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Abstract. In this paper, strong relative perturbation bounds are developed for a number of
linear algebra problems involving diagonally dominant matrices. The key point is to parameterize
diagonally dominant matrices via their off-diagonal entries and diagonally dominant parts and to
consider small relative componentwise perturbations of these parameters. This allows us to obtain
new relative perturbation bounds for the inverse, the solution to linear systems, the symmetric
indefinite eigenvalue problem, the singular value problem, and the nonsymmetric eigenvalue problem.
These bounds are much stronger than traditional perturbation results, since they are independent
of either the standard condition number or the magnitude of eigenvalues/singular values. Together
with previously derived perturbation bounds for the LDU factorization and the symmetric positive
definite eigenvalue problem, this paper presents a complete and detailed account of relative structured
perturbation theory for diagonally dominant matrices.
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1. Introduction. Diagonally dominant matrices form an important class of ma-
trices that arise in a large number of applications. Finite difference discretizations of
elliptic differential operators, Markov chains, and graph Laplacians are some typical
examples of this type of matrices, among many others. Indeed, diagonal dominance is
often equivalent to some natural physical property of a practical problem. Diagonally
dominant matrices have some nice numerical and theoretical properties, as explained
in [17, 20, 21, 22]. For instance, a strictly diagonally dominant matrix is nonsingu-
lar and its LU factorization always exists, which can be stably computed without
carrying out any pivoting. Furthermore, inverses, and hence condition numbers, of
diagonally dominant matrices can be bounded in terms of the minimal diagonal dom-
inance [29, 35, 37].

Recent works have shown that diagonally dominant matrices may enjoy much
better numerical properties than those presented in classical texts [17, 20]. The novel
idea of these works is to exploit the structure of diagonally dominant matrices via
their parametrization in terms of the off-diagonal entries and the diagonally domi-
nant parts [1, 38]. With the new parametrization, stronger perturbation bounds and
more accurate algorithms have been obtained for certain linear algebra problems in
[7, 11, 38, 39]. Specifically, a relative perturbation theory is presented in [39] for the
eigenvalues of a symmetric positive semi-definite diagonally dominant matrix (i.e.,
a symmetric diagonally dominant matrix with nonnegative diagonals), which simply
bounds the relative variation of the eigenvalues by the relative perturbation of the
matrix parameters, without involving any condition number, constant, or amplifying
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factor. In [11], a structured perturbation theory is presented for the LDU factoriza-
tion of diagonally dominant matrices that provides simple and strong bounds on the
entrywise relative variations for the diagonal matrix D and the normwise relative vari-
ations for the factors L and U . This result has been recently improved in an essential
way in [7] by allowing the use of a certain pivoting strategy which guarantees that
the factors L and U are always well-conditioned. Computationally, a new algorithm
is presented in [38] that accurately computes the LDU factorization of diagonally
dominant matrices with entrywise accurate factors D and normwise accurate factors
L and U . This algorithm can be combined with the algorithms presented in [8] to
compute the singular values with relative errors in the order of machine precision. In
fact, the algorithm for the LDU factorization in [38] can be combined also with the
algorithms in [4, 12, 13] to compute with high relative accuracy solutions to linear sys-
tems and solutions to least squares problems involving diagonally dominant matrices,
and eigenvalues of symmetric diagonally dominant matrices.

In this paper, we shall significantly broaden this study by establishing strong
relative perturbation bounds for a number of other linear algebra problems involving
diagonally dominant matrices. First, a perturbation bound is presented for the inverse
of a diagonally dominant matrix that is independent of any condition number. As a
direct consequence, we shall also establish a perturbation bound for the solution to the
linear system Ax = b, which is governed by a certain condition number that is of order
one for most vectors b and is always smaller than the traditional condition number
of A. Then, the relative eigenvalue perturbation bound for a symmetric positive
semi-definite diagonally dominant matrix in [39] is generalized to the indefinite case.
Next, relative perturbation bounds for the singular values of any diagonally dominant
matrix are obtained. These bounds are equal to a dimensional constant times the
perturbation of the parameters, without involving any other amplifying factor. Lastly,
we shall derive relative perturbation bounds for the eigenvalues of a nonsymmetric
diagonally dominant matrix, which are still dependent on the Wilkinson eigenvalue
condition number as usual [9, 17], but independent of the magnitude of the eigenvalue
itself. A remarkable feature of all the bounds presented in this paper is that they are
finite rigorous bounds, i.e., they are not asymptotic bounds valid only for infinitesimal
perturbations.

We shall rely heavily on the LDU perturbation results from [7, 11]. Indeed, most
of the new bounds in this paper are derived starting from the perturbation bounds
for the LDU factorization. In addition, some other results included in [14] will also
play a relevant role. Our methods can be directly adapted to the structured pertur-
bation problem where a general matrix, i.e., not necessarily diagonally dominant, is
perturbed in such a way that a rank revealing decomposition XDY of this matrix
[8] is changed with small entrywise relative variations for the diagonal matrix D and
small normwise relative variations for the factors X and Y (see also [13]). We do not
insist in this approach, but, as an example, we present one such result in Theorem
6.3. Clearly, other strong perturbation bounds can also be derived for matrices under
such a structured perturbation.

This paper can be seen as a contribution to one of the most fruitful lines of
research in matrix perturbation theory in the last two decades: the derivation of per-
turbation bounds much stronger than the traditional ones when structure-preserving
perturbations of relevant types of structured matrices are considered (see, for instance,
[1, 2, 3, 6, 11, 18, 19, 23, 24, 27, 28, 34, 39] and the references therein). Even more,
we can say that this manuscript belongs to a more specific class of recent research
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works in structured matrix perturbation theory: those that represent certain struc-
tured matrices by a proper set of parameters (different than the matrix entries), in
such a way that tiny perturbations of these parameters produce tiny variations of
some interesting quantities in linear algebra. Apart from the references on diagonally
dominant matrices mentioned above, other references dealing with perturbations via
parameters are [10, 16, 30, 31, 32] for eigenvalues and eigenvectors of tridiagonal ma-
trices parameterized by their bidiagonal LDU factorizations, and [25] for eigenvalues
and singular values of totally nonnegative matrices parameterized by their bidiagonal
decompositions.

The rest of the paper is organized as follows. In Section 2, an overview of diago-
nally dominant matrices and related perturbation results for their LDU factorizations
from [7, 11] are presented. In addition, Section 2 includes a numerical example that
illustrates why the parametrization via off-diagonal entries and diagonally dominant
parts is essential to get strong perturbation bounds. We develop relative perturbation
bounds for the inverse and solutions to linear systems in Section 3, for the symmetric
indefinite eigenvalue problem in Section 4, for the singular value problem in Section
5, and for the nonsymmetric eigenvalue problem in Section 6. Finally, we conclude
by presenting some remarks in Section 7.

Next, we present the notation used in this paper.
Notation: We consider only real matrices and we denote by Rm×n the set of

m× n real matrices. The entries of a matrix A are aij or Aij , and |A| is the matrix
with entries |aij |. The inequality A ≥ B for matrices means aij ≥ bij for all i, j,
and the inequality v ≥ w for vectors means vi ≥ wi for all the entries of the vectors.
Analogously, the inequality v ≥ 0 for the vector v means vi ≥ 0 for all its entries. We
use MATLAB notation for submatrices. That is, A(i : j, k : l) denotes the submatrix
of A formed by rows i through j and columns k through l. We also use A(i′, j′)
to denote the submatrix of A formed by deleting row i and column j from A. Let
α = [i1, i2, . . . , ip], where 1 ≤ i1 < i2 < · · · < ip ≤ m, and β = [j1, j2, . . . , jq], where
1 ≤ j1 < j2 < · · · < jq ≤ n. Then A(α, β) denotes the submatrix of A that consists
of rows i1, i2, . . . , ip and columns j1, j2, . . . , jq. We denote by Is the s × s identity
matrix, by 0s the s × s zero matrix, and by 0p×q the p × q zero matrix. We will
simply write I and 0 when their sizes are clear from the context. Five matrix norms
will be used: ‖A‖max = maxij |aij |, ‖A‖1 = maxj

∑
i |aij |, ‖A‖∞ = maxi

∑
j |aij |,

‖A‖F = (
∑

i,j |aij |2)1/2, and the spectral norm ‖A‖2. The condition numbers of a

nonsingular matrix A in any of these norms are denoted as κi(A) := ‖A‖i ‖A−1‖i, for
i = max, 1,∞, F, 2. The sign of x ∈ R is sign(x), where sign(0) is defined to be 1.

2. Preliminaries and example. In this section, we give an overview of diago-
nally dominant matrices and present some results proved recently in [7, 11] that will be
used in the subsequent sections. More information on diagonally dominant matrices
can be found in [7, Section 2] and [11, Section 2], and the references therein. In ad-
dition, at the end of this section, we present and discuss an example which illustrates
why the use of a proper parametrization is essential to obtain strong perturbation
bounds for diagonally dominant matrices. We first define diagonally dominant matri-
ces.

Definition 2.1. A matrix A = [aij ] ∈ Rn×n is said to be row diagonally domi-
nant if |aii| ≥

∑
j 6=i |aij | for i = 1, . . . , n, and is said to be column diagonally dominant

if |aii| ≥
∑

j 6=i |aji| for i = 1, . . . , n.
For brevity, we will consider only row diagonally dominant matrices, although

the results we present hold for column diagonally dominant matrices with obvious
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modifications or by taking transposes.
An idea that has played an important role in deriving strong perturbation bounds

for diagonally dominant matrices is to reparameterize the matrix in terms of its diag-
onally dominant parts and off diagonal entries (see [38]).

Definition 2.2. (1) Given a matrix M = [mij ] ∈ Rn×n and a vector v =
[vi] ∈ Rn, we use D(M,v) to denote the matrix A = [aij ] ∈ Rn×n whose off-diagonal
entries are the same as M (i.e., aij = mij for i 6= j) and whose ith diagonal entry is
aii = vi +

∑
j 6=i |mij | for i = 1, . . . , n.

(2) Given a matrix A = [aij ] ∈ Rn×n, we denote by AD ∈ Rn×n the matrix whose
off-diagonal entries are the same as A and whose diagonal entries are zero. Then,
letting vi = aii −

∑
j 6=i |aij |, for i = 1, . . . , n, and v = [v1, v2, . . . , vn]T ∈ Rn, we have

A = D(AD, v)

and we call it the representation of A by its diagonally dominant parts v and off-
diagonal entries AD.

Clearly, v ≥ 0 if and only if A is row diagonally dominant and its diagonal entries
are nonnegative. We will use very often the condition v ≥ 0 as assumption without
referring explicitly to its meaning. For most problems (i.e., the LDU factorization,
inverses, linear systems, and the singular value problem), by considering an equivalent
problem for SA with S = diag{sign(aii)}, we can restrict ourselves to diagonally
dominant matrices A with nonnegative diagonal without loss of generality. For the
eigenvalue problem, however, we need to consider in general diagonally dominant
matrices with diagonal entries of any sign. To properly parameterize such matrices,
we need the signs of the diagonal entries (i.e., S) as well; we shall leave the details of
this more general case to Section 4 when we study the symmetric indefinite eigenvalue
problem.

Several of our results are based on the perturbation bounds for the LDU factoriza-
tion recently obtained in [7, 11]. We first recall that if the LU , or LDU , factorization
of a nonsingular matrix exists, then it is unique. However, for singular matrices, when
an LU , or LDU , factorization exists, it is not unique in general. In this case, in order
to study its perturbation properties, we need to consider the following unique form
of the LDU factorization (see [11, Definition 1]).

Definition 2.3. A matrix A ∈ Rn×n with rank r is said to have LDU fac-
torization if there exist a unit lower triangular matrix L11 ∈ Rr×r, a unit upper
triangular matrix U11 ∈ Rr×r, and a nonsingular diagonal matrix D11 ∈ Rr×r such
that A = LDU , where

L =

[
L11 0
L21 In−r

]
, D =

[
D11 0

0 0n−r

]
, U =

[
U11 U12

0 In−r

]
.

It is easy to see that if this form of LDU factorization exists, then it is unique. For
a row diagonally dominant matrix A ∈ Rn×n, applying any diagonal pivoting strategy
(i.e., pivoting with simultaneous and equal row and column permutations) will result
in PAPT that has a unique LDU factorization in the sense of Definition 2.3, where
P is the permutation matrix defined by the pivoting strategy. For the purposes of
this work, we consider a pivoting strategy suggested in [33] for matrices with other
structures, and used for first time in [38] for general row diagonally dominant matrices.
This strategy is called column diagonal dominance pivoting. Let A(1) = A and let

A(k) = [a
(k)
ij ] ∈ Rn×n denote the matrix obtained after (k − 1) stages of Gaussian
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elimination have been performed on A, i.e., all entries below the diagonal in the first
k − 1 columns of A(k) are zero. It is well known ([11, Theorem 1] or [20]) that the
Schur complement A(k)(k : n, k : n) is row diagonally dominant. Then, there is at
least one column of this Schur complement that is column diagonally dominant, i.e.,

|a(k)ii | −
n∑

j=k,j 6=i

|a(k)ji | ≥ 0 for some i ≥ k. So, the column diagonal dominance pivoting

scheme permutes into the pivot position (k, k) the maximal diagonal entry that is
column diagonally dominant. That is, at step k, after the permutation, we have

∣∣∣a(k)kk

∣∣∣ = max
k≤i≤n

∣∣∣a(k)ii

∣∣∣ : |a(k)ii | −
n∑

j=k,j 6=i

|a(k)ji | ≥ 0

 ,

where we still use A(k) = [a
(k)
ij ] to denote the matrix after the permutation. With this

pivoting strategy, at the end, we obtain a row diagonally dominant factor U as usual,
but now L is column diagonally dominant. Hence, by [33], L, U and their inverses
can be bounded as

‖L‖max = 1, ‖L‖1 ≤ 2, ‖L‖∞ ≤ n, ‖L−1‖max = 1, ‖L−1‖1 ≤ n, ‖L−1‖∞ ≤ n, (2.1)

‖U‖max = 1, ‖U‖1 ≤ n, ‖U‖∞ ≤ 2, ‖U−1‖max = 1, ‖U−1‖1 ≤ n, ‖U−1‖∞ ≤ n . (2.2)

The bounds for the inverses in (2.1) and (2.2) follow from Proposition 2.1 in [33],
which states that the inverses of triangular diagonally dominant (either by rows or
columns) matrices with ones on the diagonal have the absolute values of their entries
bounded by one. It is worth observing that this result follows immediately from a
classic and more general result to be found in [22, Theorem 2.5.12], where a proof
is given for strictly diagonally dominant matrices but can be easily extended to any
nonsingular diagonally dominant matrix.

The bounds in (2.1,2.2) imply that the LDU factorization of a row diagonally
dominant matrix A obtained by column diagonal dominance pivoting is always a
rank-revealing decomposition [8], which is of fundamental interest for performing ac-
curate computations. For all the linear algebra problems we consider here, since the
permuted matrix PAPT coming from any diagonal pivoting strategy results in triv-
ially equivalent problems, we can assume that the row diagonally dominant matrix we
consider is arranged for column diagonal dominance pivoting, i.e., A has the permu-
tation P applied already. More importantly, the unique LDU factorization obtained
under this pivoting scheme is stable under componentwise perturbations of the di-
agonally dominant parts and off-diagonal entries. Indeed, the following perturbation
bounds are obtained in [7, 11].

Theorem 2.4. [7, Theorem 3.2]-[11, Theorem 3] Let A = D(AD, v) ∈ Rn×n be
such that v ≥ 0. Suppose that A has LDU factorization A = LDU , where L = [lij ],

D = diag(d1, . . . , dn), and U = [uij ]. Let Ã = D(ÃD, ṽ) ∈ Rn×n be a matrix that
satisfies

|ṽ − v| ≤ εv and |ÃD −AD| ≤ ε|AD|, (2.3)

for some positive ε with (12n+ 1)ε < 1. Then, we have
1. Ã is row diagonally dominant with nonnegative diagonal entries, rank(Ã) =

rank(A), and Ã has LDU factorization Ã = L̃D̃Ũ , where L̃ = [l̃ij ], D̃ =

diag(d̃1, . . . , d̃n), and Ũ = [ũij ];
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2. For i = 1, . . . , n, d̃i = di(1 + wi) with(
1− ε
1 + ε

)n

− 1 ≤ wi ≤
(

1 + ε

1− ε

)n

− 1, (2.4)

and, in particular, |d̃i − di| ≤
2nε

1− 2nε
|di|, for i = 1, . . . , n;

3. |ũij − uij | ≤ 3nε, for 1 ≤ i, j ≤ n, and
‖Ũ − U‖∞
‖U‖∞

≤ 3n2ε;

4. and, if A is arranged for column diagonal dominance pivoting, then

‖L̃− L‖1 ≤
n(8n− 2)ε

1− (12n+ 1)ε
and

‖L̃− L‖1
‖L‖1

≤ n(8n− 2)ε

1− (12n+ 1)ε
.

The main remark on the relative bounds presented in Theorem 2.4 is that they do
not depend on any condition number, neither of the matrix A nor of its factors, and
so, they imply that for any row diagonally dominant matrix, small componentwise
perturbations as in (2.3) always produce small relative changes in the LDU factors.
Observe also that v ≥ 0 and the fact that 0 ≤ ε < 1 in (2.3) imply immediately that
ṽ ≥ 0, which is the reason why the perturbations in (2.3) preserve the diagonally
dominant structure and the nonnegativity of the diagonal entries.

We shall also use in the rest of the paper the following lemma, which combines
Lemmas 3, 4, and 7 of [11], and studies the perturbation of the determinant and
certain minors of diagonally dominant matrices with nonnegative diagonals under
structured perturbations of type (2.3).

Lemma 2.5. Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0 and let Ã =
D(ÃD, ṽ) ∈ Rn×n satisfy (2.3) for some ε with 0 ≤ ε < 1. Then:

(a) det Ã = (detA)(1 + η1) · · · (1 + ηn), where |ηj | ≤ ε for 1 ≤ j ≤ n;
(b) If α = [i1, i2, . . . , it], where 1 ≤ i1 < i2 < · · · < it ≤ n, then

det Ã(α, α) = (detA(α, α))(1+β1) · · · (1+βt), where |βj | ≤ ε, for 1 ≤ j ≤ t;

(c) If k + 1 ≤ p, q ≤ n and p 6= q, then∣∣∣det Ã([1 : k, p], [1 : k, q])− detA([1 : k, p], [1 : k, q])
∣∣∣

≤ 2
(
(1 + ε)k+1 − 1

)
detA([1 : k, p], [1 : k, p]) .

To finish this section, we present an example to illustrate why perturbations via
parameters of type (2.3) may be expected to lead to stronger bounds than general
perturbations or perturbations that only preserve the diagonally dominant property.
For brevity, Example 2.6 focuses only on singular values, but similar examples can be
devised for the other linear algebra problems considered in this paper.

Example 2.6. Let us consider the following row diagonally dominant matrix A,
whose vector of diagonally dominant parts is denoted by vA:

A =

 3 −1.5 1.5
−1 2.002 1
2 0.5 2.5

 , vA =

 0
0.002

0

 .
The following two row diagonally dominant matrices

B =

 3 −1.5 1.5
−1 2.001 1
2 0.5 2.5

 and C =

3.0015 −1.5015 1.5
−1 2.002002 1
2 0.5 2.5
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are very close to A in an standard entrywise sense, since they satisfy

|A−B| ≤ 5 · 10−4 |A| and |A− C| ≤ 10−3 · |A|.

However, their vectors of diagonally dominant parts are

vB =
[
0 0.001 0

]T
and vC =

[
0 0.002002 0

]T
,

and we see that vB is very different from vA, while vC is very close to vA. More
precisely,

|vA − vB | = 0.5 vA and |vA − vC | = 10−3 vA. (2.5)

Thus, in plain words, we can say that C is a nearby perturbation of A in the sense
of diagonally dominant parts and off-diagonal entries, while B is not. That is, B is a
nearby perturbation of A only in the traditional entrywise sense.

In the following table, we show the singular values, σ1 ≥ σ2 ≥ σ3, of A, B, and
C in the usual decreasing order (all digits shown in this table are exact):

A B C

σ1 4.641 4.640 4.642
σ2 2.910 2.909 2.910

σ3 6.663 · 10−4 3.332 · 10−4 6.673 · 10−4

The first key remark on this table is that the smallest singular values of A and B do not
agree in a single digit, despite the fact that A and B are very close to each other and
both are row diagonally dominant. Therefore, just preserving the diagonally dominant
property may not be enough to get good perturbation properties. In contrast, the
smallest singular values of A and C do agree in two digits. More precisely, for i =
1, 2, 3,

max
i

|σi(A)− σi(B)|
σi(A)

= 0.49989 and max
i

|σi(A)− σi(C)|
σi(A)

= 1.4444 · 10−3.

The behavior we observe in this example is not by chance, since in Section 5 we will
show that for row diagonally dominant matrices, tiny relative perturbations of diago-
nally dominant parts and off-diagonal entries always result in tiny relative variations
of the singular values, independently of their magnitudes.

3. Bounds for inverses and solutions to linear systems. The perturbation
theory for the inverse of a matrix A and for the solution to linear systems Ax = b is
well established and can be found in many books on numerical linear algebra [9, 17, 20,
36]. The classical perturbation bounds of a general matrix depend on the traditional
condition number κ(A) := ‖A‖ ‖A−1‖ for normwise perturbations, while for entrywise
perturbations, they are governed by the Bauer-Skeel condition number ‖ |A−1| |A|‖.
Both of these condition numbers may be unbounded in general. By focusing on
row diagonally dominant matrices and parameterized entrywise perturbations of their
diagonally dominant parts and off-diagonal entries, we shall prove in this section new
entrywise perturbation bounds on the inverse that are independent of any condition
number. Similarly, for the solution to linear systems, this structured perturbation
allows us to present normwise bounds that are dependent on a smaller condition
number that is almost always a moderate number of order one.
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The main idea in this section is simple: noting that the entries of A−1 can be
expressed in terms of minors of A [21], we utilize the perturbation results for determi-
nants presented in Lemma 2.5 to obtain the following entrywise perturbation bounds
for the inverse of a row diagonally dominant matrix.

Theorem 3.1. Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0 and suppose that
A is nonsingular. Let Ã = D(ÃD, ṽ) ∈ Rn×n be such that

|ṽ − v| ≤ εv and |ÃD −AD| ≤ ε|AD|, for some 0 ≤ ε < 1.

Then Ã is nonsingular and if 2nε < 1, we have for 1 ≤ i, j ≤ n,∣∣∣(Ã−1)ij − (A−1)ij

∣∣∣ ≤ (3n− 2)ε

1− 2nε

∣∣(A−1)jj
∣∣ . (3.1)

Proof. By Lemma 2.5(a), we have det Ã = (detA)(1 + η1) · · · (1 + ηn) 6= 0, since
|ηj | ≤ ε < 1 for all j. Therefore, Ã is nonsingular.

To prove (3.1), we consider j 6= i first. Without loss of generality, we assume that
i = n−1 and j = n, since this can always be obtained via proper simultaneous row and
column permutations of A−1, corresponding, respectively, to the same simultaneous
row and column permutations in A. Using Lemma 2.5(c) with k = n− 2, p = n− 1,
and q = n, we have

|det Ã(j′, i′)− detA(j′, i′)| ≤ 2
(
(1 + ε)n−1 − 1

)
detA(j′, j′) . (3.2)

It follows from this and Lemma 2.5(a)-(b) that

(Ã−1)ij − (A−1)ij =
(−1)i+j det Ã(j′, i′)

det Ã
− (−1)i+j detA(j′, i′)

detA

=
(−1)i+j det Ã(j′, i′)

(detA)(1 + η1) · · · (1 + ηn)
− (−1)i+j detA(j′, i′)

detA

=
(−1)i+jχ(det Ã(j′, i′)− detA(j′, i′))

detA
+ (χ− 1)

(−1)i+j detA(j′, i′)

detA
,

where χ :=
1

(1 + η1) · · · (1 + ηn)
. Noting that |χ− 1| ≤ 1

(1− ε)n
− 1 and using (3.2),

we have∣∣∣(Ã−1)ij − (A−1)ij

∣∣∣ ≤ |χ||det Ã(j′, i′)− detA(j′, i′)|
|detA|

+ |χ− 1| |detA(j′, i′)|
|detA|

≤
2
(
(1 + ε)n−1 − 1

)
|χ||detA(j′, j′)|

|detA|
+ |χ− 1| |detA(j′, i′)|

|detA|
= 2

(
(1 + ε)n−1 − 1

)
|χ|
∣∣(A−1)jj

∣∣+ |χ− 1|
∣∣(A−1)ij

∣∣
≤

2
(
(1 + ε)n−1 − 1

)
(1− ε)n

∣∣(A−1)jj
∣∣+

[
1

(1− ε)n
− 1

] ∣∣(A−1)ij
∣∣

≤ 2(n− 1)ε

1− 2nε

∣∣(A−1)jj
∣∣+

nε

1− nε
∣∣(A−1)ij

∣∣ ,
where we have used (see [20, Chapter 3]) that

(1 + ε)n−1 − 1

(1− ε)n
≤ (n− 1)ε/(1− (n− 1)ε)

1− nε/(1− nε)
≤ (n− 1)ε

1− 2nε
.
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From [11, Theorem 1(e)], we have |(A−1)ij | ≤ |(A−1)jj |, which leads to (3.1) for i 6= j.
Finally, we prove (3.1) for i = j. Again, we use Lemma 2.5(a)-(b) to prove that

(Ã−1)ii =
det Ã(i′, i′)

det Ã
=

(detA(i′, i′))(1 + β1) · · · (1 + βn−1)

(detA)(1 + η1) · · · (1 + ηn)

= (A−1)ii
(1 + β1) · · · (1 + βn−1)

(1 + η1) · · · (1 + ηn)
,

where |ηj | ≤ ε < 1 and |βj | ≤ ε < 1. According to [20, Lemma 3.1], this equality can
be written as

(Ã−1)ii = (A−1)ii (1 + θ2n−1), where |θ2n−1| ≤
(2n− 1)ε

1− (2n− 1)ε
.

Therefore,
∣∣∣(Ã−1)ii − (A−1)ii

∣∣∣ = |θ2n−1|
∣∣(A−1)ii

∣∣, and

∣∣∣(Ã−1)ii − (A−1)ii

∣∣∣ ≤ (2n− 1)ε

1− (2n− 1)ε

∣∣(A−1)ii
∣∣ ≤ (3n− 2)ε

1− 2nε

∣∣(A−1)ii
∣∣ ,

which completes the proof.
We note that the assumption 2nε < 1 in Theorem 3.1 is not essential and is only

made to simplify the bound. Note also that Theorem 3.1 gives that small relative per-
turbations in the data D(AD, v) result in small relative perturbations in the diagonal
entries of the inverse. However, the perturbation of an off-diagonal entry can only
be guaranteed to be small relative to the diagonal entry in the corresponding column
of the inverse, rather than relative to the off-diagonal entry itself. This might seem
unsatisfactory at a first glance, but again the diagonally dominant structure allows
us to prove in Corollary 3.2 that the bound (3.1) leads to very satisfactory relative
normwise bounds for the inverse, which are completely independent of any condition
number.

Corollary 3.2. Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0 and suppose that
A is nonsingular. Let Ã = D(ÃD, ṽ) ∈ Rn×n be such that

|ṽ − v| ≤ εv and |ÃD −AD| ≤ ε|AD|, for some 0 ≤ ε < 1/(2n).

Let ‖ · ‖ be either the 1-norm, the ∞-norm, or the Frobenius norm. Then

‖Ã−1 −A−1‖
‖A−1‖

≤ n(3n− 2)ε

1− 2nε
.

Proof. Theorem 1(e) in [11] implies |(A−1)ij | ≤ |(A−1)jj | for all i, j. Thus, it
follows from Theorem 3.1 that for 1 ≤ i, j ≤ n∣∣∣(Ã−1)ij − (A−1)ij

∣∣∣ ≤ (3n− 2)ε

1− 2nε
max
k,l
|(A−1)k,l|.

Then,

‖Ã−1 −A−1‖ ≤ n (3n− 2)ε

1− 2nε
max
k,l
|(A−1)kl| ≤ n

(3n− 2)ε

1− 2nε
‖A−1‖ .
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With the results of Corollary 3.2, we can now present perturbation bounds for the
solution to linear systems, whose coefficient matrices are row diagonally dominant.

Theorem 3.3. Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0 and suppose that
A is nonsingular. Let Ã = D(ÃD, ṽ) ∈ Rn×n be such that

|ṽ − v| ≤ εv and |ÃD −AD| ≤ ε|AD|, for some 0 ≤ ε < 1/(2n). (3.3)

Let ‖ · ‖ be either the 1-norm or the ∞-norm. Let b, δb ∈ Rn×1 be vectors such that
‖δb‖ ≤ ε‖b‖ and consider the following two linear systems

Ax = b and Ãx̃ = b+ δb.

Then,

‖x̃− x‖
‖x‖

≤
[

(3n2 − 2n+ 1)ε+ (3n2 − 4n)ε2

1− 2nε

]
‖A−1‖ ‖b‖
‖x‖

. (3.4)

Proof. Observe that x̃ − x = (Ã−1 − A−1)b + Ã−1δb. Then, applying Corollary
3.2 gives,

‖x̃− x‖ ≤ ‖Ã−1 −A−1‖ ‖b‖+ ‖Ã−1‖ ‖δb‖

≤ ‖Ã−1 −A−1‖ ‖b‖+
[
‖Ã−1 −A−1‖+ ‖A−1‖

]
ε‖b‖

≤ n(3n− 2)ε

1− 2nε
‖A−1‖ ‖b‖+

[
n(3n− 2)ε

1− 2nε
‖A−1‖+ ‖A−1‖

]
ε‖b‖

≤
[
n(3n− 2)ε

1− 2nε
+ ε

(
n(3n− 2)ε

1− 2nε
+ 1

)]
‖A−1‖ ‖b‖.

Simplifying, this bound leads to (3.4).
Theorem 3.3 shows that the sensitivity of the linear system Ax = b to parameter-

ized perturbations of type (3.3) is mainly determined by ‖A−1‖ ‖b‖/‖x‖. For general
unstructured matrices, the condition number κ(A, b) := ‖A−1‖ ‖b‖/‖x‖ measures the
normwise sensitivity of the solution x when only b is perturbed and A remains un-
changed. It is immediate to see that κ(A, b) ≤ κ(A) always holds, but much more
important is to note that if κ(A)� 1, then κ(A, b)� κ(A) for most vectors b, that is,
the condition number κ(A, b) is usually a moderate number compared to κ(A). This
fact is well-known in numerical linear algebra and it was noted for first time in [5].
Some additional discussions on this point can be found in [13, Section 3.2].

4. Bounds for eigenvalues of symmetric matrices. In this section, we
present perturbation bounds for eigenvalues of symmetric diagonally dominant ma-
trices under parameterized perturbations of type (2.3). A first point to keep in mind
is that if a matrix A enjoys, simultaneously, the properties of symmetry and row di-
agonal dominance, then A must be both row and column diagonally dominant. These
properties give us two additional properties which are essential in this section: (1)
the LDU decomposition of A inherits the symmetry, i.e., A = LDLT , and; (2) since
L = UT , the L factor satisfies the entrywise perturbation bounds in Theorem 2.4(3),
instead of only the normwise bounds in Theorem 2.4(4). Note also that, in this case,
column diagonal dominance pivoting coincides with complete diagonal pivoting.

A second point to be remarked is that in [39], a strong relative perturbation
bound has already been obtained for the eigenvalues of symmetric diagonally dominant
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matrices with nonnegative diagonals (hence positive semidefinite). More precisely,
it is shown in [39] that if a symmetric diagonally dominant matrix A = D(AD, v)
with v ≥ 0 and a perturbed symmetric matrix Ã = D(ÃD, ṽ) satisfy |ṽ − v| ≤
εv and |ÃD − AD| ≤ ε|AD| for some ε with 0 ≤ ε < 1, then the relative perturbation
in the eigenvalues is bounded precisely by ε. That is, if λ1 ≥ · · · ≥ λn are the
eigenvalues of A and λ̃1 ≥ · · · ≥ λ̃n are the eigenvalues of Ã, then

|λ̃i − λi| ≤ ελi, for i = 1, . . . , n. (4.1)

This result is certainly strong and simple, but the techniques used in [39] for proving
(4.1) rely heavily on the positive semidefinite character of the matrix A and we do
not see how to generalize them to cover symmetric indefinite diagonally dominant
matrices. In this section, we will use an approach completely different to the one in [39]
to show that a relative perturbation bound similar to (4.1) holds for the eigenvalues
of symmetric indefinite diagonally dominant matrices.

If A is symmetric indefinite diagonally dominant, then A has both negative and
positive diagonal entries and the parametrization introduced in Definition 2.2 is no
longer useful. In this case, it is more appropriate to define the diagonally dominant
parts using the absolute values of the diagonal entries, i.e., vi := |aii| −

∑
j 6=i

|aij |.

However, aii can not be obtained from aij (j 6= i) and vi defined this way. We need to
take the signs of the diagonal entries as additional parameters to define the diagonal
entries and, hence, the whole matrix. Thus, we generalize Definition 2.2 to include
these additional parameters as follows.

Definition 4.1. For any A = [aij ] ∈ Rn×n, let AD be the matrix whose off-
diagonal entries are the same as A and whose diagonal entries are zero. Let

vi = |aii| −
∑
j 6=i

|aij |, for i = 1, . . . , n,

S = diag(sign(a11), . . . , sign(ann)).

Then, A is uniquely determined from the parameters AD, v = [vi] ∈ Rn, and S, and
we write A = D(AD, v, S) to indicate that A is given via these parameters.

With this parametrization, note that row diagonal dominance is equivalent to
v ≥ 0. Next, we introduce Lemmas 4.2 and 4.3, which are simple auxiliary results
needed in the proof of the main result in this section, i.e., Theorem 4.4.

Lemma 4.2. Let y ≥ 0 and 0 ≤ ε < 1 be real numbers. Then,(
1 + ε

1− ε

)y

− 1 ≥ 1−
(

1− ε
1 + ε

)y

.

Proof. Let x =

(
1 + ε

1− ε

)y

and observe x > 0. Thus, x +
1

x
≥ 2 and, hence,

x− 1 ≥ 1− 1

x
.

Lemma 4.3. Let A ∈ Rn×n be a symmetric matrix. If A has LDU factorization
A = LDU in the sense of Definition 2.3, then U = LT and A = LDLT .

Proof. Let r = rank(A) and let

L =

[
L11 0
L21 In−r

]
, D =

[
D11 0

0 0n−r

]
, U =

[
U11 U12

0 In−r

]
,

11



with L11, D11, U11 ∈ Rr×r, be the LDU factorization of A in the sense of Definition
2.3. Partition A accordingly as

A =

[
A11 AT

21

A21 A22

]
.

Then A11 = L11D11U11 is the unique LDU factorization of the nonsingular matrix
A11. Since A11 is symmetric, we have U11 = LT

11. Furthermore, it follows from
A21 = L21D11U11 and AT

21 = L11D11U12 that U12 = LT
21. Therefore U = LT and

A = LDLT .
We now present the main theorem of this section in which we consider a per-

turbation of A = D(AD, v, S) that has small relative errors in each component of
AD, v, and S. Since S is a diagonal matrix of ±1, this necessarily implies that S
is unperturbed, which means that the signs of the diagonal entries of the matrix are
preserved under the perturbation.

Theorem 4.4. Let A = D(AD, v, S) ∈ Rn×n be a symmetric matrix such that
v ≥ 0. Let Ã = D(ÃD, ṽ, S) be another symmetric matrix that satisfies

|ṽ − v| ≤ εv and |ÃD −AD| ≤ ε|AD|, for some 0 ≤ ε < 1.

Let λ1 ≥ λ2 ≥ · · · ≥ λn and λ̃1 ≥ λ̃2 ≥ · · · ≥ λ̃n be the eigenvalues of A and Ã,
respectively. If 5n3ε < 1, then

|λ̃i − λi| ≤ (2ν + ν2)|λi|, for i = 1, . . . , n, (4.2)

where ν =
4n3ε

1− nε
.

Proof. First, if P is the permutation matrix defined by any diagonal pivoting
scheme for A that ensures existence of the LDU factorization in the sense of Definition
2.3 (e.g. the complete pivoting), we can consider PAPT and PÃPT , which do not
change the eigenvalues nor the perturbation assumptions. Therefore, we can assume
without loss of generality that A is already arranged such that its LDU factorization
exists. Observe that S is assumed to be unperturbed. Multiplying S on the left with
the matrices A and Ã, we get two diagonally dominant matrices with nonnegative
diagonals C = D(CD, vC) and C̃ = D(C̃D, ṽC), where

C = SA, CD = SAD, vC = v,

C̃ = SÃ, C̃D = SÃD, ṽC = ṽ.

Then,

|C̃D − CD| ≤ ε|CD| and |ṽC − vC | ≤ εvC .

Since A is symmetric, it has the LDU factorization with structure A = LDLT

by Lemma 4.3. In addition, C has LDU factorization, C = LCDCUC , which satisfies
LC = SLS, DC = SD, and UC = LT , because

C = SA = SLDLT = (SLS)(SD)LT . (4.3)

Now, apply Theorem 2.4(1) to C and C̃ to obtain that C̃ has LDU factorization,
which is denoted as C̃ = L̃CD̃CŨC . This implies that Ã also has LDU factorization,
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which by Lemma 4.3 has the structure Ã = L̃D̃L̃T . The same argument we used
in (4.3) leads to L̃C = SL̃S, D̃C = SD̃, and ŨC = L̃T . Next, we apply Theorem
2.4(2)-(3) to C and C̃ by taking into account DC = SD, UC = LT , D̃C = SD̃, and
ŨC = L̃T , and, with the notation L = [lij ], D = diag[di], L̃ = [l̃ij ], and D̃ = diag[d̃i],
we get

d̃i = di(1 + wi), with

(
1− ε
1 + ε

)n

− 1 ≤ wi ≤
(

1 + ε

1− ε

)n

− 1, (4.4)

for i = 1, . . . , n, and

|l̃ij − lij | ≤ 3nε, for 1 ≤ i, j ≤ n, i.e., ‖L̃− L‖max ≤ 3nε. (4.5)

Set γi =
√

1 + wi − 1 and observe that d̃i = di(1 + γi)
2. From (4.4), we get(

1− ε
1 + ε

)n/2

− 1 ≤ γi ≤
(

1 + ε

1− ε

)n/2

− 1

and, from Lemma 4.2, we have

|γi| ≤
(

1 + ε

1− ε

)n/2

− 1 ≤ 1

(1− ε)n
− 1 ≤ nε

1− nε
.

Now, set W = diag(γ1, γ2, . . . , γn). Then, we can write D̃ as

D̃ = (I +W )D(I +W ), with ‖W‖max ≤
nε

1− nε
. (4.6)

Thus, letting ∆L = L̃− L, we have

Ã = L̃D̃L̃T = (L+ ∆L)(I +W )D(I +W )(L+ ∆L)T

= [L+ ∆L + LW + ∆LW ]D [L+ ∆L + LW + ∆LW ]
T

= (I + F )LDLT (I + F )T

= (I + F )A (I + F )T , (4.7)

where F = ∆LL
−1 + LWL−1 + ∆LWL−1. Since L is column diagonally dominant,

then ‖L‖max = 1 and ‖L−1‖max = 1 by (2.1). These bounds, combined with (4.5)
and (4.6), yield

‖F‖2 ≤ ‖F‖F ≤ n‖F‖max

≤ n2
[
‖∆L‖max‖L−1‖max + ‖LW‖max‖L−1‖max + ‖∆L‖max‖WL−1‖max

]
≤ n2

[
3nε+

nε

1− nε
+ 3nε

(
nε

1− nε

)]
=

4n3ε

1− nε
=: ν.

Since n3ε < 1/5, we have ‖F‖2 < 1, which implies I+F is nonsingular. Hence, we can
apply [14, Theorem 2.1], which states that if Ã = (I +F )A(I +F )T for a nonsingular
matrix (I + F ), then

|λ̃i − λi| ≤ |λi| ‖(I + F )(I + F )T − I‖2, for i = 1, . . . , n. (4.8)

Note that

‖(I + F )(I + F )T − I‖2 = ‖F + FT + FFT ‖2 ≤ 2‖F‖2 + ‖F‖22 ≤ 2ν + ν2.
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The theorem is proved by combining this inequality with (4.8).
Theorem 4.4 demonstrates that the relative perturbations of the eigenvalues are

proportional to ε and are independent of any condition number. However, the bound
in (4.2) is weaker than the one in (4.1) proved in [39] for positive semidefinite matrices,
since (4.2) contains the dimensional factor n3. This is mostly the result of bounding
the 2-norm of various matrices and vectors from the max norm. It is obviously
pessimistic but it is not clear how it can be improved with our current approach.

5. Bounds for singular values. We consider in this section perturbation bo-
unds for singular values of nonsymmetric row diagonally dominant matrices with
nonnegative diagonals. Classic perturbation bounds for the singular values of a gen-
eral matrix A are obtained as by-products of the eigenvalue perturbation theory of
symmetric matrices [36] just by applying this theory to

B =

[
0 AT

A 0

]
or ATA.

However, this approach cannot be followed here, owing to the fact that A being row
diagonally dominant does not imply that B or ATA is diagonally dominant. So,
we need to develop a different approach and for this purpose we follow a three-step
procedure similar to the one used in the proof of Theorem 4.4: in a first step the
perturbation of the LDU factorization is considered via Theorem 2.4, in a second step
the bounds for the LDU factors are used to express Ã as a multiplicative perturbation
of A (see (4.7)), and the final step employs on this expression the multiplicative
perturbation results from [14]. This allows us to prove Theorem 5.1. Note that
in Theorem 5.1 the matrix A is not symmetric and, so, A is only row diagonally
dominant, instead of being simultaneously row and column diagonally dominant as
in Theorem 4.4. This partially explains why the bound presented in Theorem 5.1 is
weaker than the one in Theorem 4.4 if the matrix is symmetric.

Theorem 5.1. Let A = D(AD, v) ∈ Rn×n be such that v ≥ 0 and let Ã =
D(ÃD, ṽ) ∈ Rn×n be such that

|ṽ − v| ≤ εv and |ÃD −AD| ≤ ε|AD|, for some 0 ≤ ε < 1.

Let σ1 ≥ σ2 ≥ · · · ≥ σn and σ̃1 ≥ σ̃2 ≥ · · · ≥ σ̃n be the singular values of A and Ã,
respectively, and let

ν :=
2n5/2(4n− 1)

1− (12n+ 1)ε
ε.

If 0 ≤ ν < 1, then

|σ̃i − σi| ≤ (2ν + ν2)σi, for i = 1, . . . , n.

Proof. As in the proof of Theorem 4.4, we can assume without loss of generality
that A is arranged for column diagonal dominance pivoting. So, A has LDU fac-
torization and, by Theorem 2.4, Ã has also LDU factorization. Let A = LDU and
Ã = L̃D̃Ũ be these factorizations, and use the notation D = diag(d1, . . . , dn) and
D̃ = diag(d̃1, . . . , d̃n). Then, Theorem 2.4 implies

d̃i = di(1 + wi), with |wi| ≤
2nε

1− 2nε
for i = 1, . . . , n, (5.1)

14



‖∆U‖max ≤ 3nε, with ∆U := Ũ − U, (5.2)

and

‖∆L‖2 ≤
√
n‖∆L‖1 ≤

n3/2(8n− 2)ε

1− (12n+ 1)ε
, with ∆L := L̃− L. (5.3)

If we write

D̃ = D(I +W ), with W = diag(w1, w2, . . . , wn),

then

Ã = L̃D̃Ũ = (L+ ∆L)D(I +W )(U + ∆U )

= (I + ∆LL
−1)LD(U + ∆U +WU +W∆U )

= (I + E)A(I + F ),

where

E := ∆LL
−1 , and (5.4)

F := U−1∆U + U−1WU + U−1W∆U . (5.5)

Since U is row diagonally dominant, we have ‖U−1‖max = 1 by (2.2). Then, from
(5.1), (5.2), and (5.5), we get

‖F‖max ≤ n
(
‖U−1‖max‖∆U‖max + ‖U−1‖max‖WU‖max + ‖U−1W‖max‖∆U‖max

)
≤ 3n2ε+

2n2ε

1− 2nε
+

2n2ε

1− 2nε
(3nε)

=
5n2ε

1− 2nε
.

Thus, we have

‖F‖2 ≤ ‖F‖F ≤ n‖F‖max ≤
5n3ε

1− 2nε
≤ ν.

Since L is column diagonally dominant, then ‖L−1‖max = 1, by (2.1), and hence
‖L−1‖2 ≤ n. From (5.4) and (5.3), we obtain

‖E‖2 ≤ ‖∆L‖2‖L−1‖2 ≤
n3/2(8n− 2)ε

1− (12n+ 1)ε
n = ν.

So, if 0 ≤ ν < 1, then both I+E and I+F are nonsingular. Therefore, we can apply
[14, Theorem 3.3] to obtain

|σ̃i − σi| ≤ γσi, for i = 1, 2, . . . , n, (5.6)

where γ = max{‖(I + E)(I + E)T − I‖2, ‖(I + F )T (I + F )− I‖2}. Note that

‖(I + E)(I + E)T − I‖2 = ‖I + E + ET + EET − I‖2 = ‖E + ET + EET ‖2
≤ ‖E‖2 + ‖ET ‖2 + ‖E‖2‖ET ‖2 ≤ 2‖E‖2 + ‖E‖22
≤ 2ν + ν2.
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Similarly, ‖(I + F )T (I + F ) − I‖2 ≤ 2ν + ν2. The theorem is proved by combining
the last two inequalities with (5.6).

While the significant part of Theorem 5.1 is that the relative changes of the
singular values are proportional to ε and are independent of any condition number,
the provided bound is pessimistic since it contains the dimensional factor n7/2. This
is partly inherited from the perturbation bound for L, but it is also the result of
bounding the 2-norm of various matrices and vectors from the max norm. As in the
case of Theorem 4.4, we do not see how this pessimistic dimensional constant can be
improved with the current approach.

Note that the bound (4.1) proved in [39] for symmetric positive semidefinite di-
agonally dominant matrices makes it natural to conjecture that the singular values
satisfy the same perturbation bound, i.e., |σ̃i−σi| ≤ εσi, since the singular value prob-
lem is essentially a symmetric positive semidefinite eigenvalue problem. However, the
matrices A and C in Example 2.6 show that this conjecture is false.

6. Bounds for eigenvalues of nonsymmetric matrices. The perturbation
theory for the nonsymmetric eigenvalue problem is generally much more complex than
for the symmetric eigenvalue problem. For example, general normwise perturbations
of a nonsymmetric matrix A produce an absolute variation of the eigenvalues of A
that may be much larger than the norm of the perturbation. The reason is that
the absolute variation of each simple eigenvalue of A is governed by its Wilkinson
condition number [9, p.149]. This condition number is eigenvalue dependent and is
determined by the acute angle made by the left and the right eigenvectors of the eigen-
value, which is related to the departure from normality of A since for normal matrices
the Wilkinson condition number is always equal to one. If A is a nonnormal row
diagonally dominant matrix and we consider parameterized perturbations via diago-
nally dominant parts and off-diagonal entries, then the dependence of the eigenvalue
variation on the Wilkinson condition number can still be expected; however, we will
show in this section that the relative variation is independent of the magnitude of the
eigenvalue itself.

Consider the classical analytic perturbation theory for the nonsymmetric eigen-
value problem (see [9, p.149]). Let λ be a simple eigenvalue of a general matrix
A ∈ Rn×n with a right eigenvector x and a left eigenvector y. The matrix Ã = A+E
has an eigenvalue λ̃ such that

λ̃− λ =
y∗Ex

y∗x
+O

(
‖E‖22

)
(6.1)

and

|λ̃− λ| ≤ sec θ(y, x)‖E‖2 +O
(
‖E‖22

)
, (6.2)

where θ(y, x) is the acute angle between x and y, and sec θ(y, x) =
‖y‖2‖x‖2
|y∗x|

is the

Wilkinson condition number of the eigenvalue λ. The perturbation bound (6.2) con-
cerns the absolute variation of the eigenvalue. The corresponding relative perturbation
bound depends also on the magnitude of the eigenvalue itself as follows:

|λ̃− λ|
|λ|

≤
(

sec θ(y, x)
‖A‖2
|λ|

)
‖E‖2
‖A‖2

+O
(
‖E‖22

)
. (6.3)

Observe that (6.3) shows that the relative variation of λ can be large compared to the
relative size of the perturbation ‖E‖2/‖A‖2 as a consequence of two facts: ‖A‖2/|λ|
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can be large and/or sec θ(y, x) can be large. For parameterized perturbations of row
diagonally dominant matrices, we present in this section a new perturbation bound
that removes the dependence on the magnitude of the eigenvalue, i.e., it removes
the factor ‖A‖2/|λ|. We first present a modified version of (6.1) by using the left
eigenvector ỹ of Ã.

Lemma 6.1. Let λ be an eigenvalue of A ∈ Rn×n with a right eigenvector x and
let λ̃ be an eigenvalue of Ã = A+E with a left eigenvector ỹ such that ỹ∗x 6= 0. Then,

λ̃− λ =
ỹ∗Ex

ỹ∗x
(6.4)

and

|λ̃− λ| ≤ sec θ(ỹ, x)‖E‖2. (6.5)

Proof. Since E = Ã−A, we have

ỹ∗Ex = ỹ∗Ãx− ỹ∗Ax =
(
ỹ∗λ̃
)
x− ỹ∗ (λx) =

(
λ̃− λ

)
ỹ∗x,

from which (6.4) and hence (6.5) follow.
Notice that (6.5) is very similar to (6.2); however, one advantage of (6.5) is that it

is a straightforward inequality not containing asymptotically higher order error terms.
On the other hand, (6.5) depends on the left eigenvector ỹ of Ã, which is not assumed
to be known in a general setting. Interestingly, this turns out to be advantageous for
our purpose as it will become evident in the proof of Theorem 6.2. We also note that
in Lemma 6.1 neither λ nor λ̃ need to be simple eigenvalues and that λ̃ can be any
eigenvalue of Ã, not necessarily the closest one to λ. However, for small perturbations
E, if λ is not simple or λ̃ is not the eigenvalue approximating λ, then sec θ(ỹ, x) is
expected to be extremely large and the bound (6.5) is not meaningful.

We now present in Theorem 6.2 a relative perturbation bound for eigenvalues of
nonsymmetric row diagonally dominant matrices. We consider the general case of
matrices with possibly both positive and negative diagonal entries and, therefore, the
parametrization A = D(AD, v, S) introduced in Definition 4.1 is used. Note that the
perturbations considered in Theorem 6.2 preserve the signs of the diagonal entries.
See the remarks before Theorem 4.4 concerning this assumption.

Theorem 6.2. Let A = D(AD, v, S) ∈ Rn×n be such that v ≥ 0 and let λ be an
eigenvalue of A with a right eigenvector x. Let Ã = D(ÃD, ṽ, S) ∈ Rn×n be such that

|ṽ − v| ≤ εv and |ÃD −AD| ≤ ε|AD|, for some 0 ≤ ε < 1,

and let λ̃ be an eigenvalue of Ã with a left eigenvector ỹ such that ỹ∗x 6= 0. If
(13n+ 7n3 sec θ(ỹ, x)) ε < 1, then

|λ̃− λ| ≤ 8n7/2 + 7n3

1− (13n+ 7n3 sec θ(ỹ, x)) ε
sec θ(ỹ, x)ε |λ| , (6.6)

where sec θ(ỹ, x) =
‖ỹ‖2‖x‖2
|ỹ∗x|

.

Proof. Clearly SA and SÃ are row diagonally dominant with nonnegative diagonal
entries and they satisfy condition (2.3) of Theorem 2.4. Without loss of generality,
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we assume that SA is arranged for column diagonal dominance pivoting. Then SA
has LDU factorization SA = LDU with L being column diagonally dominant and
U being row diagonally dominant. By (2.1-2.2), we have ‖L−1‖2 ≤ n‖L−1‖max ≤ n,
‖U‖2 ≤

√
n‖U‖∞ ≤ 2

√
n, and ‖U−1‖2 ≤ n‖U−1‖max ≤ n.

It follows from Theorem 2.4 that SÃ has LDU factorization SÃ = L̃D̃Ũ and

|∆D| ≤
2nε

1− 2nε
D, with ∆D := D̃ −D, (6.7)

‖∆U‖2 ≤ n‖∆U‖max ≤ 3n2ε, with ∆U := Ũ − U, (6.8)

and

‖∆L‖2 ≤
√
n‖∆L‖1 ≤

n3/2(8n− 2)

1− (12n+ 1)ε
ε, with ∆L := L̃− L. (6.9)

We write E := Ã−A = S(L̃D̃Ũ − LDU) as

E = S∆LDU + SL̃∆DU + SL̃D̃∆U .

Combining this expression for E with Lemma 6.1, we obtain

(λ̃− λ)(ỹ∗x) = ỹ∗S∆LDUx+ ỹ∗SL̃∆DUx+ ỹ∗SL̃D̃∆Ux

= λỹ∗S∆LL
−1Sx+ λ̃ỹ∗Ũ−1D̃†∆DUx+ λ̃ỹ∗Ũ−1∆Ux, (6.10)

where D̃† is the Moore-Penrose pseudo-inverse of D̃ and we have used DUx =
L−1SAx = λL−1Sx, ỹ∗SL̃D̃ = ỹ∗ÃŨ−1 = λ̃ỹ∗Ũ−1, and ỹ∗SL̃∆D = ỹ∗SL̃(D̃D̃†)∆D

= λ̃ỹ∗Ũ−1D̃†∆D. In addition, note that SÃ is also row diagonally dominant, since
ṽ ≥ 0, and, so, Ũ is row diagonally dominant. This implies, by (2.2), that ‖Ũ−1‖2 ≤
n‖Ũ−1‖max ≤ n. With this bound and (6.7), (6.8), and (6.9), we get

‖∆LL
−1‖2 ≤ ‖∆L‖2‖L−1‖2 ≤

n5/2(8n− 2)

1− (12n+ 1)ε
ε,

‖D̃†∆D‖2 = ‖(I +D†∆D)−1D†∆D‖2 ≤ ‖(I +D†∆D)−1‖2 ‖D†∆D‖2 ≤
2nε

1− 4nε
,

and

‖Ũ−1∆U‖2 ≤ ‖Ũ−1‖2 ‖∆U‖2 ≤ 3n3ε.

Substituting these into (6.10), we obtain

|λ̃− λ||ỹ∗x| ≤ ‖ỹ‖2‖x‖2
(
|λ| n

5/2(8n− 2)ε

1− (12n+ 1)ε
+ |λ̃|n 2nε

1− 4nε
2
√
n+ |λ̃| 3n3ε

)
≤ ‖ỹ‖2‖x‖2

(
|λ| 8n7/2ε

1− 13nε
+ |λ̃| 7n3ε

1− 4nε

)
and thus

|λ̃− λ| ≤ sec θ(ỹ, x)

(
|λ| 8n7/2ε

1− 13nε
+ |λ̃| 7n3ε

1− 13nε

)
.
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Finally, use |λ̃| ≤ |λ̃ − λ| + |λ| and rearrange the inequality above to produce the
desired result.

Theorem 6.2 improves the classical bound (6.3) in that the relative perturbation
|λ̃ − λ|/|λ| in the eigenvalue is proportional to sec θ(ỹ, x)ε but independent of the
eigenvalue itself. In addition, we have a rigorous inequality independent of any high
order term. A drawback of Theorem 6.2 is that the condition number sec θ(ỹ, x) is
defined from the left eigenvector of Ã. However, if λ̃ approximates a simple eigenvalue
λ, then ỹ ≈ y and sec θ(ỹ, x) ≈ sec θ(y, x) in an asymptotic sense. In addition, as
discussed just after Lemma 6.1, this is the only situation in which Theorem 6.2 is
really useful and meaningful, since otherwise ỹ∗x ≈ 0 and it renders a meaningless
bound. Therefore, Theorem 6.2 implicitly requires that λ̃ is an eigenvalue of Ã that
approximates a simple eigenvalue λ of A.

Theorem 6.2 can be generalized to a structured perturbation problem where a gen-
eral matrix, i.e., not necessarily diagonally dominant, is perturbed via small changes
in the factors of a rank-revealing decomposition of the matrix. Recall that given a ma-
trix A ∈ Rm×n with rank(A) = r, we say that A = XDY ∈ Rm×n is a rank-revealing
decomposition of A [8], if D ∈ Rr×r is diagonal and nonsingular, and X ∈ Rm×r and
Y ∈ Rr×n are well-conditioned matrices. Since X and Y may be rectangular matrices,
their condition numbers are defined via their Moore-Penrose pseudo-inverses, denoted
by X† and Y †, as κ2(X) = ‖X‖2 ‖X†‖2 and κ2(Y ) = ‖Y ‖2 ‖Y †‖2. Next, we consider
in Theorem 6.3 perturbations of A obtained via small entrywise relative perturbations
in the diagonal factor D and small normwise relative perturbations in the factors X
and Y . The bound in Theorem 6.3 may be applicable to some special matrices for
which a rank-revealing decomposition can be accurately computed [8, 12, 13].

Theorem 6.3. Let A = XDY ∈ Rn×n be a rank-revealing decomposition and let
Ã = X̃D̃Ỹ ∈ Rn×n be such that

X̃ = X + ∆X , D̃ = D + ∆D, Ỹ = Y + ∆Y

with

|∆D| ≤ ε|D|, ‖∆X‖2 ≤ ε‖X‖2, and ‖∆Y ‖2 ≤ ε‖Y ‖2 (6.11)

for some 0 ≤ ε < 1. Let λ be an eigenvalue of A with right eigenvector x and
let λ̃ be an eigenvalue of Ã with left eigenvector ỹ such that ỹ∗x 6= 0. Let κ =
max{κ2(X), κ2(Y )}. If ε κ (1 + sec θ(ỹ, x)) < 1, then

|λ̃− λ| ≤ ε κ sec θ(ỹ, x)
3 + ε

1− ε κ (1 + sec θ(ỹ, x))
|λ| . (6.12)

Proof. Let r = rank(A). So X†X = Ir and Y Y † = Ir, since XDY is a
rank-revealing decomposition. In addition, note that1 rank(X) = rank(X̃) = r and
rank(Y ) = rank(Ỹ ) = r. So X̃†X̃ = Ir and Ỹ Ỹ † = Ir also hold.

Observe that

Ã−A = ∆XDY + X̃∆DY + X̃D̃∆Y .

1These two equalities follow from (6.11). Let us prove it only for X, since it is is similar for
Y . According to Weyl perturbation theorem [36] for singular values, we have |σi(X̃) − σi(X)| ≤
‖∆X‖2 ≤ ε‖X‖2, for i = 1, . . . , r, where σi(X) and σi(X̃) are the singular values of X and X̃
respectively arranged in decreasing order. So |σi(X̃)− σi(X)|/σi(X) ≤ εκ2(X) < 1, for i = 1, . . . , r.
This and σi(X) 6= 0 imply that σi(X̃) 6= 0 for all i.
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Applying (6.4) yields

(ỹ∗x)
(
λ̃− λ

)
= ỹ∗∆XDY x+ ỹ∗X̃∆DY x+ ỹ∗X̃D̃∆Y x

= λỹ∗∆XX
†x+ λỹ∗X̃∆DD

−1X†x+ λ̃ỹ∗Ỹ †∆Y x, (6.13)

sinceDY x = X†Ax = λX†x, ∆DY x = ∆D(D−1D)Y x = λ∆DD
−1X†x, and ỹ∗X̃D̃ =

ỹ∗ÃỸ † = λ̃ỹ∗Ỹ †. From the assumption (6.11), we get

‖∆XX
†‖2 ≤ ‖∆X‖2 ‖X†‖2 ≤ ε κ2(X), (6.14)

‖X̃∆DD
−1X†‖2 ≤ ‖X + ∆X‖2 ‖∆DD

−1‖2‖X†‖2 ≤ ε(1 + ε)κ2(X), (6.15)

and, if σ̃r and σr are, respectively, the smallest singular values of Ỹ and Y ,

‖Ỹ †∆Y ‖2 ≤
‖∆Y ‖2
σ̃r

≤ ε ‖Y ‖2
σr − ‖∆Y ‖2

≤ ε ‖Y ‖2
σr − ε ‖Y ‖2

≤ ε κ2(Y )

1− ε κ2(Y )
. (6.16)

Combining (6.14)-(6.15)-(6.16) with (6.13), we have

|ỹ∗x| |λ̃− λ| ≤ ‖ỹ‖2‖x‖2
(
|λ| ε (2 + ε)κ2(X) + |λ̃| ε κ2(Y )

1− ε κ2(Y )

)
.

Finally, use |λ̃| ≤ |λ̃− λ|+ |λ| and rearrange the inequality above to obtain (6.12).

We finish this section with some remarks on other possible strategies for obtaining
relative perturbation bounds for eigenvalues of nonsymmetric matrices when they are
perturbed via a rank-reveling decomposition as in (6.11). This type of perturbations of
rank-revealing decompositions can always be written as a multiplicative perturbation
of the original matrix. This has been used before in [4, 8, 12, 13]. Then, it is possible
to use relative bounds for eigenvalues of nonsymmetric matrices under multiplicative
perturbations which are already available in the literature [23, Section 5] (see also
the original references [15] and [26]). Essentially, two type of relative bounds can be
found: Bauer-Fike and Hoffman-Wielandt bounds. The Bauer-Fike bounds require
A to be diagonalizable and depend on the condition number of the whole eigenvector
matrix of A, that is, the square matrix whose columns are all the eigenvectors of A.
The Hoffman-Wielandt bounds still require stronger assumptions, since they require
both A and Ã to be diagonalisable and they depend on the product of the condition
numbers of both the whole eigenvector matrices of A and Ã. The main drawback
of these bounds is that the condition number of the whole eigenvector matrix is
larger than the largest Wilkinson condition number of all the individual eigenvalues
[9, Theorem 4.7]. Thus, the relative Bauer-Fike and Hoffman-Wielandt bounds may
be very pessimistic in situations where only some eigenvalues have large Wilkinson
condition numbers, but the condition numbers of other eigenvalues are moderate.
Theorem 6.3 presented here has the obvious advantage of depending essentially only
on the Wilkinson condition number of each individual eigenvalue and, in addition, it
does not require that the matrix A be diagonalizable.

7. Concluding remarks. We have systematically studied the relative pertur-
bation theory for row diagonally dominant matrices under small componentwise per-
turbations of their diagonally dominant parts and off-diagonal entries. The use of
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this parameterized perturbation has been the key to derive strong relative perturba-
tion bounds for inverses, solution to linear systems, the symmetric indefinite eigen-
value problem, the singular value problem, and the nonsymmetric eigenvalue problem.
These bounds demonstrate that potentially much more accurate algorithms than the
traditional ones are possible for solving all these problems via the use of diagonally
dominant parts and off-diagonal entries. Indeed, such high relative accuracy algo-
rithms have already been obtained for the LDU factorization and the singular value
problem in [38], and the results in the present paper show that highly accurate algo-
rithms for other problems can be also obtained by combining the LDU algorithm in
[38] with the algorithms in [4, 12, 13]. One challenging open problem in this area is to
develop algorithms to compute the eigenvalues of nonsymmetric diagonally dominant
matrices with the relative accuracy determined by Theorem 6.2. This will be the
subject of future research.
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