Lecture 27: Sine, cosine, and tangent

Russell Brown

Department of Mathematics University of Kentucky

ъ

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Question 1.

If we draw and angle of *t* radians in standard position, then the intersection of the terminal side of the angle with the unit circle is the point:

- A (tan(t), sin(t))
- $\mathsf{B} \ (\cos(t), \sin(t))$
- C (sin(t), cos(t))
- D (sin(t), tan(t))
- $\mathsf{E}(\cos(t), \tan(t))$

A b

Question 1.

If we draw and angle of *t* radians in standard position, then the intersection of the terminal side of the angle with the unit circle is the point:

- A (tan(t), sin(t))
- B $(\cos(t), \sin(t))$
- C (sin(t), cos(t))
- $D(\sin(t), \tan(t))$
- $E(\cos(t), \tan(t))$

By definition the pair $(\cos(t), \sin(t))$ is the point on the unit circle that is determined by an angle of *t* radians.

A 1

E 5 4 E

Question 2.

Find $cos(\pi)$, $sin(\pi)$, and $tan(\pi)$.

A
$$\cos(\pi) = 1$$
, $\sin(\pi) = 0$, $\tan(\pi) = 0$.
B $\cos(\pi) = 0$, $\sin(\pi) = 1$, $\tan(\pi) = 0$.
C $\cos(\pi) = -1$, $\sin(\pi) = 0$, $\tan(\pi) = 0$.
D $\cos(\pi) = 0$, $\sin(\pi) = -1$, $\tan(\pi)$ is undefined.
E $\cos(\pi) = -1$, $\sin(\pi) = 0$, $\tan(\pi)$ is undefined.

イロト イヨト イヨト イヨト

Question 2.

Find $cos(\pi)$, $sin(\pi)$, and $tan(\pi)$.

A
$$\cos(\pi) = 1$$
, $\sin(\pi) = 0$, $\tan(\pi) = 0$.
B $\cos(\pi) = 0$, $\sin(\pi) = 1$, $\tan(\pi) = 0$.
C $\cos(\pi) = -1$, $\sin(\pi) = 0$, $\tan(\pi) = 0$.
D $\cos(\pi) = 0$, $\sin(\pi) = -1$, $\tan(\pi)$ is undefined.
E $\cos(\pi) = -1$, $\sin(\pi) = 0$, $\tan(\pi)$ is undefined.

The terminal side of an angle π meets the unit circle at $(-1,0) = (\cos(\pi), \sin(\pi))$. Thus $\tan(\pi) = \sin(\pi)/\cos(\pi) = 0$.

< ロ > < 同 > < 回 > < 回 >

Question 3.

Find $\cos(2\pi/3)$ and $\sin(2\pi/3)$. Hint: Look for a $\pi/6 - \pi/3 - \pi/2$ triangle.

A $\cos(2\pi/3) = -1/2$ and $\sin(2\pi/3) = \sqrt{3}/2$ B $\cos(2\pi/3) = -1/2$ and $\sin(2\pi/3) = -\sqrt{3}/2$ C $\cos(2\pi/3) = \sqrt{3}/2$ and $\sin(2\pi/3) = -1/2$ D $\cos(2\pi/3) = -\sqrt{3}/2$ and $\sin(2\pi/3) = 1/2$ E $\cos(2\pi/3) = -1/2$ and $\sin(2\pi/3) = 1/2$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Question 3.

Find $\cos(2\pi/3)$ and $\sin(2\pi/3)$. Hint: Look for a $\pi/6 - \pi/3 - \pi/2$ triangle.

- A $\cos(2\pi/3) = -1/2$ and $\sin(2\pi/3) = \sqrt{3}/2$
- B $\cos(2\pi/3) = -1/2$ and $\sin(2\pi/3) = -\sqrt{3}/2$
- C $\cos(2\pi/3) = \sqrt{3}/2$ and $\sin(2\pi/3) = -1/2$
- D $\cos(2\pi/3) = -\sqrt{3}/2$ and $\sin(2\pi/3) = 1/2$
- E $\cos(2\pi/3) = -1/2$ and $\sin(2\pi/3) = 1/2$

The terminal side of an angle $2\pi/3$ forms an angle of radian measure $\pi/6$ with the positive *y*-axis and an angle $\pi/3$ with the negative *x*-axis. The *x*-coordinate is negative. Using a $\pi/6 - \pi/3 - \pi/2$ triangle we find $\cos(2\pi/3) = -1/2$ and $\sin(2\pi/3) = \sqrt{3}/2$.

ヘロト ヘ回ト ヘヨト ヘヨト

Question 4.

Suppose that the terminal angle of an angle *t* passes through the point (5, -12). Find $\cos(t)$.

- <mark>A</mark> 5
- **B** 5/12
- C -5/12
- D 5/13
- E 5/13

< ロ > < 同 > < 回 > < 回 >

Question 4.

Suppose that the terminal angle of an angle *t* passes through the point (5, -12). Find $\cos(t)$.

A 5

- B 5/12
- C -5/12
- D 5/13
- E 5/13

We have that the point (5, -12) is $\sqrt{5^2 + 12^2} = \sqrt{169} = 13$ units from the origin. Thus $\cos(t) = x/r = 5/13$.

< ロ > < 同 > < 回 > < 回 >

Question 5.

Select an interval so that for all *t* in the interval, we have cos(t) > 0 and tan(t) < 0.

- A $(\pi, 3\pi/2)$ B $(3\pi, 4\pi)$ C $(-9\pi/2, -2\pi)$
- **D** (π/2, π)
- **Ε** (0, 2π)

< 回 ト < 三 ト < 三

Question 5.

Select an interval so that for all *t* in the interval, we have cos(t) > 0 and tan(t) < 0.

- **Α** (π, **3**π/**2**)
- **Β** (3*π*, 4*π*)
- C $(-9\pi/2, -2\pi)$
- **D** (π/2, π)
- **Ε** (0, 2π)

First observe that if cos(t) > 0, then tan(t) = sin(t)/cos(t) and sin(t) have the same sign.

If we add 2π to each endpoint, the interval $(-9\pi/2, -2\pi)$ gives the same part of the circle as the interval $(-\pi/2, 0)$. In the fourth quadrant we have $\cos(t) > 0$ and $\sin(t) < 0$. Thus, the answer is C. Note that in an interval of length more than $\pi/2$, one of $\sin(t)$ or $\cos(t)$ will change sign.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >