
1 Lecture 15: Rates of change

1.1 Outline

• Rates of change, velocity, acceleration.

• Marginal rates

• Equation of motion for objects falling under constant gravity

• Interpreting position and velocity graphs

1.2 Rates of change

If f(t) is a function depending on time, then we can write down the average rate of
change on an interval [t1, t2],

f(t2)− f(t1)

t2 − t1
.

We have defined the instantaneous rate of change at a time t as the limit

f ′(t) = lim
r→t

f(r)− f(t)

r − t
.

This is also called the derivative. Thus, instantaneous rate of change is another name
for the derivative. In applications the name rate of change is more descriptive.

If s(t) gives the position of a particle as it moves along a line, then

v(t) = lim
k→0

s(t + k)− s(t)

k

gives the instantaneous velocity. If position is measured in meters and time in seconds,
the velocity v is measured in meters/second. We will abbreviate meters by m and
seconds by s so that the units for velocity are m/s.

As a second example, let v(t) be a function which gives the velocity of a particle,
measured in meters per second, at time t seconds. Then the instantaneous rate of
change of velocity is

a(t) = lim
r→t

v(r)− v(t)

r − t
.

This is called acceleration and if velocity is measured in meters per second (or m/s)
and time is measured in seconds, then the units for acceleration will be

m/s

s
= m/s2.

If a > 0, then the velocity is increasing and if a < 0, then velocity is decreasing. We
will also consider speed which is the absolute value of velocity.



1.3 The derivative as a marginal rate

If we approximate the derivative f ′(a) by a difference quotient f(a+1)−f(a)
1

we have

f(a + 1) ≈ f(a) + f ′(a).

At the moment, we have absolutely no way to discuss the error committed in this
approximation. Nonetheless, this is an approximation that is quite common in appli-
cation areas. From this approximation, we see that the derivative corresponds to the
increase resulting from a one unit increase. This is often called a marginal rate.

Example. If f(x) =
√
x, use the approximation to estimate f(82). Can you give

simple approximations for f(80) and f(83). Note that f(81) is very easy to compute.

Solution. We have f(82) is approximately f(81) + f ′(81). Computing f ′(x) =
1/(2
√
x) and thus f(81) + f ′(81) =

√
81 + 1/(2

√
81) = 9 + 1/18 = 163/18. Checking

that (163/18)2 ≈ 82.003 this seems to a very good approximation.
A moment’s thought and recalling that f ′(x) is a rate of change suggests that

f(80) ≈ f(81)− f ′(81) = 161/18 f(83) ≈ f(81) + 2f ′(81) = 164/18 = 82/9.

Checking we see that (161/18)2 ≈ 80.003 and (163/18)2 ≈ 83.003. Thus these ap-
proximations are quite good.

1.4 Object falling under gravity

We now give a simple, but very important equation for the height of an object moving
under the influence of gravity. At the moment, we can only write down the equation.
By the end of the semester, we will know how to recover the height of an object h
from the acceleration a.

Example. If an object is thrown near the surface of the Earth, its height at time t
units after being thrown is given by

h(t) =
1

2
gt2 + v0t + h0.

Show that the acceleration is the constant g and find the velocity and height at
time t = 0.

Solution. Differentiating twice, we have

v(t) = v0gt and a(t) = g.

Thus the acceleration is constant. If we set t = 0 we find v(0) = v0 and h(0) = h0.



If we measure height in meters and time in seconds, then g = −9.8 m/s2. Note
that the negative sign indicates that gravity is pulling the particle down or in the
negative direction.

Example. Suppose an object is thrown from the ground with an initial velocity of
30 m/s2. When will it return to the ground? What is its velocity when it hits the
ground?

Solution. We have the height at time t is given by h(t) = −4.9t2 + 30t meters. If
we solve h(t) = 0, then 0 = t(30 − 4.9t) so the object has h = 0 when t = 0 and
t = 30/4.9 ≈ 6.1s. At this time v(30/4.9) = −9.8(30/4.9)+30 = −60+30 = −30m/s.
Thus the velocity is −30m/s.

Example. Suppose that we throw a ball up in the air and it returns to ground level
after 4 seconds. a) What is the initial velocity? b) What is the greatest height?

Solution. We may assume that the initial height is zero, h0 = 0, and we know that
h(4) = 1

2
g42 + v04 = 0. Solving this equation for v0 gives

v0 = −1

2
g · 4.

When g = −9.8 m/s2, this gives the numerical value v0 = 1
2
· 9.8m/s2 · 4s = 19.6 m/s.

We know the maximum height will occur when the velocity is zero. Solving v(t) =
v0 + gt = 0 gives the maximum occurs when t = tmax = v0/g. The maximum
height will be h(tmax) = −1

2
g(v0/g)2 + v0v0/g = −1

2
v20/g. Since v0 = 19.6 m/s and

−g = 9.8 m/s2 the maximum height is 19.6 m.

Example. Suppose that an object moves along the real line so that its position at
time t is s(t) = t3− 6t2. When is the object’s velocity increasing? When is the speed
increasing?

Solution. We have s(t) = t3−4t2 and thus s′(t) = v(t) = 3t2−12t and a(t) = v′(t) =
6t− 12. We have a > 0 for t > 2 and a < 0 for t < 2.

The speed will be increasing if a) the velocity is positive and the acceleration is
positive and b) the velocity is negative and the speed is negative. Since v < 0 for
0 < t < 4, we have that the speed is increasing for 0 < t < 2. The velocity is positive
for t > 4 and the acceleration is positive there, also. So the speed is increasing for
t > 4.

1.5 Interpreting a velocity graph

Example. The graph below gives the velocity of Radar as he walks along the num-
ber line. Use the graph below to answer the following questions: a) When is the
Radar resting? b) When is Radar moving to the right? c) When is Radar’s velocity
increasing? d) What information do you need to sketch a graph of Radar’s position?



time in minutes1 2 3 4 9

velocity

5 6 7 8

Solution. a) The velocity is zero between 5 and 7 minutes. b) The velocity is positive
from 0 to 5 minutes. c) Never. d) A starting point. We might also need units for the
vertical axis.
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