Lecture 33: Half angle formula

Russell Brown

Department of Mathematics University of Kentucky

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Question 1.

Select a true trigonometric identity.

A
$$\sin(2t) = 2\sin(t)$$

B $\sin^2(t) + \cos^2(t) = \cos(0)$
C $\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$
D $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$
E $\tan(x) = \frac{1}{\cot(x)}$

э

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Question 1.

Select a true trigonometric identity.

A $\sin(2t) = 2\sin(t)$ B $\sin^2(t) + \cos^2(t) = \cos(0)$ C $\sin(a+b) = \sin(a)\cos(b) + \sin(b)\cos(a)$ D $\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$ E $\tan(x) = \frac{1}{\cot(x)}$ All but A are identically true. If we let $t = \pi/2$, then $\sin(2t) = 0$, but $2\sin(t) = 2$, thus there is at least one value of t for which this equation

fails.

Question 2.

Which of the expressions below is equivalent to $\cos(x - \pi/2)$?

- A cos(x)
- $B \cos(x)$
- $C \sin(x)$
- $D \sin(x)$
- $E \sin(\pi/2 x)$

3

< ロ > < 同 > < 回 > < 回 >

Question 2.

Which of the expressions below is equivalent to $\cos(x - \pi/2)$?

- A cos(x)
- $B \cos(x)$
- C sin(x)
- $D \sin(x)$
- $E \sin(\pi/2 x)$

3

< ロ > < 同 > < 回 > < 回 >

Question 3.

If an angle of measure *t* and the terminal side of the angle passes through the point (-42, -24), determine the signs of $\cos(t/2)$ and $\sin(t/2)$.

- A $\cos(t/2) > 0$ and $\sin(t/2) > 0$
- B $\cos(t/2) < 0$ and $\sin(t/2) > 0$
- C $\cos(t/2) < 0$ and $\sin(t/2) < 0$
- D $\cos(t/2) > 0$ and $\sin(t/2) < 0$
- E There is not enough information to determine the answer.

Question 3.

If an angle of measure *t* and the terminal side of the angle passes through the point (-42, -24), determine the signs of $\cos(t/2)$ and $\sin(t/2)$.

- A $\cos(t/2) > 0$ and $\sin(t/2) > 0$
- B $\cos(t/2) < 0$ and $\sin(t/2) > 0$
- **C** $\cos(t/2) < 0$ and $\sin(t/2) < 0$
- D $\cos(t/2) > 0$ and $\sin(t/2) < 0$
- E There is not enough information to determine the answer.

The angle *t* lies in quadrant III, so we might have $\pi < t < 3\pi/2$ in which case $\pi/2 < t/2 < 3\pi/4$ or t/2 lies in quadrant I and A holds. However, we might also have $3\pi < t < 7\pi/2$ and then $3\pi/2 < t < 7\pi/4$. In this case t/2 lies in quadrant III and C holds.

Question 4.

(Review) Solve for x, $4^x = 9$.

- A $x = \ln(9) / \ln(4)$
- **B** $x = \log(9) / \log(4)$
- **C** x = 9/4
- D $x = \ln(9)/4$
- $E x = 9/\log(4)$

э

Question 4.

(Review) Solve for x, $4^x = 9$.

- A $x = \ln(9) / \ln(4)$
- B $x = \log(9) / \log(4)$
- **C** x = 9/4
- D $x = \ln(9)/4$
- $E x = 9/\log(4)$

We can apply the logarithm to any base to the equation to obtain $\log_a(4^x) = \log_a(9)$. Using a property of the logarithms, we have $x \log_a(4) = \log_a(9)$. And solving gives that $x = \log_a(9) / \log_a(4)$. Answer A is this formula with the base a = e and answer B is this formula with a = 10.