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Joint work

The results discussed today are joint work with a former student,
Landon Gauthier [8].
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Polyharmonic Operator

We fix a domain Ω ⊂ Rd , d ≥ 3 with nice boundary and let
m ≥ 2. We consider the problem of identifying coefficients in a
partial differential operator from boundary information from
solutions of that operator.
The operators we consider are of the form

Lu = (−∆)mu + Q · Du + qu in Ω (1)

where m ≥ 2 and D = −i∇. Our main result shows that the
coefficients Q and q are uniquely determined by boundary
information for solutions of Lu = 0.
The novel aspect of this work is to consider this problem for less
regular coefficients.
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Bilinear form

To define the operator (−∆)m, we will use a weak formulation. If
u ∈ Wm,2(Ω), we can define (−∆)mu ∈ W−m,2(Ω) = (Wm,2

0 (Ω))∗

by
⟨(−∆)mu, v⟩ = B0(u, v), v ∈ Wm,2

0 (Ω).

where B0 : W
m,2(Ω)×Wm,2(Ω) → C is a bilinear form so that

B0(u, v) =
∫
Ω[(−∆)mu]v dx , u, v ∈ C∞

0 (Ω). For this talk we put

B0(u, v) =

{∫
Ω(−∆)m/2u (−∆)m/2v dx , m even∫
Ω(−∆)

m−1
2 ∇u · (−∆)

m−1
2 ∇v dx , m odd

though other choices are possible (and useful).
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Coefficients

We will consider coefficients from Sobolev spaces W̃ s,p(Ω) (s and
p will be fixed later). The space W̃ s,p(Ω) is the collection
distributions in W s,p(Rm) which are supported in Ω̄. Our main
interest is when s < 0. This space arises as a dual space. In
particular, for Lipschitz domains, we have

W s,p(Ω)∗ = W̃−s,p′(Ω), s ≥ 0, 1 < p <∞.

Suppose


t = d/m, d/m > 2,

t > 2, d/m = 2

t = 2, d/m < 2.

If q ∈ W̃ |α|−m,t(Ω), then using Sobolev embedding, we can show

|⟨qDαu, v⟩| ≤ C∥q∥W̃ |α|−m,t(Ω)∥u∥Wm,2(Ω)∥v∥Wm,2(Ω).
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Weak solutions

If Q ∈ W̃ 1−m,t(Ω) and q ∈ W̃−m,t(Ω), and
f ∈ W−m,2(Ω) ⊃ W̃−m,2(Ω), we say that u is a weak solution of
Lu = f if

B(u, v) = B0(u, v) + ⟨Q · Du, v⟩+ ⟨qu, v⟩
= ⟨f , v⟩, v ∈ Wm,2

0 (Ω).

While we only need to allow v ∈ Wm,2
0 (Ω) to define solutions of

Lu = 0, our form B is defined on Wm,2(Ω)×Wm,2(Ω).
We will say u a solution of the transposed equation Ltu = f if

B(v , u) = ⟨f , v⟩, v ∈ Wm,2
0 (Ω).
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Quadratic, forms, DN maps

If u is a solution of Lu = 0, then we may define Λu as a linear
functional on the quotient space Wm,2(Ω)/Wm,2

0 (Ω) by

⟨Λu, v⟩ = B(u, v).

Since u is a solution, the v → ⟨Λu, v⟩ map is well-defined on the
equivalence classes v +Wm,2

0 (Ω).
If we have two operators Lj , j = 1, 2, we say that the
corresponding forms B1 and B2 are equal if for each u1, a solution
of L1u1 = 0, there exists u2, a solution of L2u2 = 0 with
u1 − u2 ∈ Wm,2

0 (Ω) and

B1(u1, v) = B2(u2, v), v ∈ Wm,2(Ω).

Also, the corresponding statement holds with 1 and 2 switched.
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A key identity

If u1 solves L1u1 = 0 and u1, u2 are in Wm,2(Ω), then our
assumption that the forms are equal implies there exists a solution
of L2ũ2 = 0 with u1 − ũ2 ∈ Wm,2

0 (Ω) and B1(u1, u2) = B2(ũ2, u2).
If we also assume that Lt

2u2 = 0, B2(u1 − ũ2, u2) = 0. Combining
these statements gives B1(u1, u2) = B2(u1, u2). Dropping the
common terms we are left with

⟨(q1−q2)u1, u2⟩+⟨(Q1−Q2)·Du1, u2⟩ = 0, if L1u1 = 0,Lt
2u2 = 0.

This is often called Alessandrini’s identity [1].
The proof of uniqueness rests on finding enough solutions for this
identity to imply that q1 = q2 and Q1 = Q2.
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Cauchy data, Dirichlet to Neumann maps

Our proof below will work directly with the quadratic forms.
However, if the domain and the coefficients are sufficiently regular,
we can reformulate the statement that two quadratic forms are
equal as a statement about Cauchy data for solutions. If we also
have unique solvability of the Dirichlet problem for the operators
Lj , then we may restate the equality of forms using a Dirichlet to
Neumann map.
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Main Theorem

Our main result is a statement that the if two operators have the
same bilinear form (as defined above), then the coefficients must
be equal.

Theorem

Suppose that we have two operators Lj = (−∆)m + Q j · D + qj ,
j = 1, 2 as in (1) and we have s < m/2 + 1 and p ≥ 2 which
satisfy 1/p + (s −m)/d < 0, p ≥ 2. Suppose the coefficients of
the operators Lj satisfy Q j ∈ W̃−s+1,p(Ω;Rd) and
qj ∈ W̃−s,p(Ω). If the bilinear forms Bj for the operators are
equal, then Q1 = Q2 and q1 = q2.



Polyharmonic Operator Xλ spaces CGO solutions An improvement References

Harmonic exponentials

The first step in constructing solutions to identify the coefficients
is an observation of Calderón [9]. In 1980, he considered a
linearized problem when the principal part is the Laplacian (m = 1)
and gave an argument which used harmonic exponentials

e ix ·ζ , with ζ · ζ = 0.

In 1987, Sylvester and Uhlmann [14] carried out the construction
of solutions which are close to harmonic exponentials and showed
how to use them to prove uniqueness for an inverse boundary value
problem for a second order equation.
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CGO solutions

The solutions constructed by Sylvester and Uhlmann are now
called complex geometrical optics (CGO) solutions. For our
purposes, we will look at CGO solutions of the form

u(x) = e ix ·ζ/h(a(x) + ψ(x))

where the remainder ψ(x) = ψ(x ; a, ζ, h) will be small in an
appropriate sense as h → 0+.
We assume that h > 0 is a small parameter and we will use
ζ ∈ V = {ζ ∈ Cd , |Re ζ| = | Im ζ| = 1,Re ζ · Im ζ = 0} so that
e ix ·ζ/h will be a harmonic function when ζ ∈ V.
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X λ spaces

We let pζ(hD) = p(hD) = e−ix ·ζ/h(−h2∆)e ix ·ζ/h and denote the
symbol of p(hD) by p(ξ) = |ξ|2 + 2iζ · ξ.
For λ ∈ R and ζ ∈ V, we define

Xλ
hζ = Xλ = {u : ∥u∥2Xλ =

∫
Rd

(h + |p(hξ)|)2λ|û(ξ)|2 dξ <∞}.

(2)
We will often drop the subscript if h and ζ are clear from the
context.
These spaces were introduced to the study of inverse boundary
value problems by Haberman and Tataru [11] in 2013. They
borrowed ideas from Bourgain who had used spaces adapted to the
operator ∂t + ∂3x in the study of the Korteweg-deVries equation.
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A right inverse

We let ϕ ∈ C∞
c (Rd) be function which is 1 in a neighborhood of Ω̄

and define an operator Jϕ by

Jϕf = ϕ · ( 1

p(hξ)
(ϕf )̂ )̌

Unraveling the notation, it is easy to see that in a neighborhood of
Ω̄, we have Jϕ is a right inverse of p(hD):

p(hD)Jϕf = f .

Building on ideas of Haberman and Tataru, we can show

Jϕ : Xλ → Xλ+1, λ ∈ R.

The details can be found in Brown and Gauthier [8].
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Multiplication in the X λ-spaces

To study the operator L, we will need several results about the
multiplication operator

ψ → qψ

on the spaces Xλ.
Our first observation is that multiplying by a smooth function is
bounded on the space Xλ.

Lemma

If ϕ ∈ C∞(Rd) then for each λ, there is M = M(λ) so that

∥ϕu∥Xλ ≤ C ( sup
x∈Rd ,|α|≤M(λ)

|D |α|ϕ|)∥u∥Xλ .
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Multiplying by distributions

Next, we observe a relation between the Xλ-spaces and L2 Sobolev
spaces.
If 0 ≤ 2s ≤ t, then

∥f ∥W s,2(Rd ) ≤ sup
⟨ξ⟩s

(h + |p(hξ)|)t
∥f ∥X t = Ch−t−s∥f ∥X t

Passing to the duals, we also have

∥f ∥X−t ≤ Ch−t−s∥f ∥W−s,2(Rd )

Using this, we can show that if f ∈ L∞(Rd) and |α|+ |β| ≤ 2λ,
then

|⟨(Dαf )Dβu, v⟩| ≤ Ch−2λ−|α|−|β|∥f ∥∞∥u∥Xλ
hζ1

∥v∥Xλ
hζ2

(3)

If f is uniformly continuous, we have C = o(1) as h → 0+
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Defining L on X λ

We assume that q and Q are of the form,

q =
∑
|α|≤m

Dαfα, Q =
∑

α≤m−1

Dαgα (4)

with the functions fα and gα uniformly continuous on Rd . With
these representations, we can show that the operator A given by

Aψ = qψ + Q · (D +
ζ

h
)ψ

satisfies
∥Aψ∥X−m/2 ≤ o(h−2m)∥ψ∥Xm/2



Polyharmonic Operator Xλ spaces CGO solutions An improvement References

Representations of q and Q

Using ideas of Mitrea2 and Monniaux [13] (which is based on work
of Bogovskii [7]) we can establish the following representation
theorem.
If f ∈ W̃−s,p(Ω) with −s = −k + σ, 0 ≤ σ < 1 and k ≥ 1 an
integer, then we may write

f =
∑
|α|≤k

Dαfα, fα ∈ W̃ σ,p(Ω)

Using Sobolev embedding and this representation, if f ∈ W̃−s,p(Ω)
with 1/p + (s −m)/d < 0, we may write

f =
∑
|α|≤m

Dαfα

with fα ∈ C (Rd) and supp f ⊂ Ω̄.
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Existence of solutions

The following theorem will be essential for our construction of
CGO solutions. Let

Lζψ = h2me−ix ·ζ/hLe ix ·ζ/h

= p(hD)mψ + h2m(qψ + Q · (D + ζ/h)ψ)

= p(hD)mψ + h2mAψ

Theorem (Existence of solutions)

Suppose q and Q are as in (4), then for ζ ∈ V, h small, and
f ∈ X−m/2 we may find ψ ∈ Xm/2 so that ψ is a distribution
solution of

Lζψ = f in a neighborhood of Ω̄

∥ψ∥Xm/2 ≤ C∥f ∥X−m/2
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Solve Lζψ = f

Proof.

We observe that a solution of the integral equation

ψ + h2mJmϕ Aψ = Jmϕ ϕf

will also solve Lζψ = f on Ω.
Since Jϕ : Xλ → Xλ+1 and A : Xm/2 → X−m/2, for h small, we
have that h2mJmϕ A is a contraction on Xm/2 and we may use a

Neumann series to invert the operator I + h2mJmϕ A on Xm/2.
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CGO solutions

We will look for solutions of Lu = 0 of the form

u(x) = e ix ·ζ/h(a(x) + ψ(x))

we need ψ to satisfy the equation

Lζψ = −p(hD)a− h2m(qa+ Q · (D + ζ/h)a).
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Amplitudes

Our amplitudes a will be smooth functions which satisfy the
transport equation

(ζ · D)2a = 0.

This will guarantee that we have Dαp(hD)ma = O(h2m−1) on
compact subsets of Rd . Thus for a cutoff function ϕ, we have

∥ϕ(p(hD))ma∥X−m/2 = O(h
3m
2
−1).

More specifically, the amplitudes we use are

a(x) = (α+ β · x)e−ix ·ξ

where we have ξ · ζ = 0 and α+ β · x is a linear function.
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Estimate for the right-hand side

If in addition, we have p ≥ 2, then W̃−s,p(Ω) ⊂ W̃−s,2(Ω) and for
0 ≤ s ≤ m

∥aq + Q · (D +
ζ

h
)a∥X−m/2 ≤ C∥q∥W̃−s,2(Ω sup

⟨ξ⟩s

(h + |p(hξ)|)m/2

+ h−1∥Q∥W 1−s,2(Ω) sup
⟨ξ⟩s−1

(h + |p(hξ)|)m/2

≤ Ch−s−m/2(∥q∥W̃−s,2(Ω) + ∥Q∥W̃ 1−s,2(Ω)).
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Elements of the proof of uniqueness

We fix ξ ∈ Rd , set a(x) = e−ix ·ξ, assume ζ ∈ V satisfies ξ · ζ = 0
so that ζ · De−ix ·ξ = 0. We let ψ be the solution of

Lζψ = −ϕLζa = −ϕ(p(hD)ma+ h2m(q + Q · (D + ζ/h)a).

where ϕ ∈ C∞
c (Rd) is 1 in a neighborhood of Ω̄. Using our

estimates for p(hD)ma and (q + Q · (ζ/h + D))a we have

∥ψ∥Xm/2 ≤ C (h
3m
2
−s + h

3m
2
−1).
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First uniqueness theorem

We construct solutions of L1u1 = 0, Lt
2u2 = 0 with the expansions

u1(x) = e ix ·ζ/h(e−ix ·ξ + ψ1), u2(x) = e−ix ·ζ/h(1 + ψ2)

Using that our forms B1 and B2 are equal, we have

0 = B1(u1, u2)− B2(u1, u2)

= q̂1(ξ)− q̂2(ξ) + ⟨(q1 − q2), (ψ1 + e−ix ·ξψ2 + ψ1ψ2)⟩+ . . .

where we have omitted several terms in order to allow us to
concentrate on the main idea in this proof.
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A hint of the uniqueness proof

We have the estimates

|⟨(q1 − q2)a, ψj⟩| ≤ ∥q1 − q2∥x−m/2∥ψj∥Xm/2

= h−m/2−s(h3m/2−1 + h3m/2−s

⟨(q1 − q2)ψ1, ψ2⟩ ≤ o(1)h−2m(h3m−1 + h3m−2s)

If s ≤ m/2 (and m ≥ 2), we conclude q̂1 − q̂2 = 0.
A more involved argument, which we omit, allows us to show
Q1 − Q2 = 0.
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Some history

An inverse boundary value problem for biharmonic operators was
first studied by Krupchyk, Lassas, and Uhlmann in a paper that
appeared in 2014. Additional work considers a problem with partial
data [12].
Stability in this inverse boundary value problem was considered by
Choudhury and Krishnan [10].
In 2016 Assylbekov [4] and in 2019 Assylbekov and Iyer [3] begin
the study of inverse boundary value problems for polyharmonic
operators with less regular coefficients. Their result is very close to
our first uniqueness theorem.
Our approach their result using Xλ-spaces is new, but the result is
not.
In 2019 and 2012, Bhattacharyya and Ghosh [5, 6] study
uniqueness for second order terms.
In 2023, Aroua and Bellassoued [2] give some results on the
stability of recovery of second order terms.
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How can we do better?

The construction of CGO solutions involves an arbitrary choice of ζ
from Vξ = V ∩ {ζ : ξ · ζ = 0}, The set Vξ is positive dimension
(2d − 5?) and thus there are many possible choices. We will use
an averaging argument to take advantage of this freedom to
improve on our first uniqueness result.
This approach was first developed by Haberman and Tataru [11] in
a study of the inverse conductivity problem.
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A key lemma

Again we fix ξ and choose ζ ∈ V with ξ · ζ = 0.
If we set ζ(θ) = e iθζ, we have the following Lemma.

Lemma

For 0 ≤ σ < 1 and 0 < h < 1, we have

1

2πh

∫ 2h

h

∫ 2π

0

1

(τ + |pζ(θ)(τη)|)2σ
dθ dτ ≤ 1

(h⟨η⟩)4σ

If we fix η, the function (h, θ) → pζ(θ)(τη) has a simple zero. This
observation helps to see how we prove this result.
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We apply the previous Lemma to obtain

Lemma

If 0 ≤ σ < 1 and 2σ < s, then we have

1

2πh

∫ 2π

0

∫ 2h

h
∥f ∥2

X
−m/2
τζ(θ)

dτdθ ≤ Ch−m−2s+2σ∥f ∥2W−s,2

If qk ∈ W−s,2(Rd) and Qk ∈ W̃ 1−s,2(Rd), and 0 ≤ σ < 1 this
lemma allows us to choose a sequence of ζj , hj with hj → 0 and so
that with

∥q1∥
X

−m/2
hj ζj

+∥q2∥
X

−m/2
−hj ζj

+h−1
j (∥Q1∥

X
(1−m)/2
hj ζj

+∥Q2∥
X

(1−m)/2
−hj ζj

) ≤ Ch
−m/2−s+σ
j

Feeding this improvement for the power of h into our construction
of CGO solutions leads to a uniqueness theorem for operators with
the condition with s < m/2 + 1, rather than the condition
s ≤ m/2 from our first attempt.
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Open Questions

Can we reduce the regularity on q or Q? We conjecture that
q ∈ W̃−m,?(Ω) is the best order of smoothness. For m = 2,
we get arbitrarily close to this result.

Determine the correct index p for the Lp-space in these
uniqueness results.

Can we prove a uniqueness result for the polyharmonic
operator with higher order perturbations? That is for
operators of the form

L = (−∆)m +
∑

|α|≤m−1

QαD
α

are the coefficients Qα determined by the form?
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