†
iHi. Since {Si, 1 ≤ i ≤ ℓ − 1} is a full spanning

collection, we have null(Φ̂1) = span([e, T̂ T
1 ]). Let

H̄1 =




Ĥ1
...

Ĥℓ−1


 .
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We have

null(H̄1) =

ℓ−1⋂

i=1

null(Ĥi) = null(Φ̂1). (20)

We first consider the case k = 0, i.e. Ŝ1 = {τ1, . . . , τN}. In this case, we
have Êi = Ei and Ĥi = H̃i. Then null(Φ) =

⋂ℓ

i=1 null(H̃i) ⊂
⋂ℓ−1

i=1 null(H̃i) =

null(Φ̂1) = span([e, T T ]). Noting also null(Φ) ⊃ span([e, T T ]) by Lemma 3.5,
we have null(Φ) = span([e, T T ]) and hence {S1,S2, . . . ,Sℓ} is a full spanning
collection.

Next, we consider the case k > 0. Since {Si, i = 1, . . . , ℓ − 1} is a full
spanning collection, we have rank(Φ̂1) = (N − k) − (d + 1). It follows from
(20) that

rank(H̄1) = (N − k)− (d+ 1).

Let

H̃ℓ =
( N−k k

H̃ℓ,1, H̃ℓ,2

)
.

Then we can rewrite H as follows.

H =

( N−k k

H̄1 0
H̃ℓ,1 H̃ℓ,2

)
.

Since Sℓ is rigidly connected to some subset Sj (with 1 ≤ j ≤ ℓ − 1), the

submatrix of H̃ℓ consisting of the columns corresponding to the vectors in
Sℓ \ Sj , of which H̃ℓ,2 is a submatrix, has full column rank. Therefore H̃ℓ,2

has full column rank. It follows that rank(H) ≥ N − (d + 1). Equivalently,
dim null(H) ≤ d + 1. Noticing span([e, T T ]) ⊂ null(H) by Lemma 3.5, we
have null(H) = null(Φ) = span([e, T T ]). Hence, the collection {Si, 1 ≤ i ≤ ℓ}
is also a full spanning collection.

We now proceed to prove our main theorem, which generalizes Theorem
2.1 of Donoho and Grimes.

Theorem 3.3. Let S = {τ1, . . . , τN} ⊂ R
d be an ordered set of dimension d

and let {Si, 1 ≤ i ≤ ℓ} be a collection of subsets with S =
⋃ℓ

i=1 Si. Let Φ be
the Hessian alignment matrix for {S1,S2, . . . ,Sℓ}. Assume that there are
two nonempty collections, say, {Si, i = 1, . . . , p} and {Si, i = (p+1), . . . , ℓ},
such that {Si, i = 1, . . . , p} is a full spanning collection and for each Sj (with
(p+ 1) ≤ j ≤ ℓ) there is a path from Sj to some Si (with 1 ≤ i ≤ p) in the
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associated graph for {S1,S2, . . . ,Sℓ}. Then we have null(Φ) = span([e, T T ]),
where T = [τ1, . . . , τN ].

Proof: By Lemma 3.6, we can expand {Si, i = 1, . . . , p} to obtain a new full
spanning collection by including every subset that is rigidly connected to
some Sj (with 1 ≤ j ≤ p). Repeatedly expanding this full spanning col-
lection, the maximum expansion will include all sets that are connected to
some Si (with 1 ≤ i ≤ p) through a path in the associated graph and hence
all Sj (with (p+ 1) ≤ j ≤ ℓ). Therefore, {Si, i = 1, . . . , ℓ} is a full spanning
collection and thus null(Φ) = span([e, T T ]).

The following corollary follows immediately from the theorem.

Corollary 3.1. Let S = {τ1, . . . , τN} ⊂ R
d be an ordered set of dimension

d and let {Si, 1 ≤ i ≤ ℓ} be a collection of subsets with S =
⋃ℓ

i=1 Si. Let
Φ be the Hessian alignment matrix for {S1,S2, . . . ,Sℓ}. Assume that the
associate graph for {Si, 1 ≤ i ≤ ℓ} is connected (i.e. there is a path from any
node to any other node) and a subset of {Si, 1 ≤ i ≤ ℓ} is a full spanning
collection. Then we have null(Φ) = span([e, T T ]), where T = [τ1, . . . , τN ].

The last two results identify conditions under which T can be recovered
from the Hessian alignment matrix. These are not necessary conditions but
if they are not satisfied, we can easily find examples such that the collection
is not full spanning collection; see the examples in Section 4.

The Hessian alignment matrix Φ discussed in this section is constructed
from subsets Si of the original coordinates τi and this is a generalization
of the H-functional in the isometric coordinates Hiso. In the next section,
we consider a more general definition of the Hessian alignment matrix that
generalizes the H-functional in the tangent coordinates H(·).

3.3. Hessian LLE

We now discuss the problem of how to reconstruct the global coordinates
τi’s for a given data set from their local coordinates as outlined at the begin-
ning of the section using the Hessian alignment matrix. We first state the
procedure as the following algorithm.

Algorithm 3.1. Hessian LLE Method

Given M = {m1, · · · ,mN} ⊂ R
n.
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1. Construct {M i, i = 1, . . . , s} withM i = {mi1 , . . . ,miki
} consisting of points

in a small neighborhood and
⋃s

i=1M i = M .

2. For each M i, construct its local coordinates Θi = {θ(i)1 , . . . , θ
(i)
ki
} ∈ R

d.
Approximate local coordinates can be computed by projections onto an ap-
proximate local tangent space as in (5)

3. Construct Pi = G†
iGi where Gi (1 ≤ i ≤ s) is the discrete Hessian operator

for Θi (1 ≤ i ≤ s); see Theorem 3.2 for practical computations of Pi.

4. Construct

Ψ =
s∑

i=1

EiPiE
T
i .

We call Ψ the Hessian alignment matrix for the collection {Θi}.
5. Compute [e/

√
N,ZT ] as an orthonormal basis of the spectral subspace of

Ψ corresponding to the smallest d+ 1 eigenvalues, where ZT ∈ R
N×d. The

columns of Z are used as the coordinate set for M .

The above algorithm is theoretically equivalent to the Hessian LLE in-
troduced in [1] and described in Section 2 with the only difference being
step 3 where Pi is constructed from the Hessian operator Gi while, in [1],
it is constructed from the Hessian estimator Q0. By Theorem 3.2, the Hes-
sian operator Gi and the Hessian estimator Q0 result in the same projection
matrix Pi. We have introduced the Hessian operator Gi for the purpose of
theoretical analysis.

In the algorithm, the Hessian alignment matrix Ψ now is defined through
local coordinates Θi = {θ(i)1 , . . . , θ

(i)
ki
} ⊂ R

d without the knowledge of the
original coordinates τi’s. This generalizes the H-functional in the tangent
coordinate in the continuous case. Noting that in the continuous case, the
Hessian is also defined through approximate tangent coordinates in a small
neighborhood but the error caused by the projection on the tangent plane
disappears in the limit. The discrete Hessian operator, on the other hand,
is defined from some fixed points, for which any error in the computed local
coordinates {θ(i)1 , . . . , θ

(i)
ki
} will carry over to the definition of the Hessian.

For this reason, we need to make a theoretical assumption in our analysis
that the local coordinates {θ(i)1 , . . . , θ

(i)
ki
} are computed correctly, i.e. they are

isometric to {τi1 , . . . , τiki} in the Euclidean distance. Under this assumption,

the following theorem generalizes H(f) = Hiso(f) of Theorem 2.1 of [1].

Theorem 3.4. Given M = {m1, · · · , mN} ⊂ R
n with mi = ψ(τi) for some

τi ∈ R
d, let M i, Θi (1 ≤ i ≤ s) and Ψ be obtained from Hessian LLE
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(Algorithm 3.1). For 1 ≤ i ≤ s, let Si = {τi1 , . . . , τiki} and let Φ be the
Hessian alignment matrix for the collection {Si, i = 1, . . . , s}. Assume that

{θ(i)1 , . . . , θ
(i)
ki
} is isometric to {τi1, . . . , τiki} in the Euclidean distance, i.e.

‖θ(i)p − θ
(i)
q ‖2 = ‖τip − τiq‖2 for any 1 ≤ p, q ≤ ki. Then we have Ψ = Φ.

Proof: Since {θ(i)1 , . . . , θ
(i)
ki
} is isometric to {τi1 , . . . , τiki} in the Euclidean

distance, it follows from the proof of Theorem 2.4 of [16] that there exist an
orthogonal matrix V̂i and a vector c ∈ R

d such that

Θi = V̂iTi + ceT ,

where Ti = [τi1 , . . . , τiki ]. By Lemma 3.3, we have span(GT
i ) = span(HT

i ),

where Hi is the discrete Hessian operator for Si. Since G†
iGi and H

†
iHi are

the orthogonal projections onto span(GT
i ) and span(HT

i ) respectively, we have
G†

iGi = H†
iHi. Thus

Ψ =
s∑

i=1

EiG
†
iGiE

T
i =

s∑

i=1

EiH
†
iHiE

T
i = Φ.

With Theorem 3.4, if the local neighborhoods satisfy the assumptions of
Theorem 3.3, we have null(Ψ) = span

(
[e, T T ]

)
. In this case, we also say that

{Θi, i = 1, . . . , s} is a full spanning collection.

4. Construction of Neighborhoods

Our analysis in Section 3 shows that the collection of local neighborhoods
needs to satisfy certain conditions in order for the Hessian alignment matrix
to recover the original global coordinates. Indeed, for Hessian LLE, some
straightforward constructions of local neighborhoods do not result in a full
spanning collection; see the examples below. In this section, we discuss how
to construct local neighborhoods using the theoretical results of the previous
section.

A typical construction of local neighborhoods for dimensionality reduc-
tion methods is by taking k-nearest points (or ǫ-neighborhood) of each point
for some fixed k (or ǫ > 0 resp.). This works with most methods under some
mild conditions such as fully overlap in LTSA [16], which can be satisfied by
increasing the size of neighborhoods, i.e. increasing k (or ǫ). For the Hessian
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Eigenmaps method, however, a simple construction of k-nearest point neigh-
borhood may lead to a collection that is not full spanning. We first present
two examples to illustrate this.

Example 4.1. Consider S = {t1, . . . , t6}, where t1 = 1, t2 = 2, t3 = 3, t4 =
4, t5 = 5, t6 = 6. Constructing 4-nearest point neighborhood for each point
results in 3 different subsets S1 = {t1, t2, t3, t4}, S2 = {t2, t3, t4, t5} and S3 =
{t3, t4, t5, t6}. With only three neighborhoods, we have rank(Φ) = 3, where
Φ is the Hessian alignment matrix for {S1,S2,S3}. Then dim null(Φ) = 3
and null(Φ) 6= span([e, T T ]), where T = [t1, · · · , t6].

Inspecting the neighborhoods, we see that the graph associated with
{S1,S2,S3} is connected, but we do not have a subset or a collection of
subsets that is full spanning collection to begin with.

The situation in this example is typical of k-nearest point neighborhoods
in 1-dimensional problems when k ≥ 4. With k ≥ 4, any single Si is not
full spanning. Then, even if the collection is graph connected, we may not
have a full spanning collection. This can not be remedied by increasing k
for example. It is perhaps for this reason that a peculiar construction of
local neighborhoods was proposed in the implementation of Hessian LLE
[21]. There, a local neighborhood is constructed for each point by finding k
nearest points but excluding the point itself. In this way, possible repetition
of same local neighborhoods is avoided. While it is not clear whether this
construction leads to a full spanning collection, it works in some cases.

Another situation leading to not full spanning collection of local neigh-
borhoods is when it is not graph connected. The following examples illustrate
this.

Example 4.2. Consider S = {t1, . . . , t6}, where t1 = 1, t2 = 2, t3 = 3, t4 =
6, t5 = 7, t6 = 8. Constructing local neighborhoods for each point by taking
3-nearest points, we obtain two different subsets S1 = {t1, t2, t3} and S2 =
{t4, t5, t6}. In this case, each Si is a full spanning collection, but it can
be easily checked that rank(Φ) = 2 and then null(Φ) 6= span([e, T T ]). The
reason is clear because neither S1 is rigidly connected to S2 nor S2 is rigidly
connected to S1.

Example 4.3. Consider S = {t1, . . . , t8}, where t1 = 0, t2 = 1, t3 = 10, t4 =
15, t5 = 16, t6 = 17, t7 = 18, t8 = 19. Constructing local neighborhoods
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for each point by taking 4-nearest points but excluding the point itself, we
obtain eight different subsets S1 = {t2, t3, t4, t5}, S2 = {t1, t3, t4, t5}, S3 =
{t4, t5, t6, t7}, S4 = {t5, t6, t7, t8}, S5 = {t4, t6, t7, t8}, S6 = {t4, t5, t7, t8},
S7 = {t4, t5, t6, t8} and S8 = {t4, t5, t6, t7}. It can be checked that rank(Φ) =
5. Then dim null(Φ) = 3 and null(Φ) 6= span([e, T T ]). We notice that the
graph associated with {S1, . . . ,S8} has no path between {S1,S2} and the
remaining subsets.

We note that the rigid connectivity problem encountered in the above ex-
amples can not be remedied by increasing k. Generally, for the 1-dimensional
problem (d = 1), simple construction methods of local neighborhoods that
we have discussed can easily cause the Hessian Eigenmaps method to fail;
see numerical examples in the next section. We now discuss a scheme to
address this problem by adding some nested neighborhoods (subsets) to the
collection so that

1. the collection of nested neighborhoods added is a full spanning collec-
tion;

2. the entire collection is graph connected.

For the ease of notation, we consider the method of constructing local k-
nearest point neighborhoods, although our scheme can be applied to other
constructions such as the one proposed in [21].

First, we show that any local neighborhood of d+2 points is full spanning.

Proposition 4.1. Let S ⊂ R
d be a subset of dimension d and consist of

d+ 2 distinct points. Then S is full spanning.

Proof: Let H be the discrete Hessian operator for the subset S. We have
rank(H) ≥ 1 by Lemma 3.4. Then dim null(H) ≤ d + 1. However, since
span([e, T T ]) ⊂ null(H) from Lemma 3.2 where T is the matrix corresponding
to S, we have dim null(H) ≥ dim span([e, T T ]) = d + 1. Thus dim null(H) =
d+ 1 and null(H) = span([e, T T ]), which means {S} is full spanning.

Given a coordinate set Sj of dimension d consisting of k > d + 2 points,
if it is not full spanning, we can extend it into a full spanning collection by
constructing a sequence of nested subsets {S(1)

j ,S
(2)
j , . . . ,S

(k−(d+1))
j }, i.e.

S
(k−(d+1))
j ⊂ S

(k−(d+2))
j ⊂ · · · ⊂ S

(1)
j = Sj, (21)

with S
(k−(d+1))
j consisting of exactly d+2 points. The sequence is constructed

by removing one vector at a time starting from S
(1)
j = Sj as follows. Let
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S
(1)
j = {τ (j)1 , . . . , τ

(j)
k } ⊂ R

d and let G
(1)
j be the discrete Hessian operator for

S
(1)
j . First, note that G

(1)
j has at least one nonzero column vector by Lemma

3.4. Assume that the ℓ-th column of G
(1)
j is nonzero, i.e. G

(1)
j eℓ 6= 0. Let

S
(2)
j be the subset obtained from S

(1)
j by removing τ

(j)
ℓ . Then S

(1)
j is rigidly

connected to S
(2)
j and vice versa. In the same way, we can construct S

(3)
j

from S
(2)
j and so on until S

(k−(d+1))
j is constructed. The selection of the

vectors for deletion ensures that S
(i)
j is rigidly connected to S

(i+1)
j . Since

S
(k−(d+1))
j contains d+ 2 points, assuming that it is of dimension d, it is full

spanning. Hence, the collection of subsets so constructed is a full spanning
collection by Theorem 3.3.

We now discuss the second issue, i.e. how to add some neighborhoods to
yield a graph connected collection. For any neighborhood (subset) Si, let Ωi

be the set of neighborhoods that are rigidly connected to Si and vice versa,
and Γi be the set of neighborhoods Sj that are fully overlapped with Si (i.e.
dim(Sj ∩ Si) = d) but are not rigidly connected to Si or vice versa. For a
subset Sj ∈ Γi, we can construct a collection of nested subsets of Sj with
Sj

⋂
Si being the smallest one as in (21); see (22) below for details. We also

do the same for Si. Then, Sj will be rigidly connected to Sj

⋂
Si and hence

to Si. If we do this for each Sj ∈ Γi, then Si will be rigidly connected to
all neighborhoods that it is fully overlapped with. However, this may be
expensive and is not necessary.

In practice, for a subset Sj ∈ Γi, its rigid connectivity with Si may or
may not be critical. Heuristically, if Sj is rigidly connected to a neighborhood
already in Ωi, then its rigid connectivity to Si is not needed. We therefore
propose the following simplified procedure that forces rigid connectivity be-
tween Si and Sj only if Sj is not rigidly connected to any subset that is
already rigidly connected to Si and vice versa.

Given a subset Sj ∈ Γi, if Sj 6∈
(⋃

Sℓ∈Ωi
Ωℓ

)
, we construct from Sj a

collection of nested subsets {Ŝ(1)

j , Ŝ
(2)

j , . . . , Ŝ
(k−nij+1)

j }, as in (21) with

(Sj

⋂
Si) = Ŝ

(k−nij+1)

j ⊂ Ŝ
(k−nij)

j ⊂ Ŝ
(k−nij−1)

j ⊂ · · · ⊂ Ŝ
(1)

j = Sj , (22)

where nij is the number of vectors in Sj

⋂
Si. Assume that the construction

succeeds. Then Ŝ
(ℓ)

j is rigidly connected to Ŝ
(ℓ+1)

j for 1 ≤ ℓ ≤ (k − nij). In
the same way, we also construct from Si another collection of nested subsets
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{Ŝ(1)

i , Ŝ
(2)

i , . . . , Ŝ
(k−nij+1)

i }, with

(Sj

⋂
Si) = Ŝ

(k−nij+1)

i ⊂ Ŝ
(k−nij)

i ⊂ Ŝ
(k−nij−1)

i ⊂ · · · ⊂ Ŝ
(1)

i = Si. (23)

Then we set
Ωi = Ωi

⋃
{Sj} and Ωj = Ωj

⋃
{Si},

and repeat the process for every set in Γi. At the end of this process, each
Sj that is fully overlapped with Si will be rigidly connected to Si and vice
versa. We summarize the process as the following algorithm.

Algorithm 4.1. Construction of a full spanning collection of neighborhoods

Input M = {m1, · · · ,mN} ⊂ R
n;

For each mi, construct M i = {mi1 , . . . ,mik} consisting of k nearest points of mi;
Ω = {S1,S2, · · · ,SN} where Si = {τi1 , . . . , τik};
For i = 1 to N ,

Ωi = {Sj : Sj is rigidly connected to Si and vice versa }
Γi = {Sj : dim(Sj ∩ Si) = d and Sj /∈ Ωi};

End
For i = 1 to N ,

For each Sj ∈ Γi, if Sj 6∈
(⋃

Sℓ∈Ωi
Ωℓ

)
,

Construct {Ŝ(1)
j , Ŝ

(2)
j , . . . , Ŝ

(k−nij+1)
j } according to (22);

Construct {Ŝ(1)
i , Ŝ

(2)
i , . . . , Ŝ

(k−nij+1)
i } according to (23);

Ω = Ω
⋃{Ŝ(1)

j , Ŝ
(2)
j , . . . , Ŝ

(k−nij+1)
j }⋃{Ŝ(1)

i , Ŝ
(2)
i , . . . , Ŝ

(k−nij+1)
i };

Ωi = Ωi

⋃{Sj} and Ωj = Ωj

⋃{Si};
End

End

Pick any Si and construct {S(1)
i ,S

(2)
i , . . . ,S

(k−(d+1))
i } according to (21);

Ω = Ω
⋃{S(1)

i ,S
(2)
i , . . . ,S

(k−(d+1))
i }.

Remark 4.1. We have stated Algorithm 4.1 in terms of the original co-
ordinate sets Si for the ease of notation. In practice, we only have local
coordinate sets Θi, but all the operations of the algorithm can be carried
out equivalently in terms of Θi. For example, to test whether Sj is rigidly
connected to Si, we need to check the rank of Hj\i = HjEj\i for the selection
matrix Ej\i (see Definition 3.4). Let Gj be the discrete Hessian operators
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for Θj and let Gj\i = GjEj\i. Since Gj = VjHj for some nonsingular matrix
Vj by Lemma 3.3, we have rank(Gj\i) = rank(Hj\i). Therefore, we actually
check rank(Gj\i) to determine whether Sj is rigidly connected to Si.

By adding some neighborhoods to the collection Ω, Algorithm 4.1 is ex-
pected to result in a collection that is graph connected and has at least one
full spanning set. Then, it will be a full spanning collection. In the next sec-
tion, we will present numerical examples to demonstrate the benefits of this
heuristic strategy. We also note that the standard construction of neighbor-
hoods without the extension of this algorithm seems to work fine in practice
for problems with d > 2. In the 1-dimensional case where the above strategy
which is needed, Algorithm 4.1 typically involves moderately extra cost for
constructing nested subsets.

5. Numerical Examples

There are a number of numerical examples presented in [1] demonstrating
the effectiveness of the Hessian LLE method. The main result of this paper
shows that its success depends on a proper construction of the local neighbor-
hoods. In particular, a simple construction of k-nearest neighborhoods may
fail. In this section, we present a numerical example to demonstrate the ben-
efit of the expanded construction of neighborhoods proposed in Algorithm
4.1. We compare it with two standard construction methods. The first con-
structs the k-nearest neighborhood of each point and the second constructs
k-nearest neighborhood of each point with the center point itself excluded as
in the implementation of [21].

We test whether the constructed collection of neighborhoods is full span-
ning collection, i.e. whether dim null(Ψ) = d + 1, by examining the eigen-
values λd+1(Ψ) and λd+2(Ψ), where Ψ is the Hessian alignment matrix for a
given collection of neighborhoods and λi(Ψ) is its i-th smallest eigenvalue.
More specifically, we use the ratio λd+2(Ψ)/λd+1(Ψ) as a measure of the full
spanning property. We also compare them on the recovered parametrization.

Example 5.1. We consider 4000 random sample points on a 1-d parametric
curve in R

3 defined by

mi = [cos(si), si, sin(si)]
T ,

where si is uniformly distributed random numbers between 0 and 0.05. We
generate local neighborhoods by constructing, for each point, its k-nearest



28

Table 1: Eigenvalues for three construction methods of neighborhoods in one dimension.

Methods Eigenvalues k=12 k=16 k=20
k-nearest λ2 2.1× 10−20 3.0× 10−19 7.3× 10−20

neighbors λ3 3.7× 10−20 3.5× 10−19 3.3× 10−19

including center λ3/λ2 1.8 1.2 4.6
k-nearest λ2 5.7× 10−18 2.8× 10−18 1.3× 10−17

neighbors λ3 1.1× 10−17 4.7× 10−18 2.8× 10−17

excluding center λ3/λ2 1.9 4.2 2.1
λ2 2.1× 10−15 3.2× 10−15 1.0× 10−14

Algorithm 4.1 λ3 1.4× 10−9 2.7× 10−8 1.3× 10−7

λ3/λ2 6.6× 105 8.4× 106 1.2× 107

neighborhood, its k-nearest neighborhood with the point itself removed [21],
or by Algorithm 4.1. We then implement the Hessian LLE algorithm with
the local neighborhoods constructed. We present relevant spectral properties
of the Hessian alignment matrix Ψ in Table 1 with k = 12, k = 16 and
k = 20. With d = 1, we list the second smallest eigenvalue λ2 and the third
smallest eigenvalue λ3 as well as the ratio λ3/λ2 for each method. We further
present the parametrization obtained by each of the methods by plotting the
recovered coordinates (in the x-axis) against the original ones si (in the y-
axis) in Figure 5.1.

We see that the first two methods result in both λ2 and λ3 nearly zero
and fail to detect the null space. In particular there is no gap between the
two eigenvalues. Algorithm 4.1 results in a much larger λ3 and a significant
gap between the two eigenvalues. With respect to the parametrization re-
covered using the second eigenvector, Algorithm 4.1 correctly recovers all the
original coordinates as a linear transformation (the third row of Figure 5.1),
and the construction of k-nearest neighborhoods excluding the center point
only correctly recovers a portion of the original coordinates (the second row
of Figure 5.1), while the coordinates obtained by k-nearest neighborhoods
appears to be random noise (the first row of Figure 5.1).

We point out that the result of this example is typical in our experi-
ments for 1-dimensional problems where extension of neighborhoods using
Algorithm 4.1 is necessary for the Hessian LLE to work. We have tested the
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three constructions for problems with d ≥ 2 and they all produce significant
gaps between the two eigenvalues. It appears that for d ≥ 2, the standard
constructions of neighborhoods are practically sufficient.

6. Conclusion

In this paper, we have analyzed a discrete version of the Hessian Eigen-
maps method by investigating the null space of Hessian alignment matrix de-
fined from the local coordinates and from isometric coordinates. We prove
that Hessian Eigenmaps can recover the original coordinates up to a rigid
motion under certain conditions on local neighborhoods. We also propose a
heuristic algorithm to construct the neighborhoods for Hessian Eigenmaps,
which significantly improves standard constructions in 1-dimensional prob-
lems.

For the future works, it will be interesting to study and compare several
dimensionality reduction methods from the point of view of spectral analy-
sis. For example, methods such as LLE, LTSA, and Hessian Eigenmaps all
share a common framework of reconstruction through alignment matrices.
Spectral analysis can play an important role in better understanding of the
performance of these algorithms.
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Figure 5.1: The recovered coordinates vs. the original coordinates. First row: k-
nearest neighborhoods with k = 12 (in (a)), k = 16 (in (b)) and k = 20 (in (c));
Second row: k-nearest neighbors excluding the center point with k = 12 (in (d)),
k = 16 (in (e)) and k = 20 (in (f)); Third row: Algorithm 4.1 with k = 12 (in (g)),
k = 16 (in (h)) and k = 20 (in (i))


