Lecture 30: Other trigonometric functions

Russell Brown

Department of Mathematics University of Kentucky

The Sec. 74

Question 1.

(There was a typo in the question on Monday. Here is a corrected version.)

An angle of radian measure *t* is in standard position and the terminal side is the part of the line y = 3x with $x \le 0$. Find $\cos(t)$, $\sin(t)$ and $\tan(t)$. Hint: Find a point on the line y = 3x with x < 0.

A
$$\cos(t) = -3\sqrt{10}/10$$
, $\sin(t) = -\sqrt{10}/10$, $\tan(t) = 3$.
B $\cos(t) = -\sqrt{10}/10$, $\sin(t) = 3\sqrt{10}/10$, $\tan(t) = 1/3$.
C $\cos(t) = 3\sqrt{10}/10$, $\sin(t) = \sqrt{10}/10$, $\tan(t) = 3$.
D $\cos(t) = -3\sqrt{10}/10$, $\sin(t) = \sqrt{10}/10$, $\tan(t) = -3$.
E $\cos(t) = -\sqrt{10}/10$, $\sin(t) = -3\sqrt{10}/10$, $\tan(t) = 3$.

イロト イポト イラト イラト

Question 1.

(There was a typo in the question on Monday. Here is a corrected version.)

An angle of radian measure *t* is in standard position and the terminal side is the part of the line y = 3x with $x \le 0$. Find $\cos(t)$, $\sin(t)$ and $\tan(t)$. Hint: Find a point on the line y = 3x with x < 0.

A $\cos(t) = -3\sqrt{10}/10$, $\sin(t) = -\sqrt{10}/10$, $\tan(t) = 3$. B $\cos(t) = -\sqrt{10}/10$, $\sin(t) = 3\sqrt{10}/10$, $\tan(t) = 1/3$.

$$\cos(t) = 3\sqrt{10/10}, \sin(t) = \sqrt{10/10}, \tan(t) = 3.$$

$$\cos(t) = -3\sqrt{10}/10$$
, $\sin(t) = \sqrt{10}/10$, $\tan(t) = -3$.

E
$$\cos(t) = -\sqrt{10}/10$$
, $\sin(t) = -3\sqrt{10}/10$, $\tan(t) = 3$.

We know that x < 0 so we choose a negative number for x, say x = -1. Then $y = 3 \cdot (-1) = -3$ so that (-1, -3) is on the terminal side of the angle. This point is $\sqrt{1^2 + 3^2} = \sqrt{10}$ units from the origin. Thus a point on the line y = 3x and on the unit circle is $(-1/\sqrt{10}, -3/\sqrt{10}) = (-\sqrt{10}/10, -3\sqrt{10}/10)$. From this we have $\cos(t) = -\sqrt{10}/10$, $\sin(t) = -3\sqrt{10}/10$ and $\tan(t) = \sin(t)/\cos(t) = 3$.

Question 2.

Suppose that cos(t) < 0 and tan(t) > 0, which of the following inequalities might be true?

A $0 < t < \pi/2$ B $\pi/2 < t < \pi$ C $\pi < t < 3\pi/2$ D $3\pi/2 < t < 2\pi$ E $-\pi/2 < t < 0$

4 **A** N A **B** N A **B** N

Question 2.

Suppose that cos(t) < 0 and tan(t) > 0, which of the following inequalities might be true?

- A $0 < t < \pi/2$ B $\pi/2 < t < \pi$ C $\pi < t < 3\pi/2$
- D $3\pi/2 < t < 2\pi$
- $E \pi/2 < t < 0$

Since $\cos(t) < 0$ and $\tan(t) = \sin(t)/\cos(t) > 0$, we have $\sin(t) < 0$. With $\sin(t) < 0$ and $\cos(t) < 0$, we conclude we are in the third quadrant. Thus one choice is that *t* lies in the interval $[\pi/2, 3\pi/2]$.

-

イロト イポト イラト イラト

Question 3.

Find the solution(s) of the equation tan(2x) = 1 with $0 < x < \pi$.

A π/4, 5π/4
B π/8
C π/8, 5π/8
D π/4
E 42π

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Question 3.

Find the solution(s) of the equation tan(2x) = 1 with $0 < x < \pi$.

A $\pi/4, 5\pi/4$ B $\pi/8$ C $\pi/8, 5\pi/8$ D $\pi/4$ E 42π

The function tan(x) is periodic with period π . Thus tan(2x) has period $\pi/2$. We need to consider two periods of the graph. From the unit circle tan(t) = 1 if $t = \pi/4$ and $5\pi/4$. Thus, we want $2x = \pi/4$, $5\pi/4$ or $x = \pi/8$, $5\pi/8$.

3

Question 4.

Simplify the expression by writing everything in terms of sin(x) and cos(x).

$$\tan(x)\cot(x)\cos(x)(1+\sec^2(x))$$

- A cos(x)
- B $tan^2(x)$
- $C \cos(x) + 1/\cos(x)$
- D 1
- E None of the above.

< E

Question 4.

Simplify the expression by writing everything in terms of sin(x) and cos(x).

$$\tan(x)\cot(x)\cos(x)(1+\sec^2(x))$$

- A cos(x)
- **B** $tan^2(x)$
- $C \cos(x) + 1/\cos(x)$
- D 1
- E None of the above.

If we write everything in terms of sin(x) and cos(x), we obtain

$$\tan(x)\cot(x)\cos(x)(1 + \sec^2(x))$$

$$= \frac{\sin(x)}{\cos(x)}\frac{\cos(x)}{\sin(x)}\cos(x) + \frac{\cos(x)}{\cos^2(x)}$$

$$= \cos(x) + \frac{1}{\cos(x)}$$