Lecture 29: More graphs of trig functions

Russell Brown

Department of Mathematics University of Kentucky

A (10) A (10) A (10)

Question 1.

Find the period of the function $f(t) = \sin(\pi t/12)$.

- A 12
- **Β** 12π
- C $24/\pi$
- D 24
- E 12 $/\pi$

э

Question 1.

Find the period of the function $f(t) = \sin(\pi t/12)$.

- A 12
- **Β 12**π
- C $24/\pi$
- D 24
- **E** $12/\pi$

The period of sin(t) is 2π . Thus, $sin(\pi t/12)$ will complete one period if $0 \le \pi t/12 \le 2\pi$. Solving this pair of inequalities, gives $0 \le t \le 24$. Thus, the period is 24.

< □ > < 同 > < 回 > < 回 > < 回 >

Question 2.

List the transformations needed to transform the graph of sin(x) into the graph $sin(3x + \pi)$. There is more than one correct answer, but you only need to find one.

- A Shift π units to the left and then shrink horizontally by factor of 3.
- B Shrink horizontally by a factor of 3 and then shift $\pi/3$ units to the left.
- C Shrink horizontally by a factor of 3 and then shift π units to the left.
- D Shrink horizontally by a factor of 3 and then shift $\pi/3$ units to the right.
- E Shrink horizontally by a factor of 3 and then shift π units to the right.

Question 2.

List the transformations needed to transform the graph of sin(x) into the graph $sin(3x + \pi)$. There is more than one correct answer, but you only need to find one.

- A Shift π units to the left and then shrink horizontally by factor of 3.
- B Shrink horizontally by a factor of 3 and then shift $\pi/3$ units to the left.
- C Shrink horizontally by a factor of 3 and then shift π units to the left.
- D Shrink horizontally by a factor of 3 and then shift $\pi/3$ units to the right.
- E Shrink horizontally by a factor of 3 and then shift π units to the right.

Solution to 2.

If we shift π units to the left we transform the graph to $sin(x + \pi)$. Then shrinking horizontally by a factor of 3 gives $sin(3x + \pi)$. Thus A is correct.

If we shrink horizontally by a factor of three, we obtain the graph of sin(3x) and then translating left by $\pi/3$ gives $sin(3(x + \pi/3)) = sin(3x + \pi)$. Thus B is correct. If we shrink horizontally by a factor of three, and then translate π units to the left, we obtain $\sin(3x + 3\pi)$. Since sin is periodic with period π , we have $sin(3x + 3\pi) = sin(3x + \pi)$ and C is also a correct answer. If we shrink horizontally by a factor of 3 and then shift $\pi/3$ units to the right gives $sin(3(x - \pi/3)) = sin(3x - \pi)$. Since sin is periodic with period π , we have $\sin(3x - \pi) = \sin(3x + \pi)$. Thus D is correct. If we shrink horizontally by a factor of 3 and then shift π units to the right gives $sin(3(x - \pi)) = sin(3x - 3\pi)$. Since sin is periodic with period π , we have $sin(3x - 3\pi) = sin(3x + \pi)$. Thus E is correct. In fact, all five answer are correct!

Question 3.

What shift should we apply to the graph of sin(x) to obtain the graph of cos(x)? Again, there are multiple right answers.

- A π units to the right
- **B** $\pi/2$ units to the left
- C $\pi/2$ units to the right
- D π units to the right
- E $3\pi/2$ units to the right

< 回 > < 三 > < 三 >

Question 3.

What shift should we apply to the graph of sin(x) to obtain the graph of cos(x)? Again, there are multiple right answers.

- A π units to the right
- B $\pi/2$ units to the left
- C $\pi/2$ units to the right
- D π units to the right
- E $3\pi/2$ units to the right

< 回 > < 三 > < 三 >

Question 3–solution

The black curve is sin(x) and the red curve is cos(x). We may shift the black curve $\pi/2$ units to the left or $3\pi/2$ units to the right to obtain the red curve.

- B - S

Question 4.

The terminal side of an angle *t* is the part of the line y = 3x with $x \le 0$. Find $\cos(t)$, $\sin(t)$ and $\tan(t)$. Hint: Find a point on the line y = 3x with x < 0.

A
$$\cos(t) = -3\sqrt{10}/10$$
, $\sin(t) = -\sqrt{10}/10$, $\tan(t) = 3$.
B $\cos(t) = -\sqrt{10}/10$, $\sin(t) = 3\sqrt{10}/10$, $\tan(t) = 1/3$.
C $\cos(t) = 3\sqrt{10}/10$, $\sin(t) = \sqrt{10}/10$, $\tan(t) = 3$.
D $\cos(t) = -3\sqrt{10}/10$, $\sin(t) = \sqrt{10}/10$, $\tan(t) = -3$.
E $\cos(t) = -\sqrt{10}/10$, $\sin(t) = -3\sqrt{10}/10$, $\tan(t) = 1/3$.

Question 4.

The terminal side of an angle *t* is the part of the line y = 3x with $x \le 0$. Find $\cos(t)$, $\sin(t)$ and $\tan(t)$. Hint: Find a point on the line y = 3x with x < 0.

- A $\cos(t) = -3\sqrt{10}/10$, $\sin(t) = -\sqrt{10}/10$, $\tan(t) = 3$.
- B $\cos(t) = -\sqrt{10}/10$, $\sin(t) = 3\sqrt{10}/10$, $\tan(t) = 1/3$.
- C $\cos(t) = 3\sqrt{10}/10$, $\sin(t) = \sqrt{10}/10$, $\tan(t) = 3$.
- D $\cos(t) = -3\sqrt{10}/10$, $\sin(t) = \sqrt{10}/10$, $\tan(t) = -3$.
- E $\cos(t) = -\sqrt{10}/10$, $\sin(t) = -3\sqrt{10}/10$, $\tan(t) = 1/3$.

We know that x < 0 so we choose a negative number for x. A convenient choice is x = -1. Then $y = 3 \cdot (-1) = -3$ so that (-1, -3) is a convenient point on the line. This point is $\sqrt{1^2 + 3^2} = \sqrt{10}$ units from the origin. Thus a point on the line y = 3x and on the unit circle is $(-1/\sqrt{10}, -3/\sqrt{10}) = (-\sqrt{10}/10, -3\sqrt{10}/10)$. From this we have $\cos(t) = -\sqrt{10}/10$, $\sin(t) = -3\sqrt{10}/10$ and $\tan(t) = \sin(t)/\cos(t) = 3$.

Unfortunately, none of the options in the question are correct. Full credit was given to everyone on this question.

Brown (University of Kentucky)

More graphs of trig functions