
1 Lecture 37: The substitution rule.

• Recall the chain rule and restate as the substitution rule.

• u-substitution, bookkeeping for integrals.

• Definite integrals, changing limits.

• Symmetry-integrating even and odd functions.

1.1 The substitution rule.

Recall the chain rule: If F ′ = f and g is differentiable, then

(F ◦ g)′(x) = F ′(g(x))g′(x).

We can restate this as:
The substitution rule. If F is an anti-derivative of f and g is a differentiable

function, then F ◦ g(x) is an anti-derivative of (f ◦ g)(x)g′(x). In other words,

F ◦ g(x) =
∫
f(g(x))g′(x) dx.

1.2 u-substitution

The Leibniz notation provides a convenient way to keep track of the substitution rule.
We let

u = g(x), du = g′(x)dx. (1)

To evaluate the indefinite integral∫
f(g(x))g′(x) dx

set u = g(x) and then du = g′(x)dx making these substitutions gives∫
f(g(x))g′(x) dx =

∫
f(u) du = F (u) = F (g(x)) + C.

A simple example might be clearer.

Example. Find ∫
2x sin(x2) dx.

Solution. Set u = x2 and then du = 2xdx. Making the substitutions as in (1) gives∫
2x sin(x2) dx =

∫
sinu du = cosu + C = cos(x2) + C.



Exercise. Check our answer by differentiating.

Below is a slightly more interesting example. In this example, we do not find
exactly the derivative of u = g(x) hiding in the integral. However, we may multiply
the equation du = g′(x)dx by a constant and still use this method.

Example. Find ∫ 1

(1− 2x)2
dx.

Solution. In this example, we only need to substitute by the linear function u =
1 − 2x and then du = (−2)dx. In this case, we need to divide by −2 to obtain
−1
2
du = dx. Then we obtain,

∫ 1

(1− 2x)2
dx =

−1

2

∫ 1

u2
du =

1

2
u−1 =

1

2

1

1− 2x
+ C.

This works because if u = g(x) and v = cg(x), then we have dv = c du = cg′(x) dx
by the constant multiple rule for differentiation. If we multiply u by a function h(x),
then we would need to use the product rule to find the derivative of hg and life would
be more complicated.

Exercise. ∫
sin(x) cos(x) dx

Solution. If we set u = sin(x), then du = cos(x) dx and we have∫
sin(x) cos(x) dx =

∫
u dx =

1

2
u2 + C =

1

2
sin2(x) + C.

If we set u = cos(x), then du = − sin(x) dx and we have∫
sin(x) cos(x) dx = −

∫
u dx = −1

2
u2 + C = −1

2
cos2(x) + C.

Check these answers. Explain why we have found two different answers.



1.3 Definite integrals.

Sometimes, it is more convenient to change the limits of integration, rather than to
replace u by g(x) after integrating. Thus we make the substitions,

u = g(x), du = g′(x)dx, if x = a, u = g(a), if x = b, u = g(b). (2)

If we use the substitution rule (2) in a definite integral, we obtain∫ b

a
f(g(x))g′(x) dx = F (g(b))− F (g(a)) =

∫ g(b)

g(a)
f(u) du.

We give a simple example of how this works.

Example. Find ∫ 4

1

√
2x + 1 dx.

Solution. Set u = 2x + 1 and then du = 2dx. If x = 1, then u = 3 and if x = 4,
then u = 9. Thus, ∫ 4

1

√
2x + 1 dx =

1

2

∫ 9

3
u1/2 du

=
1

2

2

3
u2/3

∣∣∣9
3

=
1

3
(93/2 − 33/2) = 9

√
3.

It is also possible to replace u by g(x) to find an anti-derivative as a function of x
and then evaluate with the original limits. Here is a solution following this strategy.

Solution. Set u = 2x + 1 and then du = 2dx. If x = 1, then u = 3 and if x = 4,
then u = 9. Thus, ∫ √

2x + 1 dx =
1

2

∫
u1/2 du

=
1

2

2

3
u3/2 + C

=
1

3
(2x + 1)3/2 + C.

Now that we have the anti-derivative, we may use one of the Fundamental Theo-
rems of Calculus to obtain∫ 4

1

√
2x + 1 dx =

1

3
(2x + 1)3/2

∣∣∣∣4
1

=
1

3
(93/2 − 33/2) = 9−

√
3.



Finally, we give one more example, where a bit more algebra is needed.

Example. Find the anti-derivative∫
x
√

2x + 1 dx.

Solution. Again, we substitute u = 2x+ 1 and du = 2dx or dx = frac12du but this
leaves an x. We solve u = 2x + 1 to express x = 1

2
(u− 1). Making the substitutions,

we have ∫
x
√

2x + 1 dx =
∫ 1

2
(u− 1)u1/21

2
du =

1

4

∫
(u3/2 − u1/2) du.

Taking the anti-derivative and then replacing u by 2x + 1 gives

1

4

∫
(u3/2 − u1/2) du =

2

20
u5/2 − 2

12
u3/2 + C.

And replacing u by 2x + 1 gives∫
x
√

2x + 1 dx ==
1

10
(2x + 1)5/2 − 1

6
(2x + 1)3/2 + C.

1.4 Symmetry

The substitution u = −x gives∫ a

0
f(x) dx =

∫ 0

−a
f(−u) du.

If f is odd, or even, this simplifies further.
A function is even if f(−x) = f(x). For even functions we have∫ a

−a
f(x) dx = 2

∫ a

0
f(x) dx.

A function is odd if f(−x) = −f(x) and for odd functions,∫ a

−a
f(x) dx = 0.

Example. Find∫ 2

−2
x3 + x2 + x + 2 dx

∫ 1

−1
x101 sin(x100) dx

∫ 11

−10
x dx.
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