Lecture 35: Solving trigonometric equations

Russell Brown

Department of Mathematics University of Kentucky

Brown (University of Kentucky)

Solving trigonometric equations

4 3 5 4 3

< 6 b

Question 1.

Solve the equation cos(x) = 1 for x. There may be more than one right answer below.

- **A** 0
- **Β** 2π
- **C** 4π
- **D** 6π
- **Ε** 42π

э

< ロ > < 同 > < 回 > < 回 >

Question 1.

Solve the equation cos(x) = 1 for x. There may be more than one right answer below.

- A 0
- **Β 2**π
- **C** 4π
- D 6π
- Ε **42**π

For any integer k, we have $cos(2k\pi) = cos(0) = 1$. Thus all answers are correct. We will typically write this as $x = 2k\pi$ ($k = 0, \pm 1, \pm 2, ...$).

3

Question 2.

Solve $tan(x) = 1$. Give all solutions.
A $tan^{-1}(1)$
Β π/ 4
C $\pi/4 + 2k\pi$ ($k = 0, \pm 1, \pm 2,$)
D $\frac{\pi + 4k\pi}{4}$ $(k = 0, \pm 1, \pm 2,)$
$E \ -\pi/4 + k\pi \ (k = 0, \pm 1, \pm 2, \dots)$

2

イロト イヨト イヨト イヨト

Question 2.

Solve $tan(x) = 1$. Give all solutions.
A tan ⁻¹ (1)
Β π/4
C $\pi/4 + 2k\pi$ ($k = 0, \pm 1, \pm 2,$)
D $rac{\pi+4k\pi}{4}$ ($k=0,\pm 1,\pm 2,\dots$)
$E -\pi/4 + k\pi \ (k = 0, \pm 1, \pm 2, \dots)$
D.

We know that $tan(\pi/4) = 1$ and thus $tan^{-1}(1) = \pi/4$. Since $tan(x + k\pi) = tan(x)$, other solutions of tan(x) = 1 are of the form

$$rac{\pi}{4} + k\pi = rac{\pi}{4} + rac{4k\pi}{4} = rac{\pi + 4k\pi}{4}$$

for $k = 0, \pm 1, \pm 2, \pm 3, \dots$

Question 3.

Find all solutions of cos(x) = 2. n

A
$$\pi/4$$

B $\pi/4 + k\pi$, $k = 0, \pm 1, \pm 2, ...$
C $\pi/4$
D $\pi/4 + 2k\pi$ and $-\pi/4 + 2k\pi$, $k = 0, \pm 1, \pm 2, ...$

E None of the above.

э

Question 3.

Find all solutions of cos(x) = 2. n

A
$$\pi/4$$

B $\pi/4 + k\pi$, $k = 0, \pm 1, \pm 2, ...$
C $\pi/4$
D $\pi/4 + 2k\pi$ and $-\pi/4 + 2k\pi$, $k = 0, \pm 1, \pm 2, ...$

E None of the above.

Ε.

Since the range of cos is [-1, 1], there is no solution to the equation cos(x) = 2.

4 3 5 4 3

\[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[
 \]
 \[

Question 4.

Solve sec(x) = 2. Give all solutions.

A
$$\pi/3 + 2k\pi$$
, $k = 0, \pm 1, \pm 2, ...$
B $\pi/3 + 2k\pi$ and $-\pi/3 + 2k\pi$, $k = 0, \pm 1, \pm 2, ...$
C $\pi/3 + 2k\pi$ and $2\pi/3 + 2k\pi$, $k = 0, \pm 1, \pm 2, ...$
D $\pi/3 + k\pi$, $k = 0, \pm 1, \pm 2, ...$
E $-\pi/3 + k\pi$, $k = 0, \pm 1, \pm 2, ...$

2

イロン イ理 とく ヨン イヨン

Question 4.

Solve sec(x) = 2. Give all solutions.

A $\pi/3 + 2k\pi$, $k = 0, \pm 1, \pm 2, ...$

- B $\pi/3 + 2k\pi$ and $-\pi/3 + 2k\pi$, $k = 0, \pm 1, \pm 2, ...$
- **C** $\pi/3 + 2k\pi$ and $2\pi/3 + 2k\pi$, $k = 0, \pm 1, \pm 2, ...$
- D $\pi/3 + k\pi, k = 0, \pm 1, \pm 2, \dots$

$$E -\pi/3 + k\pi, k = 0, \pm 1, \pm 2, ...$$

Recall that $\sec(x) = 1/\cos(x)$, thus if $\sec(x) = 2$, then $\cos(x) = 1/2$. The solutions of $\cos(x) = 1/2$ are in option B.

(B)