
1 Lecture 39: Exponential growth and decay

• A model for exponential growth and decay

• Fitting our solution to data, doubling time and half-life

• Example: Population growth

• Example: Carbon dating

1.1 A model for population growth

A simple model for a population is to assume that the number of births and deaths
is a fixed fraction of the total population. Thus, y is the total population, b is the
birth rate or the fraction of the population that give birth each year, then the total
number of births per year is by. Similarly if d is the death rate, then dy is the number
of deaths per year. The rate of change of the population y with respect to time is
by − dy. We can express this using a derivative as

dy

dt
= ky (1)

where the constant k = b−d. Since y is positive, we have that y is increasing if k > 0
and y is decreasing if k < 0. It is easy to see that the family of functions y(t) = P0e

kt

are solutions of (1). Here, P0 is a constant and each choice of P0 gives a different
solution of (1). In fact, these are the only solutions.

Theorem 2 If y solves (1) on an interval I, then there is a constant P0 so that
y(t) = P0e

kt on I.

Proof. If we want to show y(t) = P0e
kt, then we expect that e−kty(t) is constant.

One way to show a function is constant is to show the derivative is zero. We consider
the function f(t) = e−kty(t) and differentiate f using the product rule,

f ′(t) = (−k)e−kty(t) + e−kty′(t) = −ke−kty + e−ktky = 0.

We have used (1) for the second inequality. Since f ′ = 0 on an interval, f is constant.
If we call the constant P0, then we have f(t) = P0e

kt.

1.2 Model fitting

If a function y is given by y(t) = P0e
kt and k > 0 we say that y grows exponentially.

If k < 0, then we say that y decays exponentially. In this case we will often replace
k by −k and write y(t) = P0e

−kt. Thus the constant k is positive. Once we know
that we have exponential growth and decay, we need two additional bits of data to
determine the constant k and the value of P0. Note we have y(0) = P0 so P0 is the
initial value of y.



Example. Suppose that y obeys (1), y(1) = 2 and y(2) = 5. Find y(t).

Solution. We know that y(t) = P0e
kt. The given information tells us that

P0e
k = 2, P0e

2k = 5.

To find k, we may divide these equations and find

P0e
2k

P0ek
=

5

2
.

Taking the natural logarithm of both sides, we find k ln(e) = ln(5/2). Thus, y(t) =
P0e

t ln(5/2). Substiuting t = 1, we find P0e
ln(5/2) = 2 or P0 = 4/5. Summarizing,

y(t) =
4

5
et ln(5/2) =

4

5

(
5

2

)t

.

One of the important features of exponential growth is the existence of a time T
during which the population doubles, i.e. that y(t + T ) = 2y(t). To see that this
doubling property is independent of t, we consider

y(t + T )

y(t)
=

P0e
k(t+T )

P0ekt
= ekT .

Thus, to find the doubling time we need to solve ekT = 2 for T .

Example. If f(t) = 100e0.3t, find the doubling time.
Can you find the tripling time?

Solution. We have
f(t + T )

f(t)
= e3T .

We solve the equation e0.3T = 2 to find T = ln(2)/0.3.
The same argument gives that the tripling time is ln(3)/0.3.

In the case of exponential decay, the corresponding notion is half-life. This is the
time T so that y(t + T ) = 1

2
y(t).

1.3 Example: Exponential growth

Example. Suppose that a population grows at a rate of 3% per day. If the initial
population is 100, when will the population reach 1000. What is the doubling time?



Solution. Let y(t) denote the population at time t where t is measured in days. If
y(t) is the population at time t, we know that y′ = 0.03y and y(0) = 100. Thus,
y(t) = 100e0.03t. We are asked to find the time T when y(T ) = 1000. Thus we want
y(T ) = 100e0.03T = 1000. Thus we need e0.03T = 10 or T = ln(10)/0.03 ≈ 76.753
days.

To find the doubling time, we solve

100e0.03(t+T ) = 2 · 100e0.03t

for T to find e0.03T = 2 or T = ln(2)/0.03 days.

1.4 Example: Carbon dating

The carbon in the atmosphere includes two isotopes C14 and C12 and the ratio of
these isotopes in a living plants and animals roughly the same as in the atmosphere.
When the organism dies, the C14 starts to decay. If R(t) represents the ratio of C14

to C12 at a time t years after the organism’s death, we find that R(t) = Rae
−kt where

Ra is ratio of C14 to C12 in the atmosphere. The half-life of C14 is approximately
5730 years.

Example. Suppose that in a sample of wood, the ratio of C14 to C12 is 23% of the
ratio in the atmosphere. How long ago was the wood in a living tree?

Solution. Let R(t) the ratio of C14 to C12 at a time t years after the tree dies. As
R(t) = Rae

−kt, we want to find the time T so that R(T ) = 0.23Ra.
Before we can do this, we need to find k. We use that the half-life is 5730 years to

find k. Since e−k5730 = 1
2
, we have that −k = ln(1/2)/5730 of k = ln(2)/5730 ≈ 1.21 ·

10−4. Thus, if e−kT = 0.23, we may solve for T and find that T = ln(0.23)/(−k) =
ln(0.23)5730/ ln(2) ≈ 12, 149 years.
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