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Abstract

We consider an alignment algorithm for reconstructing global
coordinates from local coordinates constructed for sections of
manifolds. We show that, under certain conditions, the align-
ment algorithm can successfully recover global coordinates
even when local neighborhoods have different dimensions.
Our results generalize an earlier analysis to allow alignment
of sections of different dimensions. We also apply our result
to a semisupervised learning problem.

Introduction

Manifold-based nonlinear dimensionality reduction has at-
tracted significant research interests in recent years. Math-
ematically, it can be described as follows. Consider a d-
dimensional parameterized manifold M embedded in R

m

(d < m) characterized by a nonlinear mapping, f : C ⊂
R

d → R
m, where C is a compact and connected subset of

R
d. Here R

m represents the high-dimensional data space
and R

d represents the low-dimensional parameter space.
Given a set of data points x1, · · · , xN ∈ R

m with

xi = f(τi), i = 1, . . . , N, (0..1)

where τi ∈ C, the problem of dimensionality reduction is
to recovery low dimensional coordinates (parameterization)
τi’s from the xi’s. For the theoretical purpose, we con-
sider noise-free date (0..1) and we follow Donoho and Grimes
(Donoho and Grimes 2003) to assume that f is a local isom-
etry.

Since the publications of LLE (Roweis and Saul 2000)
and Isomap (Tenenbaum, de Silva, and Langford 2000), sev-
eral competitive algorithms have been proposed for non-
linear dimensionality reduction, which include Laplacian
Eigenmap (Belkin and Niyogi 2002), Hessian Eigenmap
(Donoho and Grimes 2003), and LTSA (Local Tangent
Space Alignment) (Li, Li, and Ye 2004) among many others;
see (Saul et al. 2006) for a thorough review. One idea under-
lying several of these methods is to reconstruct global coor-
dinates τi from their local relations as defined by data points
in a small neighborhood. For example, the LTSA method
(Zha and Zhang 2005) constructs global coordinates through
first constructing and then aligning local coordinates.
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One common assumption for methods based on local re-
lations is that the underlying manifolds for the local neigh-
borhoods (or the sets of local points) all have the same
dimension d. (Here, we say a set of data points (0..1) is
of dimension p if the corresponding set of coordinates τi

spans, after being centered, a p-dimensional space.) How-
ever, there are many situations where such an assumption
may not hold. For example, the data points may lie on sev-
eral manifolds of different dimensions or they may be sam-
pled from a d-dimensional manifold with lower dimensional
branches/sections. Then the ability of dimensionality reduc-
tion algorithms to detect and work with change of dimension
in the data set is very important.

In this paper, we consider the alignment algorithm for re-
constructing global coordinates from local coordinates that
is derived in the LTSA method. We shall show that, under
certain conditions, the alignment algorithm can successfully
recover global coordinates from local neighborhoods of dif-
ferent dimensions. Our main results generalize the analysis
of Ye, Zha and Li (Ye, Zha, and Li 2007) to allow alignment
of sections of different dimensions. We shall also consider
an application to a semisupervised learning problem (Ham,
Lee, and Saul 2004) where one wishes to find full associa-
tion of two data sets that are partially associated.

This paper is organized as follows. We first review the
alignment algorithm and present related notation in Section
2. We present an analysis of the alignments of sections of
different dimensions in Section 3. We discuss a semisuper-
vised learning problem in Section 4 and we give two image
examples in section 5.

NOTATION. We use e to denote a column vector of all
ones of appropriate dimension determined from the context.
null(·) is the null space of a matrix, and span(·) denote the
subspace spanned by all the columns of the argument matrix.
M † denotes the pseudo inverse of M .

Alignment Algorithm

Consider the data set (0..1). Let X = {x1, · · · , xN} and let
{Xi, i = 1, . . . , s} be a collection of subsets of X with
Xi = {xi1 , . . . , xiki

} (i1 < i2 < · · · < iki
). Assume

that ∪iXi = X , in which case we say {Xi, i = 1, . . . , s}
is a covering of X . In the context of LTSA, each Xi

is a small local neighborhood so that a coordinate system
on the local tangent space can be obtained. In general,
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we assume that Xi is any subset such that an isometric

coordinate {s
(i)
1 , . . . , s

(i)
ki
} ⊂ R

d can be constructed, i.e.

‖s
(i)
p −s

(i)
q ‖2 = dM(xip

, xiq
) (for any 1 ≤ p, q ≤ ki) where

dM( · , · ) is the geodesic distance along M. In practice,
only an approximate isometric coordinate can be computed.

It has been shown (Zha and Zhang 2005; Ye, Zha, and
Li 2007) that the global coordinates τi’s can be constructed
from the local coordinates through an alignment process as
follows. Set

Si =
[
s
(i)
1 , . . . , s

(i)
ki

]
. (0..2)

and define Qi to be the orthogonal projection onto the or-
thogonal complement of span{

[
e, ST

i

]
} in R

ki . Let Ei =

[ei1 , . . . , eiki
] ∈ R

N×ki , where ei ∈ R
N is the i-th column

of IN (the N × N identity matrix). Let

Ψi = EiQiE
T
i , Ψ =

s∑
i=1

Ψi. (0..3)

Note that Ψi is the embedding of Qi into an N × N matrix
such that the (ip, iq)th element of Ψi is the (p, q)th element
of Qi. Ψ is called the alignment matrix for {Si}.

Under a condition called fully overlap for the covering
{Xi}, it is shown in Ye, Zha and Li (Ye, Zha, and Li 2007,
Theorem 2.7) that

null{Ψ} = span{
[
e, T T

]
}

where T = [τ1, · · · , τN ]. Hence, the global coordinates τi’s
can be obtained from computing null{Ψ}, up to an orthog-
onal transformation (a rigid motion). For the ease of refer-
ences, we state the alignment process as follows.

Algorithm 0..1 Alignment Algorithm:
Given X = {x1, · · · , xN} ⊂ R

n.

1. Construct a fully overlapped covering {X i, i = 1, . . . , s} with
X i = {xi1

, . . . , xiki
}.

2. For each X i, construct its local coordinates s
(i)
1 , . . . , s

(i)
ki

.

3. Construct Ψ from Si = [s
(i)
1 , . . . , s

(i)
ki

] as in (0..3)

4. compute [e/
√

N, QT ] as an orthonormal basis of the spectral
subspace of Ψ corresponding to the smallest d + 1 eigenvalues,
where QT ∈ R

N×d.

5. Recover T as T = WQ, where W =
[S1, . . . , Ss][Q1, . . . , Qs]

† and Qi = QEi.

The fully overlapped condition guarantees sufficient in-
tersection (overlap) among Xi’s to allow alignments. In the
case of two subsets X1 and X2, it requires that the intersec-
tion X1

⋂
X2 is of dimension d (see Definition 0..1 below or

(Ye, Zha, and Li 2007) for details). This immediately re-
quires that all subsets Xi to have the same dimension d.
However, the structure of the data set X may contain lower
dimensional branches. In the next section, we generalize the
analysis of (Ye, Zha, and Li 2007) to include such cases. In-
terestingly, the alignment algorithm still works as long as a
generalized fully overlapped condition holds.

Alignment of Sections of Different Dimensions

First we define the dimension of a data set or its coordinate
set.

Definition 0..1 A data set X0 = {xi1 , . . . , xik
} and the cor-

responding coordinate set T 0 = {τi1 , . . . , τik
} are said to

be of dimension p if

rank[τi1 − τ̄ , τi2 − τ̄ , . . . , τik
− τ̄ ] = p (0..4)

where τ̄ = (Σk
j=1τij

)/k. We write dim(X0) = dim(T 0) =
p.

It can be shown that (0..4) is equivalent to

rank(
[
e, T T

0

]
) = 1 + p.

where T0 = [τi1 , . . . , τik
]; see (Ye, Zha, and Li 2007).

As in (Ye, Zha, and Li 2007), our analysis begins with
the construction of the alignment matrix based on τi’s. Let
T = {τ1, τ2, · · · , τN} ⊂ R

d and let {T i, 1 ≤ i ≤ s} be the
collection corresponding to {Xi, 1 ≤ i ≤ s}, i.e.

T i = {τi1 , · · · , τiki
}, i1 < i2 < · · · < iki

. (0..5)

Set

T = [τ1, · · · , τN ] ∈ R
d×N , Ti = [τi1 , · · · , τiki

]. (0..6)

Let Pi be orthogonal projection onto the orthogonal com-
plement of span([e, T T

i ]), i.e., null(Pi) = span([e, T T
i ]).

Define

Φi = EiPiE
T
i ; Φ =

s∑
i=1

Φi. (0..7)

Φ is the alignment matrix of the collection {Ti}. If Si is
isometric to Xi (and hence to T i), then it can be shown that
Ψ = Φ, see (Ye, Zha, and Li 2007).

First, we extend the definition of fully overlap to sets with
different dimensions.

Definition 0..2 Let T 1 and T 2 be two subsets of T ⊂ R
d. We

say T 1 and T 2 are fully overlapped if

min{dim(T 1), dim(T 2)} = dim(T 1 ∩ T 2).

Definition 0..3 This definition is recursive. Let T i, 1 ≤ i ≤
s, be s subsets of Rd. The collection {T i, 1 ≤ i ≤ s} is
fully overlapped if it can be partitioned into two nonempty
disjoint collections, say, {T i, i = 1, . . . , p} and {T i, i =
p + 1, . . . , s} each of which is a fully overlapped collection,

and if the union sets of the two collections T̂ 1 := ∪p
i=1T i

and T̂ 2 := ∪s
i=p+1T i are fully overlapped.

Definition 0..4 The collection {T i, 1 ≤ i ≤ s} is a covering
of T if ∪s

i=1T i = T , and a fully overlapped covering if the
collection is a covering and fully overlapped.

We now show that this fully overlapped condition is suf-
ficient to guarantee reconstruction of T from Φ or Ψ. First,
the following is a lemma from (Ye, Zha, and Li 2007).

Lemma 0..1 Let {T i, 1 ≤ i ≤ s} be a covering of T , and let
Φi and Φ be defined as in (0..7). Then

null(Φi) = {x|ET
i x ∈ span([e, T T

i ])}

null(Φ) =

s⋂
i=1

null(Φi).
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Theorem 0..1 Let {T 1, T 2} be a fully overlapped covering
of T and let Φi and Φ be defined as in (0..7). We have
null{Φ} = span[e, T T ].

Proof: Without loss of generality, we assume that d2 :=
dim(T 2) < d1 := dim(T 1). Then rank([e, T T

2 ]) = d2 +
1. There is a nonsingular matrix U , such that [e, T T

1 ]U =

[e, T̃ T
1 ] and [e, T T

2 ]U = [e, T̃ T
2 ] with the last d−d2 columns

of T̃ T
2 being all zero. Suppose there are k vectors in T 1∩T 2.

Without loss of generality, we assume that the last k columns
of T1 and the first k columns of T2 are the vectors in T 1∩T 2.
Then we write

T̃1 =

(
d2 T̃

(1)
11 T̃12

d−d2 T̃
(2)
11 0

)
; T̃2 =

(
d2 T̃21 T̃22

d−d2 0 0

)
where T̃12 = T̃21. Next, let the columns of Q form a basis of

null(Φ). We have span(Q) ⊂ {x|ET
i x ∈ span([e, T̃ T

i ])}

for each i. Then we can find a matrix Wi ∈ R(d+1)×m,

where m = dim(null(Φ)), such that ET
i Q = [e, T̃ T

i ]Wi.
Let

Wi =

(
d2+1 W

(1)
i

d−d2 W
(2)
i

)
.

Comparing the common rows of ET
1 Q and ET

2 Q, we have

[e,
(

T̃ T
12 0

)
]W1 = [e,

(
T̃ T

21 0
)
]W2.

From the first d2+1 columns of last equation, we obtain that

[e, T̃ T
12]W

(1)
1 = [e, T̃ T

21]W
(1)
2 .

Since T 1 and T 2 are fully overlapped, we have that [e, T̃ T
12]

has full column rank. From

[e, T̃ T
12](W

(1)
1 − W

(1)
2 ) = 0,

it follows
W

(1)
1 − W

(1)
2 = 0.

Noting that

[e, T̃ T
2 ]W2 =

[
e,

(
T̃ T

21 0

T̃ T
22 0

)] (
W

(1)
2

W
(2)
2

)

=

[
e,

(
T̃ T

21 0

T̃ T
22 0

)] (
W

(1)
1

W
(2)
1

)
= [e, T̃ T

2 ]W1,

we have
ET

i Q = [e, T T
i ]UW1.

So we can write Q as

Q = [e, T T ]UW1.

Thus
null{Φ} = span[e, T T ].

Theorem 0..2 Let {T i, i = 1, . . . s} be a fully overlapped
covering of T and let Φi and Φ be defined as in (0..7). Then
null{Φ} = span[e, T T ].

Proof: This is proved by virtually the same induction as in
the proof of (Ye, Zha, and Li 2007, Theorem 2.6) using The-
orem 0..1 and Definition 0..3. We omit the details.

In practice, when we have a neighborhood consisting of
points lying on a lower dimensional branches, their coor-
dinates are likely computed with large errors in the com-
ponents that are supposed to be zero. Amazingly, with a
slightly extra condition, this does not affect the result of the
alignment process. Before we present an analysis, we first
illustrate with an example.

Example 0..1 Let a, b, c, d, f, g, u, v, w, x be distinct num-
bers and

T =

{[
a
g

]
,

[
b
0

]
,

[
c
0

]
,

[
d
0

]
,

[
f
0

]}
.

Assume that we have two subsets

T 1 =

{[
a
g

]
,

[
b
0

]
,

[
c
0

]
,

[
d
0

]}
and

T 2 =

{[
b
0

]
,

[
c
0

]
,

[
d
0

]
,

[
f
0

]}
.

Then dim(T 1) = 2 and dim(T 2) = dim(T 1∩T 2) = 1. By
Theorem 0..1, we can recover T from Φ as constructed from
T1 and T2.

In practice, however, we can only compute two coordinate
sets S1 and S2 that are (approximately) isometric to T 1 and
T 2. However, large errors could be present in the second

components of T 2. For example, when computing T
T
2 from

local first order approximation (Li, Li, and Ye 2004), they
are computed as 2 smallest singular vectors and the second
components derived from a singular vector corresponding
to a tiny singular value may effectively be random. T 1 can
be computed accurately, however. Suppose the computed
coordinates for the two sections are

S1 =

[
a b c d
g 0 0 0

]
; S2 =

[
b c d f
u v w x

]
.

Now, constructing Ψ from Si as in (0..3). Using Maple, we
can compute Ψ and verify that null{Ψ} = span{[e, T T ]}.
Hence, even when the second components in S2 are com-
puted completely wrong, original T can still be recovered
from Ψ!

The phenomenon explained in the example above is true
in general as shown in the following theorem.

Theorem 0..3 Let {T 1, T 2} be a fully overlapped covering
of T ⊂ R

d with dim(T 1) = d1 and dim(T 2) = dim(T 1 ∩
T 2) = d0 < d1. Assume that the vectors in T 2 have van-
ishing last d − d0 components. Let S1 = T 1 and

S2 = {

(
d0 τ̂i

d−d0 ρ̂i

)
:

(
d0 τ̂i

d−d0 0

)
∈ T 2}.

Let Ψi and Ψ be defined from Si as in (0..3). If the points of
S2 that correspond to T 1 ∩ T 2 form a d-dimensional set,
i.e.

dim

({(
τ̂i

ρ̂i

)
∈ S2 :

(
τ̂i

0

)
∈ T 1 ∩ T 2

})
= d (0..8)

then we have null{Ψ} = span[e, T T ].
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Proof: Without loss of generality, we assume that the last k
columns of T1 and the first k columns of T2 are the vectors
in T 1 ∩ T 2. Write

T1 =

(
d0 T

(1)
11 T

(1)
12

d−d0 T
(2)
11 0

)
T2 =

(
d0 T

(1)
21 T

(1)
22

d−d0 0 0

)
where T

(1)
12 = T

(1)
21 . Let S1 and S2 be the matrices whose

columns are the vectors in S1 and S2 respectively, i.e. we
write

S1 = T1 =

(
d0 T

(1)
11 T

(1)
12

d−d0 T
(2)
11 0

)
S2 =

(
d0 T

(1)
21 T

(1)
22

d−d0 T
(2)
21 T

(2)
22

)
.

Let Q be such that its columns form a basis for null(Ψ). We
have span(Q) ⊂ {x|ET

i x ∈ span([e, ST
i ])}. Then we can

find a matrix Wi ∈ R(d+1)×m, where m = dim(null(Φ)),
such that ET

i Q = [e, ST
i ]Wi. Let

Wi =

(
d0+1 W

(1)
i

d−d0 W
(2)
i

)
.

Then we have[
e,

(
T

(1)T

12 0

)]
W1 =

[
e,

(
T

(1)T

21 T
(2)T

21

)]
W2.

Equivalently,

[e, T
(1)T

12 ]W
(1)
1 = [e, T

(1)T

21 ]W
(1)
2 + T

(2)T

21 W
(2)
2 .

Noting T
(1)T

12 = T
(1)T

21 , we have

[e, T
(1)T

21 ](W
(1)
1 − W

(1)
2 ) = T

(2)T

21 W
(2)
2 .

Using (0..8), we see that [e, T
(1)T

21 , T
(2)T

21 ] has full column
rank. It follows from

[e, T
(1)T

21 ](W
(1)
1 − W

(1)
2 ) − T

(2)T

21 W
(2)
2 = 0

that

[e, T
(1)T

21 ](W
(1)
1 − W

(1)
2 ) = 0, T

(2)T

21 W
(2)
2 = 0.

This further implies that

W
(1)
1 − W

(1)
2 = 0, W

(2)
2 = 0.

Thus W
(1)
1 = W

(1)
2 . Then we can write

ET
2 Q = [e, ST

2 ]W2 = [e, T T
2 ]W1.

This together with ET
1 Q = [e, T T

1 ]W1 implies that

Q = [e, T T ]W1.

Therefore,

null{Ψ} = span[e, T T ].

Semisupervised Alignment of Manifolds

The results in the previous section show that the alignment
algorithm is capable of aligning sections of different dimen-
sions. Other than the alignment, it has application in other
context. Here we consider a problem in semisupervised
learning of manifolds that has been introduced in (Ham, Lee,
and Saul 2004).

Assume that there are two data sets that admit a pairwise
correspondence, some of which is known. The objective is
to generate full association (correspondence) of the data sets
from the partial association of samples. One approach to this
problem is to first generate a common low-dimensional em-
bedding for those two data sets. From the common embed-
ding, we can associate samples between the two data sets.

For example, in applications of images, we have two sets
of pictures of two different objects taken by a camera from
various positions and angles and we wish to match images
taken from the same positions/angles, provided matching of
a sample is available.

Let X and Y be two data sets with two subsets X l and
Y l. Assume that X l and Y l are already in pairwise cor-
respondence. X has M samples points. Y has N sam-
ples points. X l and Y l each has k samples points. We
first find the low-dimensional embedding for each data set
X and Y , which are Z1 and Z2. Assume that the vectors
corresponding to X l and Y l are in the first k columns, i.e.

Z1 = [Z
(l)
1 , Z

(u)
1 ] ∈ R

d×M and Z2 = [Z
(l)
2 , Z

(u)
2 ] ∈ R

d×N

where Z
(l)
1 and Z

(l)
2 are the low-dimensional parametriza-

tion of X l and Y l respectively. Given the association of the

sample points in X l and Y l, Z
(l)
1 and Z

(l)
2 have the same

intrinsic parametrization, say, Z
(l)
I or its transformation. To

find the association between Z
(u)
1 and Z

(u)
2 , we need to align

Z1 and Z2 by determining two affine transformations Li,

i = 1, 2, such that L1Z
(l)
1 = L2Z

(l)
2 . Then Zi,I = LiZi,

i = 1, 2, provide intrinsic parametrizations for X and Y

from which a full association can be deduce.
This is a problem that can be solved by the alignment al-

gorithm that is discussed in the previous section. Specifi-
cally, the alignment matrix constructed from Zi is the same
as that constructed from Zi,I . Let Pi for i = 1, 2 be the
alignment matrices for Zi, and let Ei be the selection ma-
trices, such that ZEi = Zi. The embedding of Pi into
R

M+N−l is Φi, where Φi = EiPiE
T
i . Then we construct

an alignment matrix from Z1 and Z2 as below:

Φ = Φ1 + Φ2,

= E1P1E
T
1 + E2P2E

T
2 .

Pi can be constructed from the local coordinate patches of
Zi as in (0..3). The null space of the alignment matrix Φ yields
a joint embedding of those two data sets, which is the intrin-
sic low-dimensional representation for those data sets up to
a rigid motion.

Numerical Examples

In this section, we present two examples to show the align-
ment algorithm works well with sections having different di-
mensions. We consider two examples. The first example has
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Figure 1: The generating coordinates of the data set.

a set of face images generated from a 3D face model. One
section of this image set has intrinsic dimensionality one.
The other section of the image set has intrinsic dimensional-
ity two. We try to find the low-dimensional parametrization
for this image set.

Example 0..2 The data set consists of N = 2715 face im-
ages generated based on the 3D face model in (Blanz and
Vetter 1999). The set contains 64 × 64 images of the same
face, which are obtained by varying pan and tilt angles for
the observer. For 2700 images, they vary from −30 to 45
degrees of pan angles and −10 to 10 degrees for tilt angles.
For 15 images, they vary from −45 to −30 degrees of pan
angles and have 0 degree of tilt angles. We are interested in
finding the low-dimensional parametrization for these face
images. The original coordinates of all those 2715 pictures
are showed in Figure 1, where the x-axis is the pan angle
and the y-axis is the tilt angle. From Figure 1, we can see
that those 2700 images form a manifold with dimensionality
d = 2, whereas the other 15 images with the same tilt angles
form a branch with dimensionality d = 1.

We implement LTSA algorithm with fifteen neighbors of
each xi (k = 15) and dimension two (d = 2) to recover the
parameters of the images. We notice that for those 15 images
with the same tilt angles, their local coordinates should have
intrinsic dimensionality one with this example, but our algo-
rithm will treat it as if it were dimension two, having the sec-
ond components derived from a singular vector correspond-
ing to a tiny singular value. The reconstructed coordinates
of all these 2715 images after LTSA are showed in Figure
2. Though one set of these data points is of intrinsic dimen-
sionality one and the other set of data points is of intrinsic
dimensionality two, LTSA recover the parametrization cor-
rectly. The lower dimensional branch is clearly identified by
the algorithm from 2.

Our second example concerns two sets of face images
generated from different face model. We are interested in
finding the face images shoot from the same tilt and pan an-
gles.

Example 0..3 We have two sets of pictures generated from
two different 3D face models in (Blanz and Vetter 1999). The

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

Figure 2: The reconstructed coordinates of the data set by LTSA
with k = 15 and d = 2.

pictures of two different persons are taken from different pan
and tilt angle. We are interested in matching the images with
the same pan and tilt angles from different image sets. This
problem can be solved by the semisupervised alignment of
manifolds (Ham, Lee, and Saul 2004) that we discussed in
the previous section.

The first data set X contains 100 pictures coming from
face model A and all these pictures have the same tilt angle
of 0 degree and pan angles varying from −45 to 45 degrees.
The second data set Y contains 2700 pictures generated
from face model B. These pictures have pan angles varying
from −45 to 45 degrees and tilt angle varying from −10 to
10 degrees . The goal is to match the images with the same
tilt angle and the same pan angle. First, 20 matching pairs
of pictures in X and Y are manually chosen so that each
pair of images are shoot from the same tilt angle and pan
angle. These l = 20 pictures are labeled samples. We first
compute the alignment matrices P1 and P2 of those two data
set X and Y separately from the local coordinates with fif-
teen neighbors(k=15) and dimension 2(d=2). Next, we con-
struct the alignment matrix Φ = E1P1E

T
1 +E2P2E

T
2 . Then,

we compute the joint embedding by the alignment matrix.

For the data set X , we notice that the intrinsic dimension-
ality should be one, whereas we calculate the parametriza-
tion with dimension two which is necessary in order to carry
out alignment. In the left plot of Figure 3, we show the com-
puted local coordinates of data set X with fifteen neighbors
(k = 15) and dimensions two (d = 2). We see that it shows a
one-dimensional curve embedded in a 2 dimensional space.
However, this detected after the alignment process. The
right plot of Figure 3 shows the computed global coordinates
of data sets X and Y by the alignment algorithm based on
LTSA. The red circle line shows the points corresponding to
those in X . Again, the alignment algorithm works well with
data sets of different dimensions.

We now discuss how to match the unlabeled samples be-
tween X and Y . For any image t from the data set X or Y ,
we can find a low-dimensional parametrization f(t) by the
alignment algorithm. Given one unlabeled sample picture
x from the data set X as the input, which has a parameter
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Figure 3: Left The computed local coordinates of data set X with
k = 15 and d = 2. Right The computed global coordinates of data
sets X (red circles) and Y (blue dots) after alignment algorithm
based on LTSA with k = 15 and d = 2.

Figure 4: Up The four unlabeled pictures from data set X with
different pan angles. Down The computed four pictures of data set
Y matched to the four unlabeled pictures from data set X .

f(x), we find an image y∗ ∈ Y with parameter f(y∗), such
that

y∗ = arg
y∈Y min ‖f(x) − f(y)‖2.

We take four unlabeled sample pictures from X data as
the input and show the best matching data for Y found and
show the pictures in Figure 4. There is a clear match in the
pan and tilt angle for the pairs.

Our examples confirm our theoretical results that the
alignment algorithm can recover parametrization properly

even when local neighborhoods/sections have different in-
trinsic dimension. This is a property not known for other
manifold learning algorithms and would be an advantage of
the alignment algorithm.
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