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Abstract. This work introduces new relative perturbation bounds for the LDU factorization of
(row) diagonally dominant matrices under structure-preserving componentwise perturbations. These
bounds establish that if (row) diagonally dominant matrices are parameterized via their diagonally
dominant parts and off-diagonal entries, then tiny relative componentwise perturbations of these pa-
rameters produce tiny relative normwise variations of the L and U factors and tiny relative entrywise
variations of the factor D. These results improve previous bounds in an essential way, by including
LDU factorizations computed via the column diagonal dominance pivoting strategy. This strategy
is specific for (row) diagonally dominant matrices and has the key advantage of yielding L and U
factors which are guaranteed to be well-conditioned and, so, the corresponding LDU factorization is
guaranteed to be a rank-revealing decomposition. Since rank-revealing decompositions play a fun-
damental role in highly accurate matrix computations, the results presented in this paper have some
important implications, because they will allow us to prove rigorously in a follow-up work that most
of the standard tasks in numerical linear algebra can be performed with guaranteed high accuracy
for the relevant class of diagonally dominant matrices.
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1. Introduction. Perturbation analysis is a fundamental topic in numerical lin-
ear algebra that determines the accuracy to which a given problem can be solved nu-
merically [29]. Classical perturbation theory considers mostly unstructured normwise
or entrywise perturbations of matrices [19, 20]. However, in the last two decades,
the interests of matrix perturbation theory have expanded and many works have
been focused on deriving sharper perturbation bounds when structured perturba-
tions of important classes of structured matrices are considered (see, for instance,
[1, 3, 4, 6, 11, 17, 18, 22, 23, 24, 25, 27, 28, 31, 32, 34] and the references therein).
In this paper, we study perturbation bounds for LDU factorizations of diagonally
dominant matrices under structure-preserving perturbations. Here, A = LDU is an
LDU factorization of A if L is a unit lower triangular matrix, D is a diagonal matrix,
and U is a unit upper triangular matrix.

The LDU factorization, or the LU factorization, is one of the most important
matrix factorizations and has many applications, such as solving systems of linear
equations, inverting matrices, and computing determinants [16]. Depending on its
uses, a pivoting scheme is usually employed to produce a factorization with certain
desirable properties. For example, partial pivoting is the standard choice to compute
a backward stable LDU factorization and to solve systems of linear equations [20]. For
some classes of matrices, it is not necessary to use any pivoting strategy to produce
a backward stable LDU factorization. Diagonally dominant matrices are among the
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most important of these classes, since they arise in many applications and have very
favorable numerical properties [16, 20]. They are the matrices considered in this paper.
For brevity, we will focus on row diagonally dominant matrices, although the results
we present hold for column diagonally dominant matrices with obvious modifications
or just by taking transposes. For these matrices, the LDU factorization without
pivoting has another interesting property: given any n x n row diagonally dominant
matrix, the U matrix in its LDU factorization inherits the row diagonal dominance
property. As a result, U is well-conditioned with ko (U) < 2n [26]. In contrast, L
may not be well-conditioned and, since this property may be essential in the use of
the LDU factorization (e.g. deriving some more accurate algorithms to be discussed
below), it is important to study possible pivoting strategies that preserve row diagonal
dominance and compute a well-conditioned factor L as well. The first candidate is the
complete (diagonal) pivoting [20]. In this case, all entries of L are bounded in absolute
values by 1 and, as a consequence, L is almost always well-conditioned, but this is
not theoretically guaranteed. It turns out that a slightly more expensive pivoting
scheme introduced in [26, 33], valid only for row diagonally dominant matrices and
some other structured matrices, will produce a column diagonally dominant matrix
L, which is then guaranteed to be well-conditioned with ., (L) < n? and x1(L) < 2n
[26]. This pivoting strategy is called here column diagonal dominance pivoting.

We are interested in an LDU factorization with both L and U well-conditioned
because in this case it becomes a rank-revealing decomposition (RRD); see [9]. RRDs
are key components in high relative accuracy algorithms for computing quantities
of different magnitudes, where high relative accuracy means that these algorithms
produce relative forward errors in the order of unit roundoff even when they are
applied to extremely ill-conditioned problems for which standard algorithms may fail
to produce a single digit of accuracy. For example, two algorithms are presented
in [9] to compute the singular value decomposition of a matrix A to high relative
accuracy if an accurate RRD A = X DY is available, in the sense that X and Y
are well-conditioned and have been computed with tiny normwise relative errors, and
D is diagonal and has been computed with tiny entrywise relative errors. Accurate
RRDs are also utilized in [10, 12] to develop algorithms that compute eigenvalues and
eigenvectors of symmetric matrices with high relative accuracy. In addition, accurate
RRDs are used in [5] and [14] to compute solutions to structured linear systems
and least squares problems which are much more accurate than those computed by
standard algorithms. All of these works depend critically on computing an accurate
RRD of A first, which is a difficult problem that can be solved only for some special
structured matrices via new algorithms carefully designed to exploit the corresponding
structures. See [9, 12, 14] for a detailed account of many classes of structured matrices
for which it is possible to compute accurate RRDs. Another essential feature of these
new highly accurate algorithms in [5, 9, 12, 14] is that the forward error bounds
depend on the condition numbers of the well-conditioned factors X and Y but not on
the condition number of the matrix A.

As discussed above, the LDU factorization is guaranteed to be a RRD for row
diagonally dominant matrices if the column diagonal dominance pivoting is used.
Moreover, in practice, the complete diagonal pivoting is almost always sufficient for
computing a rank-revealing LDU factorization. Furthermore, if standard algorithms
for the LDU factorization, combined with either of these two pivoting strategies, are
applied in finite precision arithmetic to a row diagonally dominant matrix A, then
they compute LDU factorizations which are RRDs and are backward stable with
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respect to A, but unfortunately, this is not enough for producing accurate L, D, and
U factors and hence accurate RRDs. The reason is that classic perturbation theory
for the LU factorization establishes that the entries of A do not determine accurately
its L, D, and U factors (see [2, 7, 13, 30] and [20, p. 194]).

In this context, a structured algorithm for computing the LDU factorization of
row diagonally dominant matrices has been developed recently in [33]. This algorithm
works for both the column diagonal dominance pivoting and the complete diagonal
pivoting, and it computes accurate L and U factors with relative normwise errors of
the order of unit roundoff, and accurate D factors with relative entrywise errors of the
order of unit roundoff. This is supported by many numerical experiments and also by
a direct forward error analysis in [33]. Unfortunately, the error bound involves very
large dimensional constants that question the accuracy of the computed factors, al-
though it has the remarkable property of being independent of any condition number.
Motivated by this fact, a structured perturbation theory for the LDU factorization of
row diagonally dominant matrices has been derived in [11], which has led to a much
improved error analysis for the algorithm in [33] involving only dimensional constants
of moderate size. However, the error bound on L in [11] is guaranteed to be small only
under the assumption that the complete diagonal pivoting is used. Since the complete
diagonal pivoting does not lead to a guaranteed well-conditioned factor L, a funda-
mental question is whether or not a strong perturbation bound for L still holds when
the column diagonal dominance pivoting is used, for which the LDU factorization is
rigorously a RRD.

In this paper, we extend the perturbation theory in [11] to allow the fundamen-
tal assumption that the column diagonal dominance pivoting is used in defining the
LDU factorization. This generalization will prove to be crucial in a separate work
[8] that systematically studies structured perturbation properties of diagonally dom-
inant matrices for many other linear algebra problems. It is also central to show
that the combination of the algorithm for the LDU factorization in [33] with those
in [5, 9, 12, 14] allows us to perform many matrix computations efficiently and very
accurately on diagonally dominant matrices, with forward relative errors in the order
of unit roundoff and independent of the condition numbers of any of the factors of the
involved RRDs. The development of the new perturbation bounds requires consid-
erable technical efforts and a number of substantially new ideas over the techniques
used in [11].

We emphasize that the key idea underlying these strong perturbation properties
is the need to parameterize any row diagonally dominant matrix by its off-diagonal
entries and diagonally dominant parts. This parametrization was introduced in [33]
and used in [34] to derive relative perturbation bounds for eigenvalues of symmetric
positive semidefinite diagonally dominant matrices. It was also essential in [11] and
recently has led to very strong perturbation bounds for many other problems [8]. As
pointed out in [34], this parametrization often corresponds to physical parameters and
is natural in many applications of diagonal dominant matrices.

The rest of this paper is organized as follows. In section 2, we give an overview of
diagonally dominant matrices and revise previous results that are needed in this work.
Section 3 presents the new perturbation bounds for the LDU factorization and their
proofs. Finally, in section 4, conclusions and lines of future research are discussed.
Before proceeding, we present below the notation used in this paper.

NOTATION: In this paper we consider only real matrices and we denote by R™*"™
the set of m x n real matrices. The entries of a matrix A are a;; and |A| is the matrix
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with entries |a;;|. The inequality A > B for matrices means a;; > b;; for all 4, j, and
the inequality v > w for vectors means v; > w; for all ¢. Analogously, the inequality
v > 0 for the vector v means v; > 0 for all . We use the MATLAB notation for
submatrices. That is, A(i : j,k : ) denotes the submatrix of A formed by rows i
through j and columns k through I. We use A(i/,j') to denote the submatrix of A
formed by deleting row ¢ and column j from A. Let a = [i1, 42, ...,1p], where 1 <4y <
io < -+ <ip <m,and B = [j1,J2,...,Jq], Where 1 < j1 < jo < --- < jg <n. Then
A(a, 8) denotes the submatrix of A that consists of rows i1,49,...,7, and columns
J1,J2,- -, Jq- In MATLAB notation, 1 : k denotes the row vector [1,2,...,k]. For
convenience, we also use the notation 1 : k to denote the set {1,2,...,k}. We denote
by I the s x s identity matrix and by O, the s X s zero matrix. Two matrix norms will
be used: [|All1 = max; ), [a;;] and [[Alo = max; 3, [a;;|. The condition numbers
of a nonsingular matrix A in any of these norms is denoted as x;(A) := || All; | A7,
for i = 1,00. The sign of x € R is sign(x), where sign(0) is defined to be 1.

2. Preliminaries. In this section, we give an overview of diagonally dominant
matrices and some of their properties. More information on this topic can be found
in [11, Sec. 2] and [20, 21].

DEFINITION 2.1. A matriz A = [a;;] € R"*" is said to be row diagonally domi-
nant if (ai| > 32,4, lai;] fori=1,....n.

In the rest of the paper, all row diagonally dominant matrices A € R™*" that are
considered satisfy a;; > 0 for ¢ = 1,...,n. This does not impose any restriction for
studying LDU factorizations, since we can multiply A by a diagonal matrix S with
diagonal entries equal to +1 to get this property, and the LDU factorizations of A
and SA are trivially related each other.

An idea that has played a key role in deriving relative perturbation bounds and
high relative accuracy algorithms for row diagonally dominant matrices [33, 34, 11]
is to reparameterize these matrices in terms of their diagonally dominant parts and
off-diagonal entries as follows.

DEFINITION 2.2. Given a matric M = [m;;] € R"*" and a vector v = [v;] € R,
we use D(M,v) to denote the matriz A = [a;;] € R™*™ whose off-diagonal entries are
the same as those of M and whose ith diagonal entry is a; = v; + Zj# |mijl, for
i=1,...,n. Namely, we write

A =D(M,v)

and call it the representation of A by diagonally dominant parts v and off-diagonal
entries m;j;, 1 # j, if

aij =mj, fori#j, and aii:vi+z‘mij|7 fori=1,...,n.
J#i

Definition 2.2 constructs A from diagonally dominant parts and off-diagonal en-
tries. The converse process is obvious: given a matrix A = [a;;] € R™*™, we denote
by Ap € R™*"™ the matrix whose off-diagonal entries are the same as those of A and
whose diagonal entries are zero. Then, letting v; = a;; — Z#i laij|, i =1,...,n, and
v = [v1,va,...,0,]T, we have

A =D(Ap,v) (2.1)

as the representation of A by diagonally dominant parts and off-diagonal entries.
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Observe that in the representation A = D(Ap,v) € R™*"™ the condition v > 0 is
equivalent to the statement that A is row diagonally dominant and has nonnegative
diagonal entries. We emphasize that the condition v > 0 will be used as an assumption
in most of the results in section 3 and, so, the reader should bear in mind its underlying
meaning.

Theorem 2.3 lists some basic properties of diagonally dominant matrices that are
often used in this work.

THEOREM 2.3. [11, Theorem 1] If A € R™*™ is row diagonally dominant, then

(a) Ewery principal submatriz of A is row diagonally dominant;

) PAPT is row diagonally dominant for any permutation matriz P € R"*";
(¢) Ifayy # 0 then the Schur complement of a1y in A is row diagonally dominant;
(d) If det A # 0 then det A has the same sign as the product ajiass -+ app; and

) |det A(i',4")| > |det A(',5")|, for alli=1,...,n and for all j # i, where we
recall that A(i',j') denotes the submatriz of A formed by deleting row i and
column j of A.

Diagonally dominant matrices have several other nice properties that are useful.
For instance, strictly diagonally dominant matrices (i.e., diagonally dominant matri-
ces as defined in Definition 2.1 with strict inequalities) are nonsingular and Gaussian
elimination can be performed on them without interchanging rows or columns. This
implies that any strictly diagonally dominant matrix A has a unique LDU factoriza-
tion. A general diagonally dominant matrix A may be rank deficient, and in this
case A may not have an LDU factorization. However, applying any diagonal pivoting
strategy (i.e., pivoting with simultaneous and equal row and column permutations) to
A always leads to a matrix PAPT that has LDU factorization, PAPT = LDU, where
P is the permutation matrix defined by the pivoting strategy. If A is rank deficient,
then D has diagonal entries that are zero and L and U may not be unique, even when
P is fixed. We then consider the following unique form of the LDU factorization.

DEFINITION 2.4. [11, Definition 1] A row diagonally dominant matriz A € R™*"
with rank r is said to have LDU factorization if there exist a unit lower triangular
matriz L1; € R™", a unit upper triangular matriz Uy; € R™", and a nonsingular
diagonal matriz D11 € R™" such that A = LDU where

Li; O Dy 0 Unn Un2
L= , D= , U= .
|: L21 In—r ] |: 0 On—r :| |: 0 In—r ]

The nontrivial entries of the L, D, and U factors in Definition 2.4 can be expressed
in terms of minors of A. This is a classical result that we recall in Theorem 2.5,
since it is fundamental in section 3, where the new perturbation bounds for the LDU
factorization are obtained via detailed perturbation properties of the minors of A.

THEOREM 2.5. [15, p. 35] If A € R™ ™ has rank r and has LDU factorization
as in Definition 2.4, then this factorization is unique and the nontrivial entries of
L =[l;;], D = diag[d,....,d,,0,...,0], and U = [u;;] are given by

_det A([1:5—1,4],1:7)

lij = det A(1:45,1:5) i>jandj=1,...,m (2:2)
det A(1:4,1:4 .

P = - - 5 :1,...77 2'
det A(1:i—1,1:4—1) ! " 23)
det A(1:4,[1:¢—1,4

B (§] ( Z,[ 1 ,]]) Z<] and i = 1’.“7,,,.7 (24)

YT T det AL, 1)



where we define det A(1:0,1:0) := 1.

Next, we revise two particular diagonal pivoting strategies which are used to
compute via Gaussian elimination LDU factorizations of a row diagonally dominant
matrix A that are RRDs, i.e., with both factors L and U well conditioned. First, recall
that any diagonal pivoting strategy applied on A leads to a factor U that is also row
diagonally dominant and, therefore, well-conditioned [26]. At each stage of Gaussian
elimination with complete diagonal pivoting, the same row and column are exchanged
to place in the pivot position the diagonal entry with the largest absolute value of
the corresponding Schur complement. Observe that for row diagonally dominant
matrices, complete diagonal pivoting coincides with standard complete pivoting but,
despite this fact, it does not lead to an LDU factorization that is guaranteed to be a
RRD, although in practice, the computed factor L is almost always well-conditioned.
The column diagonal dominance pivoting strategy announced in the Introduction is
much less known than complete diagonal pivoting, but applied on A computes a factor
L which is column diagonally dominant and, hence, is always well-conditioned [26].
Some additional notation is needed to introduce such pivoting strategy.

In general, consider applying Gaussian elimination with a diagonal pivoting strat-
egy to a row diagonally dominant matrix A € R™*" with nonnegative diagonal entries.
We assume that A is arranged for that diagonal pivoting strategy, which means that
the permutation defined by the pivoting is applied to A in advance. In each stage
Gaussian elimination makes zero all the entries below the diagonal of a certain column.
Define A := A and define A*+1) .= [az(-fﬂ)] € R™ " to be the matrix obtained after
k stages of Gaussian elimination have been performed. So, all the entries below the di-
agonal in the first & columns of A*+1) are equal to zero, A**TV(1: k,:) = A®)(1: k,2),
and, in addition, the following identity presented in [15] can be easily proved from
properties of determinants:

a(.].chl) _ det A([l : k’,i], [1 : k’,j])
J det A(1: k,1:k)

(2.5)

for k+1<i,57 <mand1 <k < min{r,n — 1}, where r = rank(A4). It follows from
Theorem 2.3-(c) that A*+1 is row diagonally dominant and that A®+D (k41 :n, k+
1:n) is also row diagonally dominant, and from Theorem 2.3-(a)-(d) and (2.5) that
A%+ has nonnegative diagonal entries. Thus, Gaussian elimination applied on A
generates a sequence of row diagonally dominant matrices with nonnegative diagonal
entries A®) € R"*" k =1,2,...,min{n,r+1}, such that A®) (k : n, k :n) is also row
diagonally dominant. Observe that this implies that there is at least one column of

A®)(k : n, k : n) which is column diagonally dominant, i.e., alk) > |a§f)| > 0 for

i

j=hj#i
some i = k,...,n. Then, the column diagonal dominance pivoting strategy arranges
A in such a way that
n
(k) _ (k) . (k) (k)
O = J0AX Qg Qg — Y lag’l=0p, (2.6)
= j=k.j#i

for k =1,...,r. This pivoting strategy was suggested in [26] for matrices with other

structures and used for the first time in [33] for general row diagonally dominant
matrices. It is immediate to see that column diagonal dominance pivoting produces
a column diagonally dominant factor L. From an algorithmic point of view column
diagonal dominance pivoting is implemented by exchanging, before performing the

6



k-th stage of Gaussian elimination, the same row and column to place in the pivot
position (k, k) the maximal diagonal entry which is column diagonally dominant to
get (2.6). At the end, we obtain a row diagonally dominant factor U as usual and,
in addition, a column diagonally dominant factor L. Hence, by [26], the condition
numbers of L and U can be bounded as

Foo(L) € 12, koo(U) < 2n, k(L) < 2n, k1 (U) < n?. (2.7)

So, the LDU factorization of A arranged with the column diagonal dominance pivoting
strategy is always a RRD.

The proof of our main result hinges on Theorem 2.5 and several results for de-
terminants and minors of row diagonally dominant matrices that were proved in [11].
For completeness, we present two of these results here.

LEMMA 2.6. [11, Lemma 1] Let A = D(Ap,v) € R™ ™ be such that v > 0.
Denote the algebraic cofactors of A by Cy; := (—1)"" det A(i',5"), 1 <i,j <n. Then

det A = ’UlC” + ZUG’U‘CM + aijCl-j), 1= 1, BRI I
J#i
with ’UZC“ Z 0 and |a”\CM + aijCl-j Z 0 fOT’j 7& 1.

In [11], given a matrix A € R™*", the following notation was introduced for
simplicity

gD = det A([1 < k,p], 1+ k,q)), (2.8)

for1<k<n-—1and k+1<p,q<n. Note that all of the determinants appearing
in Theorem 2.5 and equation (2.5) are particular cases of the determinants defined
in (2.8). Lemma 2.7 establishes relationships that are utilized in section 3 to provide
perturbation results for nonprincipal minors.

LEMMA 2.7. [11, Lemma 6] Let A = D(Ap,v) € R™™"™ be such that v > 0. For
k=1,....n—=2,p#q, and k+1 < p,q < n, let G;; be the algebraic cofactor of
A([1: k,p],[1: k,q]) for the entry a;;. Then the minors defined in (2.8) satisfy

91(7];+1) = aple1 + -+ U:kapk + aqupq ) (2'9)
le()’;“) > |ap1Gp1| + -+ + apkGpi| + |apgGpql 5 (2.10)

and, for1 <i <k,

gz(JISH) =|vi+ Z laij| | Gii + Z (aijGij + laij|Gii) ,(2.11)
JE{1,. kq} J€{1,.. ka3 \{i}

2911(7];7+1) > | vit Z |aij| ‘Gu| + Z |aijGij + \aij|Gii| (212)
JE{1,..k.q} Je{l,....k,qa\{i}

3. Structured perturbation bounds for LDU factorizations of diago-
nally dominant matrices. We have explained in the Introduction that classical
perturbation bounds for the LU factorization as those presented in [2, 7, 13, 30] and
[20, page 194] are not useful for proving that the algorithm presented in [33] computes
an accurate LDU factorization of row diagonally dominant matrices. The reason is

7



that these classical bounds do not take into account the diagonally dominant struc-
ture and, as a consequence, they depend on the condition numbers of the factors and
may be very large.

For any row diagonally dominant matrix A, a stronger perturbation theory for
its LDU factorization has been presented in [11] and has been successfully used to
prove rigorously that the algorithm in [33] with complete diagonal pivoting computes
an accurate LDU factorization of A. The key components of this theory are to use
as parameters the diagonally dominant parts and the off-diagonal entries of A intro-
duced in Definition 2.2 and equation (2.1), and to preserve the diagonally dominant
structure for getting perturbation bounds which are independent of any condition
number and are always tiny for tiny perturbations. For completeness, we state the
main perturbation result in [11] as follows.

THEOREM 3.1. [11, Theorem 3| Let A = D(Ap,v) € R™*™ be such that v > 0.
Suppose A has LDU factorization A = LDU as in Definition 2.4 with L = [l;;] €
R™*", D = diag[ds,...,d,] € R™", and U = [u;] € R"*". Let A = D(Ap,d) €
R™ ™ be such that

- 1
[0 —v|<ev and |Ap— Ap|<e€lApl|, for some 0§e<2—. (3.1
n
Then A has LDU factorization A = LDU with L = [Zij], D= diag[d], .. .,(in], and
U = [@;4] and the factors L, D, and U satisfy,
(a) fori=1,...,n,

~ 2ne
di—di <7di;
| |_1—2ne
(b) for1 <i<j<n,
U-U
;i — uii| < 3ne, and wg?m%;
T Ul

(c) and, if A is arranged for complete diagonal pivoting, formn >i > j > 1,

- 3ne IL — Llso 3nZe
L. — .. < d < .
lij — L] < 1_ )y an Lo = 1—2ne

2ne

Observe that the assumptions v > 0 and 0 < ¢ < 1/(2n) < 1 in Theorem 3.1 imply
7 > 0, and, so, A is row diagonally dominant with nonnegative diagonal entries. In
plain words, this means that the perturbations of A considered in (3.1) preserve the
diagonally dominant structure. It is interesting to remark that the original statements
of parts (a) and (b) of Theorem 3.1 presented in [11] remain valid under the wider
assumption 0 < € < 1 at the cost of somewhat complicating the bounds.

The perturbation bounds for D and U in Theorem 3.1 hold in general, but the
bound on L only holds if the matrix A is arranged for complete diagonal pivoting.
This is a critical assumption for the proof of part (c) in Theorem 3.1. Indeed, [11]
provides an example where the perturbation of L may be of order 1 for very small € if
the complete diagonal pivoting strategy is not used. As discussed in Sections 1 and 2,
the complete diagonal pivoting strategy, although useful for almost all matrices, does
not guarantee a well-conditioned factor L and, therefore, it does not compute an LDU
factorization which is guaranteed to be a RRD. It is then essential to demonstrate
that a rank-revealing LDU factorization such as the one produced by the column
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diagonal dominance pivoting strategy is stable under the structured perturbations
considered in Theorem 3.1. The present paper proves precisely this, by showing that
a normwise perturbation bound on L similar to that in Theorem 3.1(c) holds when
column diagonal dominance pivoting is used. This is the main result in this paper
and is stated in Theorem 3.2.

THEOREM 3.2. Let A =D(Ap,v) € R™*™ be such that v > 0. Suppose that A is
arranged for column diagonal dominance pivoting and hence has LDU factorization
A=LDU. Let A=D(Ap,v) € R™™ be such that

0 —v|<ev and |Ap— Ap|<elAp|, for some 0<e< (3.2)

12n+1"

Then A has LDU factorization A = LDU, parts (a) and (b) of Theorem 3.1 hold,

and, in addition,

IL— L) < 2n(dn—1)e
=

—(12n+1)€’ (3:3)

Observe that |[L||; > 1 and, as a consequence, the absolute normwise bound
in (3.3) immediately implies that the same bound holds for the relative variation
|L—L|j1/||L||1. The assumption 0 < € < 1/(12n41) in Theorem 3.2 implies that the
bound in (3.3) is well-defined. The rest of this section is devoted to prove Theorem
3.2. Clearly, as a consequence of Theorem 3.1, we only need to prove (3.3), but
this requires considerable efforts and the development of several auxiliary technical

lemmas in advance. These lemmas may be also of interest for other purposes, and are
presented in Section 3.1 together with the proof of Theorem 3.2.

3.1. Auxiliary lemmas and proof of Theorem 3.2. As part of the proof of
Theorem 3.2, we need to consider auxiliary perturbations that are more general than
those in (3.2). More precisely, for a fized p, the p-th column of A will be perturbed in
the particular way appearing in (3.5). In addition, in the first part of this section the
perturbation parameter € can be considered to satisfy 0 < e < 1 and A can be any row
diagonally dominant matrix. Only at the end of this section it will be imposed that
A is arranged for column diagonal dominance pivoting. Next, we consider matrices
A = [a;j] = D(Ap,v) € R™™ with v > 0, and A = [a;] = D(Ap,d) € R™ " that
satisfy, for 0 <e < 1,

[0 — | < ev, (3.4)
|Gip — aip| < €(v; + |agp|), forie{l,...,n}\{p}, and (3.5)
|@ij — aij| < €lai;|, fori#j, ie{l,...,n}, je{l,...,n}\{p} . (3.6)

This generalized perturbation can be equivalently expressed as

0; = vi(1+ ¢;), with |¢;| <e, forie {1:n}, (3.7
aip = aip(1+ </>;p)+ bip vi, wWith |¢i,] <€, ¢;p: dipsign(aip), for ie {1 : n}\{p}, (3.8)
aij = ai; (1 + ¢ij), with |¢;;| <€, fori#j,ie€{l:n}, je{1:n}\{p}. (3.9)

Observe that from (3.4), we obtain again that o > 0 holds and, so, this generalized
perturbation also preserves the row diagonally dominant structure, as well as the
nonnegativity of the diagonal entries.



Our first lemma generalizes [11, Lemma 3] to include the generalized perturbation
defined in (3.4)-(3.5)-(3.6).

LEMMA 3.3. Let A = D(Ap,v) € R™ " be such that v > 0 and let A =
D(Ap,d) € R™*™ satisfy (3.4)-(3.5)-(3.6) with 0 < € < 1. Suppose All = D([l[[i)],f)[i]) €
R™ ™ 4s a matriz that differs from A in only the ith row and whose ith row is the
same as the ith row of A. Then

det Al = (det A)(1 4 m;), where |n;| < 3e. (3.10)

Proof. Let A = [aj], v = [v;], A = [a;x], and & = [#;]. We consider the

cofactor expansion of det Al across row i. Let Cy; be the algebraic cofactor of Al
corresponding to dEZj] and Cj; be the algebraic cofactor of A corresponding to a;.
Then, Cy; = Cjij. We need to discuss two cases separately.

Case 1: i = p. By Lemma 2.6, we have

det AlP) = f}pépp + Z(|&pj|épp + Zijépj) = 0pChp + Z(|apj|cpp + dpjcpj)
J#p J#p

and a similar equation for det A. Lemma 2.6 further implies that v,Cp, > 0 and
lap; |Cpp + apjCpj > 0. Using (3.7) and (3.9), we obtain

det AP = det A + ¢v,Crp + > bp; (|ap; |Cp + 0 Chj).
J#p

It follows that

| det AlP) — det Al < |@plvpCpp + Z 1Dl (lap;|Cpp + ap;Cpj)
J#p
< evpChp + Z €(lap;|Cpp + ap;Cpj)
J#p
=edet A,

which proves the lemma for this case.
Case 2: i # p. We again use Lemma 2.6, (3.7), (3.8), and (3.9) to obtain

det AU = 5:Cis + ) _(1a35|Cii + ;i)
JFi
= 0;Cy + |ip|Cii + @ipCip + Z (|aij|Cis + @i Cij)
J#i.p
= v;Cii + vi9:iCii + |aip|Cii + aipCip + aip®7,Cip + dipviCip
+ 3 (laij|Cii + aijCij) + Y ij (Jaij|Chi + aiCij) . (3.11)
J#i.p J#i.p

(From (3.8), we have

laip|(1+ ¢7,) — €vi < aip| < laip|(1 4 ¢f,) + evi, (3.12)
10



and hence, from (3.11), Lemma 2.6, and |C;p| < Cj; (see Theorem 2.3(e)),
det A > v,Cy; + v;6,Cii + |aip|Cis + |aip|¢);pci’i —€ev;Cii + aipCip + aipgb;pcip
+ip0iCip + Y (layg|Cii + aiCij) + Y ¢ij (laiy|Cii + ai;Ciy)
J#i,p J#4,p
=det A + ¢;v;Cy; + ¢;p(|aip\cii + aipCip) — €v;Cii + dipvi Cip
+ > ¢4 (laij|Cii + ai;Cyy)
J#i,p
Z det A— GUZ'C”' — e(\aip|0ii + aipCip) — EUZ'C”' - 61}1‘0“'
—e > (layj|Cii + ai;Cij)
J#4,p
=det A — 361}1‘0“' — € Z (|aij|C'ii + aijC’ij)
i
>det A — 3edet A.
Similarly,
det A[Z] < v;Cy + 'UZ¢ZC“ + |a2p|C” + |a1p|¢;pC” + ev; Cy; + aipCZ-p + aipgbngip
+¢ipviCip + Z (laij|Cii + ai;Ciz) + Z ¢ij (Jaij|Cii + ai;Cij)
J#i,p J#i,p
< det A+ ev;Cy; + e(\aip|Cii + aipCip) + ev; Cy; + €'Ui|cip‘
+e Z (lai;j|Cii + ai;Csj)
J#i.p
< det A + 3ev;Cy; + € Z (lai;|Cii + ai;Cij)
i
< det A + 3edet A.
Thus,
|det A — det A| < 3edet A4,

which proves the lemma. O

Lemma 3.4 below uses Lemma 3.3 to present a similar perturbation bound for
the principal minors of a row diagonally dominant matrix under the structured per-
turbations defined in (3.4)-(3.5)-(3.6). It generalizes [11, Lemma 4] to this type of
perturbations.

LEMMA 3.4. Let A = D(Ap,v) € R™™ be such that v > 0 and let A =
D(Ap,0) € R™™ satisfy (3.4)-(3.5)-(3.6) with 0 < e < 1/2. Suppose All = D(/Nl[g,ﬁ[i])
€ R™ ™ is a matrixz that differs from A in only the ith row and whose ith row is the
same as the ith row of A. Let 1 <iy < iy < --- < ig <n and a = {i1,i2,...,iq}, and
recall that A(a, o) denotes the principal submatriz of A that lies in rows and columns
indexed by o. Then

< det A if i
det Al (1, ) = 4 9° (o, ), o Zfl ¢ o, (3.13)
(det A(ev,@))(1+6,), ifi€a,
where |5§a)| <6eifp ¢ o and \5§O‘)| < 3¢ if p € a. Furthermore,
det A(a, @) = (det A(a, a))(1 + i) - (1 + (™), (3.14)

11



where |77,(€a)| <6eifp ¢ aand |7],(€a)| <3eifpea, fork=1,...,q
Proof. We prove first (3.13). Assume i € «, otherwise the result is trivial. Since

A = [a;)] and Al = [dﬂ] are row diagonally dominant with nonnegative diagonal
entries, then so are A(a, a) and Al (a, ). Hence, we can parameterize them in terms
of their diagonally dominant parts and off-diagonal entries. Let

A(a,a) = D(Ap(e,a),w) and A(a,a) = D(AH(a, ), @),

where w = [w;], Wl = [’UNJJM] € R?. For simplicity, the entries and diagonally dominant
parts of A(a,a) and AlY(a, ) are indexed with the indices iy, s, ... ,ig in a. Let
v = [v;] and 9l = [17;1}]. Let us compare the diagonally dominant parts of A(a, )

and All(a, a). To this purpose observe that w; = w[ Tifjea \ {i},
wi=ag— Y agl= v+ lagl| = D lagl=vi+Y lail, (3.15)
jea\{i} J#i jea\{i} J¢e
and, similarly, QDZM = ﬁl[i] + Z \dZ] |. Thus, we have

iga

@~ wil = (o = v+ 3 (18]~ laws]) | < 2
Jj¢a j¢a

i) (3.16)

— Qg5 -

If p € o, then (3.4) and (3.6) imply
|1I}Z[Z] —’LUZ" S E’UZ'+Z€|G,U| =€ ’UZ‘+Z|G,U| = E€Ww;.
jga j¢a

Since w; > v;, by (3.15), the off-diagonal entries of All(a, ) and A(a,a) satisfy
conditions (3.5)-(3.6) for their parameters. Therefore, we can apply Lemma 3.3 to
All(a, @) and A(a, @) to obtain that, if p € a, then

det Al (a, o) = (det A(er, a))(1 + 6

with |§EQ)\ < 3e. If p ¢ «, then, from (3.16) and (3.4)-(3.5)-(3.6), we get

ot —wi| < B —wil + Y |al] — aiy| + laly) — ai]
J¢a,j#p
Sevit Y elaij] + e(vi+ |aip))
J¢o,j#p
= 2ev; + Ze|aij| < 2ew; .

iga

Again, the off-diagonal entries of AlY(a, ) and A(a, ) satisfy (3.5)-(3.6) for their
parameters. So, we can apply Lemma 3.3 to All(a,a) and A(a,a), but this time
with e replaced by 2e, which requires 2e < 1, to obtain

det Al (o, ) = (det Ao, @))(1 + 51((1))
12



with |6§a)\ < 6¢, for p ¢ a. This proves (3.13).

Finally, we prove (3.14). To this purpose, consider that the perturbed submatrix
A(a, @) can be obtained from A(a,a) by a sequence of “only one row” at a time
perturbations. By (3.13), each of these “only one row” perturbations produces a
determinant that is equal to the determinant before the perturbation times a factor
1+4n, with |n] <6eif p¢ a and |n| < 3eif p € . O

Lemma 3.5 considers the variation of certain nonprincipal minors of a row diag-
onally dominant matrix A under the structured perturbations defined in (3.4)-(3.5)-
(3.6). Observe that the last row of these minors corresponds precisely to the fixed
index p appearing in (3.4)-(3.5)-(3.6). In Lemma 3.5, the minors of A that are of
interest are denoted as in (2.8), that is,

gk = det A([1: k,pl, 1+ k. q)), (3.17)

for1<k<n-—1and k+1<p,q<n. We also denote by (g[i]);’;“) and Q](DIZH) the
corresponding minors of the perturbed matrices Al and A, respectively, which were
defined in Lemmas 3.3 and 3.4.

LEMMA 3.5. Let A = D(Ap,v) € R™™ be such that v > 0 and let A =
D(Ap,0) € R™™ satisfy (3.4)-(3.5)-(3.6) with 0 < e < 1/2. Suppose All = D(/Nl[g,ﬁ[i])
€ R™ "™ is a matrixz that differs from A in only the ith row and whose ith row is the
same as the ith row offi. Let 1 <k<n-2k+1<pqg<n, and p # q, where
p is the fized index in (3.4)-(3.5)-(3.6). Then, the following statements hold for the
minors in (3.17):

@ [(F) 5 g

. {o, ifig{1l:kp}

pq P 4691(;];+1), ific{1:kp}
N 4
(b) ’!JSZH) _ gél;+1)’ <3 (14 368+t — 1) glk+D),
Proof. Let A = [aj], A = [a}], A = [a;), v = [v], 9 = [0}], and & = [5,].

We prove first part (a) for ¢ € {1 : k,p}, as the case i ¢ {1 : k,p} is trivial. For
j €{1:k,q}, let G;; be the algebraic cofactor of A([1: k,p|,[1 : k,q]) for the entry

a;j, and note that this is also the algebraic cofactor of AU([1 : k,p],[1 : k,¢]) for the
(4]

ij -

If 1 <1i <k, applying Lemma 2.7 yields

entry a

_rin\ (B D) i i i i
(g[ ]) =|a+ 3 @l e+ > (agj]Gij + al] |Gii)
ba i {1:k,q} je{lik,a\{i}

= v+ Z |aij| | Gii + |aip| G + Z (@ijGij + |aij|Gii) -
J¢{1:k,p,q} Je{1:k,q}\{4}

Similarly, we have

gt =i+ Y layl | GatlaplGu+ DY (G + |ai|Ga) .-
J¢{1:k,pq} JE{1:k,q}\{3}
13



Using (3.7) and (3.9), we can write

Ly D)
(9[]) =gl (vigi+ > dijlayl | Ga
pq j¢{1l:k,p,q} (318)
+ Y by (G + lay|Ga) + (] — laip])Gi -
Je{1l:k,q}\ {4}

Therefore, using (3.5), we get

N\ (k+1)
~m) _ (k1)
‘(9 - 9pq

<e

vit Y aygl ] |Gl

J¢{1:k.p.q}

+ Y ay Gy + lai| Gl + laipl|Gil + vil Gl
J€{1l:k,q}\{3}

<2 | |vit D> lagl | 1Gal+ > aiGij + |ai| Gl
J¢{1:k,q} JE{1:k,q}\ {3}
< deglity)

where Lemma 2.7 has been used in the last inequality. This proves part (a) for
1<i<k.
Now, for ¢ = p, use Lemma 2.7 and (3.9) to obtain

(k+1)
()= Y o, = Y a0+ 0,0,

rq

je{l:k,q} j€{1l:k,q}
= Z ap;Gpj + Z Ppjap;Gp; :gz(jéﬂ) + Z Ppjap;Gpj -
je{l:k,q} je{l:k,q} je{l:k,q}
Thus,
o (B
(@) -l < S lanGul < sy B9
b jE{1l:k,q}

where Lemma 2.7 has been used again in the last inequality. This proves part (a) for
i = p and completes the whole proof of this part.

For part (b), consider obtaining A from A by a sequence of only one row at a time
perturbations. Note that each matrix in this sequence is row diagonally dominant

with nonnegative diagonals. The variation in g,(,’;H) is a consequence only of the

perturbations of rows with indices in {1 : k,p}. Let « be a subset of {1 : k,p} and
denote by (ga);’;“) the minor corresponding to a matrix obtained from A through
perturbations in the rows with indices in « only. Thus

(k+1)
~(k+1 k41 ~{1:k, k41
gz(nz )_gz(oq )’ ’(9{ p})pq _gr(lq )
(k+1) (k+1) (k+1)
~{1:k, ~{1:k ~ k
Pgq Pq Pq

14



Apply part (a) to each term in this sum to obtain,
i ) (k+1)
~(k+1) _gz()lte]+1)‘ < de [(g{m})

9pq +ot 91(7];7+1)

pp

and then apply Lemma 3.4 to each term in the sum above to get

(k+1)

4
~(k+1) _gz()lg+1)‘ <4e[(1+3e)F +---+1] glk+1) — 5 (1 +3e)k+1 — 1) gtk

gpq pp

0

Lemma 3.6 below is the key lemma towards the proof of our main result, i.e.,
Theorem 3.2. Lemma 3.6 considers row diagonally dominant matrices A and A satis-
fying the standard perturbation (3.2) and constructs from them, via some elementary
column operations, two new row diagonally dominant matrices with nonnegative di-
agonals B and B € R#+2)x(*+2)_ Furthermore, Lemma 3.6 proves, after considerable
effort, that B and B satisfy the generalized perturbation (3.4)-(3.5)-(3.6). We warn
the reader that the proof of Theorem 3.2 relies in applying Lemma 3.5 to the matrices
B and B. As B is constructed from A, we label the k + 2 rows and columns of B
using the indices {1 : k, p, ¢}. While not traditional, this labeling is useful because we
can easily compare entries in B to entries in A. Thus, the (k + 1)th row and column
of B correspond to the pth row and column of A and similarly the (k + 2)nd row and
column of B correspond to the gth row and column of A. Note also that in Lemma
3.6 the condition € < 1/5 is imposed with the only purpose of guaranteeing 6 < 1/2
in (3.23)-(3.24)-(3.25), which is necessary to apply Lemma 3.5 to B and B.

LEMMA 3.6. Let A = [a;;] = D(Ap,v) € R™™ be such that v > 0 and let
A =[a;j] = D(Ap,©) € R™" be a matriz that satisfies

- 1
[0—v|<ev and |Ap— Ap|<e€lAp|, forsome 0<e< £ (3.20)

Let A+ — [agfﬂ)] € R™ ™ be the matriz obtained after k stages of Gaussian elim-
ination have been performed on A and, for a fized index p such that k+1 < p <mn, let

s = sign(az(f;ﬂ)) forj=1,...,n. Let 1 <k <n—2 and let B = [b;;] € RFE+2)x(k+2)

be a matriz whose rows and columns are indexed by i,5 € {1,2,--- ,k,p,q} and is
defined as follows

bij = aij forie{l:k,pq}t andje{l:kq}
bip = aip — > sjaii, forie{l:k,p,q} (3.21)
J#{1:k,p,q}
Similarly, let B = [l;ij] e REFDx(k+2) pe defined by
bij = i , forie{l:kpq}t andje{l:k,q}
bip=aip— 3 sjay, forie{l:k,p.q} . (3.22)
JE{1:k,p,q}

Then B and B are row diagonally dominant matrices with nonnegative diagonal
entries. In addition, B and B can be parameterized as B = D(Bp,w) and B =
D(Bp,w) and satisfy

[ —w| < dw, (3.23)
|Bip —bip| < 6(w; + |bipl), forie{l:k,q}, and, (3.24)
|l~7ij - b2]| S 5|blj|7 fOT‘ { 7é j: 1€ {1 : kap7 q}) .7 € {]- : kvq}a (325)
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2e
1—¢€
Proof. Using that A is row diagonally dominant and has nonnegative diagonal
entries, we have for i € {1: k, ¢}

where § =

> bijl = > bl b= > agltlap— > sja

Je{1l:k,p,a}\{i} Je{1:k,q3\ {4} J€{1:k,q}\ {4} J¢{1:k,p,q}
< Z |aij| + laip| + Z |agj| :Z|aij| < ai = bi;,
j€{1l:k,q}\ {3} J¢{1:k,p,qa} J#
and, for i = p,
Z |bps| = Z lap;| = Z|apj| - Z |ap;]
je{l:k,q} je{l:k,q} J#p jg¢{l:k,p,q}
< Z |ap;| — Z Sjapj < App — Z Sjapj = bpp .
i#p J¢{1:k,p,q} J¢{1:k,p,q}

Hence, B is row diagonally dominant with nonnegative diagonals. Using the same
argument, the row diagonal dominance of A, and a;; > 0, we can show that B is row
diagonally dominant with nonnegative diagonals as well. Thus, we can parameterize
B and B in terms of their diagonally dominant parts and off-diagonal entries. Let
B = D(Bp,w) and B = D(Bp,w) with w = [w;] and @ = [&;] € R¥*t2. Now, note
that, for i € {1: k,p,q}, j € {1: k,q}, and i # j, we have

[bij = big = lai; — asj| < €lai;] = elby],

and, for i € {1:k,q} and j = p, we use |a;p| < |a;p| + v; to get

bip = bipl = || @ip— D sy |~ |ap— Y sjay

J#{1:k,p,q} J#{1:k,p,q}

<lap —apl+ Y i —ayl <ellapl+v)+e Y lay]

J¢{1:k,pq} Jj¢{1:k,p,q}
=e| > laglto] =l D lagltai— Y lagl
J¢{1:k,q} J#{1:k,q} J#i

=claw— > lagl|=elbu— D |byl
Je{l:k,q}\{i} Je{l:k,q}\{i}

=€ | bi — Do il bipl | = elwi + [bi)).

Je{1l:k,p,q}\{i}

Thus, we have proved (3.24)-(3.25) for the off-diagonal entries of B and B. Now we
16



focus on the diagonally dominant parts. Let ¢ € {1: k, ¢} and observe

w; = by; — Z |bij| = b — Z |bij| — [bip|

j€{Ll:k,p,a}\{i} Je{Lk,qi\{i}

= Q4 — Z |aij| — |aip — Z 5jQij
Je{Llk,ab\{i} J¢{1:k,p.q}

=vi+ Y lagl—lap— Y sjay
JE{1:k.q} J¢{1:k,p,q}

—vit+ D> lagltlal—lan— D say)
jg{l:k)p)q} j%{l:lﬁpyq}

Similarly, we have

w; = v; + E ‘C~lU| + \&zp| — Elip — E SjCNLij .
J¢{1:k,p,q} J¢{1:k,p,q}

Next, we will consider two cases.

(3.26)

(3.27)

Case 1: sign (aip — > sjaij> = sign (inp — > sjdij> =: 0. Then,

J¢{1:k,p,q} J¢{1:k,p,q}

W=ty agl+lapl -0 [an - Y san

J¢{L:k,p,q} J¢{1:k,p,q}

=0+ > lagl+lal —0a,+6 Y say
J¢{1:k,p,q} J¢{1:k,p,q}

=i+ > ag|(1+ 0s;sign(ais)) + |ai| (1 — Osign(ai,))
J¢{1:k,p,a}

=i+ > lag|(1+0s;sign(ai;)) + | (1 — Osign(asy)),
J¢{L:k,p,q}

where we have used that sign(a,;) = sign(a;;) for all j # 4. Similarly, we have
wi=vi+ > lag|(1+0s;sign(ay)) + lagp|(1 — Osign(as,))
Jj¢{l:k,p,q}
and, hence,
‘ﬁ)i - w,l < |1~}1 - Uil + Z ‘dU - aij‘(l + Qsjsign(aij))

J¢{1:k,p,q}

+|C~Lip — aip‘(l — Gsign(aip))

<ev;t+e Z lai;|(1+ 0s;sign(a;;)) + €laip|(1 — O sign(aip))

J¢{1:k,p,a}
< €W .
17
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Case 2: sign (aip —

>

sjaij> # sign (&ip —
J#{1:k,p,q}

2

sjaij>. In this case,

J¢{1:k,p,q}
Gip— Y 8| T |aip > siay
J¢{1:k,p.q} J¢{1:k.p.q}
=law- D sy ap— Y say
J¢{1:k.p,a} J¢{1:k,p,q}
<laip —aip| + Y |aiy — agl
J¢{1:k,p.q}
< €laip| + € Z lai;!, (3.29)
J#{1:k,p.q}
which, combined with (3.26) and (3.27), yields
s —wil = || B+ Y lagl—|ap— D sjdy
J¢{1:k,q} J#{1:k,p,q}
— | v; + Z |a1‘j| — |Gip — Z S]‘aij‘
JE{L:k,q} J¢{1:k,p,q}
<loi—vil+ > | — lall
J#¢{1:k,q}
Hlap— Y sdi|tlap— Y sjag
J¢{1l:k,p,q} J¢{1l:k,p,q}
S €V; + € Z |CLij| + € Z |CL¢j|
JE{1:k,q} JE{1:k,q}

<2 vt Y layl (3.30)

J#{1:k,q}

So, from (3.26) and (3.29),

Yoo s vt Y lagl—e > ayl

w; = v; + Z laij| — |aip —

J#{1:k,q} J¢{1:k,p,q} JE{1:k,q} J¢{1:k,q}
>(1-€|vit Y layl
JE{1:k,q}
Combining this inequality and (3.30), we have
2e
D; — w;| < i 3.31
s~ wil < (3.31)
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The inequalities (3.28) and (3.31) prove the bound (3.23) for w; with ¢ € {1 : k, ¢}.
Finally, we prove (3.23) for ¢ = p. Note that

wp = bpp — Z |bpj| = app — Z Sjlpj — Z |ap;]

Jj€{1l:k,q} Jj¢{1l:k.p,q} j€{l:k,q}
:”p+2|apj| - Z Sjapj — Z |ap|
J#p J¢{1:k.p,q} j€{1l:k,q}
=vp+ Z |ap;| — Z Sjapj = Vp + Z (laps| — sjap;)
J¢{1:k,p,q} i¢{1:k,p,q} J¢{l:k,p,q}
=Up+ Z |ap;|(1 — s;sign(ap;)) -
7¢{1:k,p,q}

Similarly, we have

Wy = Up + Z |ap;| (1 — s;sign(ap;)) = vp + Z |ap;|(1 — s;sign(ap;)) ,
J¢{l:k,p.q} J¢{1:k.p,q}

since sign(a,;) = sign(ap;). Thus,

Wy — wp| < |Tp — vp| + Z |Gpj — ap;|(1 — s;sign(ap;))
J¢{1:k,p,q}

Sevpte Z |ap;|(1 — s;sign(ap;)) = ewp .
J¢{1:k,p,q}

2
So, we have that |w; — w;| < 17611)Z for all : € {1: k,p, q}. Lemma 3.6 is proved. O
—€

The next lemma relates one of the minors of the matrix B defined in Lemma 3.6
with one minor of A. In the statement, we use the notation introduced in (2.8).
LEMMA 3.7. Let A and B be defined as in Lemma 3.6 and define

(95) % = det B([1 : k,p], [1 : k. p]) .

Then, we have
(a) If ggz) £0, let AFTD = [al(f+1)] be the row diagonally dominant matriz with
nonnegative diagonal entries obtained after k stages of Gaussian elimina-
tion have been performed on A, and let A*TY) be parameterized as AR+ =
DAYy E+1) ith ¢+D = [p D] Then,

k k
(gB)](ng) _ (UI(JkJrl) T ‘az(z]fzﬂ)‘) a®.

(b) Ifg,(je) =0, then (gB)I()];H) =0.
Proof. Observe that B([1: k,p],[1: k,p]) and A([1: k,p],[1: k,p]) have columns
1 through £ equal and for the last column, we have

B([L:k,pl,p) = A([L: k,pl.p) — > s;A([L:k,pl.j).
i¢{1:k,p,q}
Using the fact that the determinant is a linear function of any of its columns, assuming
that the remaining columns are fixed, we obtain

(95)0 ) = det A([L < by pl, [1: kopl) = Y sjdet A([L: k,pl,[1: k. j]) .
JE{1:k,p,q}
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1t g% = det A(1: k,1: k) # 0, then

(k+1) _ (k) det A([1: k,pl,[1: k,p]) det A([1: k,p], [1: K, j])

(98)p " = I det A(1: k,1: k) , 2 g Ak, 1:k)
J¢{1:k,p,q}

By (2.5),

k+1 k k+1 k k+1
O e N D DI eVl D DI

J¢{1:k,p,q} J¢{1:k,p,q}
Since, a;’;H) =0for 1 <j <k, we get
k k k+1 k
(gB)éerl) _ g£k> a,(JZH) _ Z Ia;fr )| 4 ‘a](jl(c1+1)‘ _ g](dg (v](?kﬂ) I ’ag;H)D 7

J#p

which proves part (a). Next, we prove part (b). If g,(;,? =det A(1: k,1:k) =0, then
one of the pivots a%), for 1 < j < k, in the Gaussian elimination for A must be 0.
Since AU is still row diagonally dominant, then the jth row of AY) must be entirely
0. Then applying j — 1 stages of Gaussian elimination to the row diagonally dominant
matrix B([1 : k,pl],[1 : k,p]) produces also a zero jth pivot and the jth row is also
entirely 0. Hence (gB)g;H) =det B([1: k,p],[1:k,p])=0.0

Lemma 3.8 establishes a perturbation result for the nonprincipal minors defined in
(2.8) under the standard perturbations defined in (3.2). This lemma is a consequence
of the considerable effort we have done so far on studying structure perturbations of
minors of row diagonally dominant matrices. Lemma 3.8 presents a different bound
that the one in [11, Lemma 7(b)]. This will allow us to prove Theorem 3.2.

LEMMA 3.8. Let A = D(Ap,v) € R™ " be such that v > 0 and let A =

D(Ap, o) € R™*™ be a matriz that satisfies
- 1
[0 —v|<ev and |Ap— Ap|<e€lAp|, for 50m60§e<g, (3.32)

Let 1<k<n-—-2k+1<p,q<n, and p # q. Then, we have
(a) If giy) # 0, let AWV = [l V] = DALY w(40)), with v+D = D),
be the row diagonally dominant matriz with nonnegative diagonal entries ob-
tained after k stages of Gaussian elimination have been performed on A. Then

~(k+1) (k+1)’ < 4

k k k k)
9pa "~ Ipq 3 (1 +e0) " —1) (”1() ot ‘az(JqH)D I

Ge

where €y = T

pa— 6 :
k ~(k+1 k+1
(b) If gy =0, then gog™ = gy = 0.
Proof. Suppose gl(clz) # 0. Define B and B as in Lemma 3.6. By (3.23)-(3.24)-
(3.25), we can apply Lemma 3.5 to the minors of B and B defined in (3.17) to obtain

(k+1) (3.33)

G)5 — (95) 0] < 5 (130 1) (g)%

Pq Pq =3
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with & = 2¢/(1 — €). By the construction of B and B, we have
(gB)](ng) g(k+1) and (93)1()];“) _ gI()I;Jrl),
and hence, from (3.33),

(k+1) _ (k+1)’

9pq

w\»n

((1438)M1 — 1) (gp) D (3.34)

’g pp

Next, apply Lemma 3.7(a) to get

4
“““)‘ < 5 (439 —1) (vz(,kﬂ) + a,g';+1>\) .

k+1
Glk+1) _ gk

9pq

which proves part (a).

Next we prove part (b). We have seen in the proof of Lemma 3.7 that g,(c],? =0

implies that one of the pivots a(J ) (for 1 < j < k) in the Gaussian elimination for A

must be 0. Since AY) is still row diagonally dominant, the jth row of AY) must be
entirely 0. Then applying j — 1 stages of the Gaussian elimination to A([1 : k, p], [1

k,q]) produces a jth row which is entirely 0 and hence g,(,kﬂ) = 0. Furthermore, by

equation (3.14) in Lemma 3.4, we have that g,gk) 0 implies g,(ck) = 0 and the same

argument we have used above for A can be used on A to prove g,(,q Y=o0.0

The results presented so far in Section 3.1 are valid for general row diagonally
dominant matrices with nonnegative diagonal entries. From now on, we assume that
the unperturbed matrix A is arranged for column diagonal dominance pivoting. This
allows us to bound the sum of the absolute values of the entries below the diagonal
of each column of the L factor in terms of the diagonally dominant parts of the
corresponding Schur complement and the corresponding pivot, as seen in Lemma 3.9.

LEMMA 3.9. Let A = D(Ap,v) € R™™ ™ be such that v > 0 and assume that
A is arranged for the column diagonal dominance pivoting strateqy. Let A% =
D(Ag),v(k)), with A®) = [agf)] and v(F) = [vgk)], be the row diagonally dominant
matriz with nonnegative diagonal entries obtained after k — 1 stages of Gaussian
elimination have been applied on A. Then, for k < rank(A), we have

i (|a e |+v(k)> (n—k) a,(clz).

i=k+1

(Z3

Proof. According to (2.6), define 65“ = a\l) — > |a(-]f)|. Then, we have
ki
aék) = max {a(-l-c) L5 > O}.
k<i<n
Iféfk) >0foralli=k+1,...,n, then
n n
> (W1+00) < 3 < 3 ol < (0 k)
1=k+1 i=k-+1 1=k+1

which proves the result in this case. Otherwise, if there is at least one 5§k) < 0 for

some i = k+1,...,n, then from the definition of vgk) we obtain for k+1<:<n
k k k k
a1+l =al? = 3 Jail
j=k+1,5#i
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and sum over ¢ to obtain,

M (CAETDEI SRS SEED DT IED SRS SEDS

i=kt1 i=kt1 =kt 1 =kt 1,j i i=kt1 =kt 1 =kt 1, i
k k (k k k
3 [w- 3 ) -3 (-3 e
i=k+1 J=k+1,j#i i=k+1 j=k,j#i
n
= 3 (W ) <o+ 30 o
i=k+1 i=k+1
n n
e 3 e 3
i=k+1,6{" 20 i=k+1,6>0

n
<ap)+ > al) <al)+(n-k-1)al)
i=k+1,6%>0

=(n—k)al,

since for 5i(k) >0, 51(@ < agf) < a,(;z). O

Finally, we are now ready to present the proof of Theorem 3.2.

Proof of Theorem 3.2. As a consequence of Theorem 3.1(a), we have rank(A4) =
rank(A). Therefore, from Definition 2.4, it is observed that we only need to pay
attention to the variation of the strictly lower triangular entries of L in its first r :=
rank(A) columns. Using (2.2), Lemma 3.8(a) with p =4, ¢ = j and k = j — 1, and
[11, Lemma 4(b)], we have for i > jand 1 <j <r

~ 1
o0 o+ axe? +laPhe (3.35)
1] - .
i efra) -0+
where |¢1] <ee,...,|¢| <€ and [x]| < ((1+€)? —1). Define
C . 1 _
- (4G (14 G)
1
and note [¢| < A=~ 1. Hence, from (3.35) and (2.5),
—€
4.,0,,0) (@) 4 (@)
. ax( +la’l) - X1+ QY + |af )
lij = <l” -+ —a(j) J (]. +C) and lij 7l1'j = Cl” -+ (])
Ji ajj
Taking the absolute value gives
; (v +1a])
s~ 5] < Il + 3l + (1
a
33
and then summing over ¢ yields
0 " ) 2 0+ o)
Z |lij — liz| < [C] Z |lz‘j|+§|x||1+d ~ ) : (3.36)
i=j+1 i=j+1 a5;
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By assumption A is arranged for column diagonal dominance pivoting, which means
that the matrix L is column diagonally  dominant, that  is,
Z?:H_l |l;;| <1 for all j. Use this fact and Lemma 3.9 in (3.36) to get, for 1 < j <,

no 4 ~DaW 4
Dol =gl < 1¢+ 3 IXIIL +¢] % =1l + 5 =DxI[1 +¢]
i=j+1 @y
1 4 n 1

n(dn — 1)eg 2n(dn—1)e

~3(1-2ne) 1—-(12n+1)€’

where we have used € < ¢y = 6¢/(1 — ¢), standard results from [20, Ch. 3], and
(I12n+ 1) e < 1. Theorem 3.2 follows from observing that

n
IL— Ll = | Z |lij = lig]. O
1=7+1

4. Conclusions and future work. We have proved that small relative pertur-
bations in the diagonally dominant parts and off-diagonal entries of row diagonally
dominant matrices with nonnegative diagonal entries produce small relative normwise
perturbations in the L factor obtained by applying the column diagonal dominance
pivoting strategy to this type of matrices. This result can be combined with the
perturbation results for the D and U factors presented in [11] to prove that the
column diagonal dominance pivoting strategy for row diagonally dominant matrices
leads, simultaneously, to LDU factorizations that are guaranteed to be rank reveal-
ing decompositions, i.e., the factors L and U are guaranteed to have small condition
numbers, and that always undergo small relative perturbations under small relative
perturbations in the diagonally dominant parts and off-diagonal entries. The pertur-
bation results presented in this paper are fundamental to prove in [8] that essentially
all interesting magnitudes corresponding to row diagonally dominant matrices un-
dergo small relative perturbations under small relative perturbations in the diagonally
dominant parts and off-diagonal entries and, therefore, that these magnitudes can be
computed with high accuracy by algorithms based on rank revealing decompositions
[5, 9, 12, 14, 33].
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