
1 Lecture 38: Further transcendental functions

• The derivatives of arctan and arcsin and the corresponding anti-differentiation
formula

• Rescaling

• Integrating (x+ a)/(1 + x2) and (x+ a)/
√

1− x2.

• Approximating π

1.1 The derivatives of arctan and arcsin

We recall two differentiation formulae.

d

dx
arcsin(x) =

1√
1− x2

, −1 < x < 1,
d

dx
arctan(x) =

1

1 + x2
.

Thus, we have two more useful anti-derivatives.∫ dx

1 + x2
= arctan(x) + C,

∫ dx√
1− x2

+ C.

Example. Evaluate the integrals∫ 1

0

dt

1 + t2
,

∫ x

0

dt√
1− t2

.

Solution. ∫ 1

0

dt

1 + t2
= arctan(1)− arctan(0) = π/4.

∫ x

0

dt√
1− t2

= arcsin(x)− arcsin(0) = arcsin(x).

Thus, the integral can be used to given an alternate definition of the functions
arcsin and arctan. This provides a way to compute values of these functions. We may
approximate the integrals by Riemann sums. Next semester we will find even more
efficient ways to compute these functions.

Example. Can you provide a definition of ln(x) using an integral?

Solution. ∫ x

1

dt

t
.



1.2 Rescaling

In this section, we will find anti-derivatives for∫ dx

a2 + b2x2
and

∫ dx√
a2 − b2x2

.

Example. Make the substitution u = 3x/2 in the integral∫ dx

4 + 9x2

and find an anti-derivative.

Solution. We have x = 2u/3 and thus dx = 2
3
du. Thus∫ dx

4 + 9x2
=

2

3

∫ du

4 + 4u2
=

1

6

∫ d

u
1 + u2 =

1

6
arctan(3x/2) + C.

We may check our answer,

d

dx

1

6
arctan(2x/3) =

1

6

2

3

1

1 + 4x2/9
=

1

9 + 4x2
.

Example. What can we substitute for x to convert
√

2− x2 into
√

2(1− u2)?
Evaluate ∫ 1

0

√
2− x2.

Solution. We will try a substitution of the form x = au and obtain 2−x2 = 2−a2u2.
If we use the distributive law to factor out 2, we obtain 2(1− a2

2
u2) and we see that

we should choose a2/2 = 1 in order to obtain an integral involving 1− u2. We choose
a = +

√
2 for simplicity.

Let
√

2u = x and then
√

2− x2 =
√

2(1− u2) =
√

2 ·
√

1− u2. Thus, we have the
anti-derivative,∫ dx√

2− x2
=
√

2
∫ dx√

2
√

1− u2
= arcsin(u) + C = arcsin(x/

√
2) + C.

We leave it as an exercise to check.
We evaluate the definite integral as∫ 1

0

dx√
2− x2

= arcsin(x/
√

2)
∣∣∣1
x=0

= arcsin(1/
√

2)− arcsin(0) = π/4.



1.3 More general integrals

Example. Find the anti-derivative∫ x+ 2

1 + 4x2
dx.

Solution. If we use the linearity of the indefinite integral, we have∫ x+ 2

1 + 4x2
dx =

∫
x dx1 + 4x2 +

∫ dx

1 + 4x2
.

We evaluate the integrals separately. For the first, we use the substitution u = 1+4x2,
1
8
du = xdx to obtain∫ dx

1 + 4x2
=

1

8

∫ du

u
=

1

8
ln |u|+ C =

1

8
ln(1 + 4x2) + C.

For the second we use the substitution u = x/2, du = 1
2

and obtain∫ dx

1 + 4x2
=

1

2

∫ du

1 + u2
=

1

2
arctan(u) + C =

1

2
arctan(2x) + C.

Thus, altogether we have∫ x+ 2

1 + 4x2
dx =

1

8
ln(1 + 4x2) +

1

2
arctan(2x) + C.

There is no loss of generality in dropping the absolute values in the expression ln(1 +
4x2) since 1 + 4x2 is always positive.

We end with a couple of related examples.

Exercise. Find ∫ ex

1 + e2x
dx

∫ x+ 1√
3− x2

dx,
∫ x2

1 + x2
dx.

1.4 Approximating π

Example. Use the midpoint approximation with four subintervals to approximate
the integral ∫ 1

0

dx

1 + x2
.

Use this to find an approximation to π. What is the error?



Solution. The midpoint sum is

M4 =
1

4
(

1

1 + 1/64
+

1

1 + 9/64
+

1

1 + 25/64
+

1

1 + 49/64
) ≈ 0.78670.

Since the exact value of the integral is π/4, we may approximate π by 4 · 0.78670 ≈
3.1468. The absolute error is approximately 0.0052079.
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