Lecture 26: Introduction to trignonometry

Russell Brown

Department of Mathematics University of Kentucky

-

• • • • • • • • • • • • •

Question 1.

Select the best name for The 90.

- A The $\pi/2$.
- **B** 89++
- C The right angle
- D 1011010, base 2.
- E 91 –

Question 1.

Select the best name for The 90.

- A The $\pi/2$.
- **B** 89++
- C The right angle
- D 1011010, base 2.
- E 91 -

Please change your calculators to radian mode and leave it in radian mode for all of your mathematics courses. On a TI-84, press MODE and make sure that Radians is highlighted on the third line. If it is not move to the word Radians with the arrow key \lor and press ENTER.

A D A D A D A

Question 2.

Suppose that we draw an angle in standard position and of measure $-9\pi/2$ radians. Where does the terminal side meet the unit circle?

- A(1,0)
- **B** (0, 1)
- C (−1,0)
- D(0,-1)
- E The terminal side does not cross the unit circle.

Question 2.

Suppose that we draw an angle in standard position and of measure $-9\pi/2$ radians. Where does the terminal side meet the unit circle?

- A (1,0)
- **B** (0, 1)
- C (−1,0)
- D (0,-1)
- E The terminal side does not cross the unit circle.

We write $-9\pi/2 = -2\pi + -\pi/2$ and recognize that the resulting terminal side is the same if we neglect the full revolution. The angle $\pi/2$ is one quarter of a full revolution and we move in the negative or clockwise direction, we will and meet the unit circle at the point (0, -1).

< 回 > < 回 > < 回 >

Question 3.

Convert the angle measures to radians.

 $A = 180^{\circ} \text{ and } B = 45^{\circ}$

A 11/14 and B = 22/7B A = 22/7 and B = 11/14C $A = \pi/2$ and $B = \pi/8$ D $A = \pi/4$ and $B = \pi$ E $A = \pi$ and $B = \pi/4$

< 回 > < 三 > < 三 >

Question 3.

Convert the angle measures to radians.

 $A = 180^{\circ} \text{ and } B = 45^{\circ}$

- A 11/14 and B = 22/7B A = 22/7 and B = 11/14C $A = \pi/2$ and $B = \pi/8$ D $A = \pi/4$ and $B = \pi$
- E $A = \pi$ and $B = \pi/4$

We know a full turn is 360° or 2π radians. Thus a half turn is 180° or π radians. The angle 45° is half of right angle or $\frac{1}{2} \cdot \frac{\pi}{2} = \pi/4$.

< 回 > < 回 > < 回 >

Question 4.

Suppose we have a $\pi/4 - \pi/4 - \pi/2$ triangle with hypotenuse of length 2. What is the common length of the two legs?

A 1 B 2 C $\sqrt{2}$ D $1/\sqrt{2}$ E 1/2

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Question 4.

Suppose we have a $\pi/4 - \pi/4 - \pi/2$ triangle with hypotenuse of length 2. What is the common length of the two legs?

A 1 B 2 C $\sqrt{2}$ D $1/\sqrt{2}$ E 1/2

If x is the length of the legs, then the theorem of Pythagoras tells us that $x^2 + x^2 = 2^2$. Solving gives $x = \sqrt{2}$. Alternately, we may use similar triangles and multiply each side of the triangle with sides $\sqrt{2}/2$, $\sqrt{2}/2$, 1 by 2 to obtain the sides are $\sqrt{2}$, $\sqrt{2}, 2$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Question 5.

Suppose an angle of measure $5\pi/4$ is drawn in standard position. Where does the terminal side cross the unit circle?

A
$$(-\sqrt{2}/2, \sqrt{2}/2)$$

B $(-\sqrt{2}/2, -\sqrt{2}/2)$

C
$$(\sqrt{2}/2, -\sqrt{2}/2)$$

- D $(\sqrt{2}/2, \sqrt{2}/2)$
- E (0, 1), I needed a fifth option, but this one is probably wrong.

A > + = + + =

Question 5.

Suppose an angle of measure $5\pi/4$ is drawn in standard position. Where does the terminal side cross the unit circle?

- A $(-\sqrt{2}/2,\sqrt{2}/2)$
- B $(-\sqrt{2}/2, -\sqrt{2}/2)$
- C $(\sqrt{2}/2, -\sqrt{2}/2)$
- D $(\sqrt{2}/2, \sqrt{2}/2)$
- E (0, 1), I needed a fifth option, but this one is probably wrong.

A 1

∃ ► < ∃</p>