# 1 Lecture 03: Inverse functions

- One to one functions and inverse functions
- The exponential and logarithm functions
- The number e and the natural logarithm
- Inverse trig functions

#### 1.1 Definitions

We say that a function is one to one on a domain D if for every value c, the equation f(x) = c has at most one solution.

*Example.* Which of the functions  $f(x) = x^2$  and g(x) = 1/x are one-to-one?

Solution. The equation  $x^2 = c$  has two solutions when c > 0, namely  $+\sqrt{c}$  and  $-\sqrt{c}$ . Thus the function  $f(x) = x^2$  is not one-to-one on the real line.

But the equation 1/x = c has only the solution x = 1/c, unless c = 0, and then it has no solutions. Thus g is one-to-one on the domain  $(-\infty, 0) \cup (0, \infty)$ .

Definition. If f is a function with domain D and range R and g is a function with domain R and range D so that  $f \circ g(x) = x$  for all x in R and  $g \circ f(x) = x$  for all x in D, then we say that the function f is *invertible* and g is the inverse of g. We use the notation  $f^{-1}$  for the inverse of f.

*Example.* Let  $f(x) = 1 + x^2$  with domain  $(-\infty, 0]$ . Show that f has an inverse and give the domain and range of  $f^{-1}$ .

Solution. We first note that the domain of f is  $(-\infty, 0]$  and the range is  $[1, \infty)$ . If f(x) = y, then we will want  $f^{-1}(y) = x$ . Thus we need to solve the equation  $y = 1 + x^2$  for  $y \ge 1$ . The solutions are  $x = \pm \sqrt{y-1}$ . Since the range of the inverse function is to be  $(-\infty, 0]$ , we choose the negative sign. Thus

$$f^{-1}(x) = -\sqrt{y-1}.$$

The domain of  $f^{-1}$  is  $[1, \infty)$ , the range of f and the range of  $f^{-1}$  is  $(-\infty, 0]$ , the domain of f.

If we have f(x) = y, then the inverse function must take y back to x and if this is to determine  $f^{-1}(y)$  uniquely, we must have that f is one-to-one. Furthermore, we can only hope to define  $f^{-1}(y)$  for values y in the range of f. This observation also helps us to graph the inverse function. If (x, y) is a point on the graph of f, then (y, x) gives a point of the graph of  $f^{-1}$ . The graph of  $f^{-1}$  is obtained by reflecting the graph of f in the line y = x.



## **1.2** Exponential and logarithms

An important example of a function and its inverse are the exponential and logarithm functions. If a > 0 and  $a \neq 1$ , we may define the *exponential function with base a* by  $f(x) = a^x$ . We are familiar with the powers  $a^n = a \cdots a$  as repeated multiplication if  $n = 1, 2, \ldots$  and  $a^{-n} = 1/a^n$  if  $n = 1, 2, \ldots$ . Since  $(a^{1/n})^n = a$ , we want  $a^{1/n}$  to be the *n*th root  $\sqrt[n]{a}$  and finally we can put  $a^{m/n} = (a^{1/n})^n$ . However the definition of  $a^x$ for x an irrational number is more subtle. By the end of this course, we will be able to say more about this. Altogether, we have the exponential function  $f(x) = a^x$  is defined for x in the domain  $(-\infty, \infty)$  and has range  $(0, \infty)$ .

The exponential function satisfies the properties

$$a^0 = 1 \tag{1}$$

$$a^1 = a \tag{2}$$

$$a^x a^y = a^{x+y} \tag{3}$$

$$a^{-x} = 1/a^x \tag{4}$$

$$(a^x)^y = a^{xy} \tag{5}$$

The inverse function to this exponential function is called the logarithm with base a, denoted by  $\log_a$ .

*Example.* Find the values of  $\log_{10}(100)$  and  $\log_2(\sqrt{2})$ .

Solution. Since the function  $10^x$  takes 2 to 100, the inverse function takes 100 to 2,  $\log_{10}(100) = 2$ .

Since  $\sqrt{2} = 2^{1/2}$ , we have that  $\log_2(\sqrt{2}) = 1/2$ .

Each of the properties of the exponential function can be recast as a property of the logarithm function.

$$\log_a(1) = 0 \tag{7}$$

$$\log_a(a) = 1 \tag{8}$$

$$\log_a(x) + \log_a(y) = \log_a(xy), \qquad x > 0, y > 0$$
(9)

$$\log_a(1/x) = -\log_a(x), \qquad x > 0 \tag{10}$$

$$\log_a(x^r) = r \log_a(x), \qquad x > 0, r \in (-\infty, \infty).$$
(11)

To see why (9) is true, we can write  $x = a^{\log_a(x)}$ ,  $y = a^{\log_a(y)}$ , and  $xy = a^{\log_a(xy)}$ . Then using property (3) of the exponential function, we have

$$a^{\log_a(xy)} = xy = a^{\log_a(x)}a^{\log_a(y)} = a^{\log_a(x) + \log_a(y)}.$$

Since the exponential function is one-to-one, we have  $\log_a(xy) = \log_a(x) + \log_a(y)$ .

## **1.3** The number e

As we saw in the previous section, there is a different logarithm  $\log_a$  for each a > 0 (except a = 1). Which one is best? For the purposes of calculus, we use a special number  $e \approx 2.781828...$  The logarithm and exponential function for this base are written as

 $e^x$  or  $\exp(x)$  and  $\ln(x)$ 

and  $\ln(x)$  is called the natural logarithm. We will see why this logarithm is natural. At the moment, it is a puzzle why we use the base e instead of a more familiar number such as 2 or 10. However, we will see that

It is useful to observe that any exponential function can be expressed in terms of the function  $e^x$ .

*Example.* Write  $4^x$  in the form  $e^{rx}$ .

Solution. We want to have  $4^x = e^{rx}$ . If we take the natural log of both sides, we have  $x \ln(4) = rx$  or  $r = \ln(4)$ . Thus we have  $4^x = e^{x \ln(4)}$ .

*Example.* If x and y are positive numbers and  $\ln(xy^2) = 2$  and  $\ln(x/y) = 0$ , find x and y.

Solution. If we write  $x = e^a$  and  $y = e^b$ , (actually  $a = \ln(x)$  and  $b = \ln(y)$  then we have

$$2 = \ln(e^a e^{2b}) = (a + 2b)\ln(e) = (a + 2b)$$

and

$$0 = \ln(e^{a}/e^{b}) = \ln(e^{a-b}) = a - b.$$

Solving the system of equations

$$a + 2b = 2, \qquad a - b = 0$$

gives a = 2/3 and b = 2/3 or  $x = y = e^{(2/3)}$ .

And of course we can check our answers.

## **1.4** Inverse trigonometric functions

None of the trigonometric functions are one-to-one. However, by restricting the domain we obtain a one-to-one function. The standard choices for domains are below:

$$\begin{aligned} \sin(x) & [-\pi/2, \pi/2] \\ \cos(x) & [0, \pi] \\ \tan(x) & (-\pi/2, \pi/2) \\ \sec(x) & [0, \pi/2) \cup (\pi/2, \pi] \end{aligned}$$

The inverse function to sin on the domain  $[-\pi/2, \pi/2]$  will be denoted using either the notation  $\sin^{-1}$  or arcsin. The prefix arc suggests that when we find  $\theta = \arcsin(x)$ , we are looking for the angle or arc which has  $\sin(\theta) = x$ . Similar considerations apply to arccos or  $\cos^{-1}$ , arctan or  $\tan^{-1}$ , and arcsec or  $\sec^{-1}$ .

Note that there is an inconsistency in our use of the notation  $\sin^{-1}$ . The sin function does not have an inverse. Rather, we are taking the inverse of the function g with  $g(x) = \sin(x)$  for x in the domain  $[-\pi/2, \pi/2]$ . The notation  $\sin^{-1}$  is ambiguous because it is not clear if it represents the inverse function arcsin or the reciprocal  $1/\sin = \csc$ . Perhaps the next time we invent mathematics, we can find better notation.

*Example.* Sketch the graph of  $\arcsin(x)$ . Give the domain and range. Find  $\arcsin(1/2)$ .

Solution. We sketch the graph of  $y = \sin(x)$  for x in  $[-\pi/2, \pi/2]$ . Several convenient points on the graph include  $(-\pi/2, -1)$ , (0, 0), and  $(\pi/2, 1)$ . Thus the points  $(-1, -\pi/2)$ , (0, 0), and  $(1, \pi/2)$  lie on the graph of  $\sin^{-1}$  or arcsin. Plotting these points and doing our best to fill in the intermediate points gives the following plot.



We are considering  $\sin(x)$  with domain  $[-\pi/2, \pi/2]$  and range [-1, 1]. The inverse function arcsin will have domain [-1, 1] and range  $[-\pi/2, \pi/2]$ .

To find  $\arcsin(1/2)$ , we recall that in a  $\pi/6$ ,  $\pi/3$ ,  $\pi/2$  triangle, with hypotenuse 1, the legs are of length 1/2,  $\sqrt{3}/2$  and  $\sin(\pi/6) = 1/2$ . Thus  $\arcsin(1/2) = \pi/6$ .

September 4, 2013