
1 Lecture 24: Linearization

1.1 Outline

• The linearization of a function at a point a.

• Linear approximation of the change in f . Error, absolute error.

• Examples

1.2 Linearization

Functions can be complicated. Often, it is useful to replace a function by a simpler
function. Today we will discuss one way to approximate a function and look at how
to use this linearization to approximate functions and also when this is a bad idea.

Given a differentiable function f defined near a, the linearization of f at a is the
linear function given by

L(x) = f(a) + f ′(a)(x− a).

Thus, the graph of this function is the tangent line to the graph of f . We expect
that the linearization will be a good approximation to f near a, but not a good
approximation when we are far away from a.

Example. Let f(x) = sin(x). Find the linearization of f at x = 0. Use the lin-
earization to approximate f(0.1) and f(100). Compare these approximations with
the approximations from your calculator.

Solution. To find the linearization at 0, we need to find f(0) and f ′(0). If f(x) =
sin(x), then f(0) = sin(0) = 0 and f ′(x) = cos(x) so f ′(0) = cos(0). Thus the
linearization is

L(x) = 0 + 1 · x = x.

Using this linearization, we obtain
x sin(x) L(x) L(x)− sin(x)

0.001 0.0009999998 0.001 1.67× 10−10

0.01 0.00999983 0.01 1.67× 10−7

0.05 0.04998 0.01 2.08× 10−5

0.1 0.099384 0.1 1.67× 10−4

0.2 0.19867 0.2 1.33× 10−3

100 -0.50637 100 100.51
As expected the linearization is pretty good near 0. It is interesting to note

that the error decreases very rapidly as we approach 0. It appears that the error in
approximating sin(x) is approximately x3. Why is this?



We give a few other uses of the linear approximation.

1. In studying the behavior of a pendulum, the angular displacement θ as a func-
tion of time satisfies the equation

θ′′ = −k2 sin(θ).

This is a difficult equation to solve and it is common to replace the term sin(θ)
on the right by the simpler term θ, the linearization of sin(θ). This gives the
equation

θ′′ = −k2θ

and it is easy to see that sin(kt) and cos(kt) are solutions. Observations suggest
that these functions have the right behavior and that the approximation is
useful, when θ is small.

2. In the examples below, we will use linearization to give an easy way to com-
pute approximate values of functions that cannot be computed by hand. Next
semester, we will look at ways of using higher degree polynomials to approxi-
mate a function.

3. In a week or two, we will use a linear approximation to help solve an equation
such as f(x) = 0.

1.3 Approximating the change in a function.

Since the linear approximation is only good near a point a, it often makes more sense
to to talk about the change in f . This if we are given a number a and a nearby
number x, we denote the change in f by

∆f = f(x)− f(a).

If we replace f by its linearization, L, then we obtain the linear approximation to the
change in f ,

f(x)− f(a) ≈ L(x)− L(a) = f ′(a)(x− a).

It is also common to use the notation ∆x = x−a for the change in x and the notation
∆f = f(x)− f(a) for the change in f .

We can use the linearization to estimate values functions such as
√

9.1. The point
is that we are near a value 9 where it is easy to compute the square root. While this
is not terribly useful when we have a calculator, it is good practice and good fun.

We will also compute the error and the percentage error. If a number a is an
approximation to the number A, then the error in approximating A is the absolute
value of the difference,

|a− A|.



The percentage error in the approximation of A by a is the quantity

100× |a− A|
|A|

.

Often the percentage error is more interesting. If the right answer is 9,000,000, it is
probably ok to have an error of 0.1. If the right answer is 0.0001, it is not so helpful
if we commit an error of 0.1. 1

Example. Let f(x) =
√

1 + 2x and use the linearization to approximate f(4.3).
Find the error in the approximation of f(4.3), the percentage error in the approx-

imation of f(4.3) and the percentage error in the approximation of f(4.3).

Solution. Note that it is easy to compute f(4) =
√

9 = 3. We compute the lineariza-
tion of f at 4. To do this we need f(4) and f ′(4). We have f(4) = 9 and we need to
find f ′(4).

We compute the derivative by the power rule and chain rule,

d

dx

√
1 + 2x =

d

dx
(1 + 2x)1/2

=
1

2
(1 + 2x)−1/22

=
1√

1 + 2x
.

Evaluating at x = 4, give f ′(4) = 1/3. Thus the linearization of f at 4 is

L(x) = f(4) + f ′(4)(x− 4) = 3 +
1

3
(x− 4).

To make the approximation we write

f(4.3) ≈ L(4.3) = f(4) +
1

3
0.3 = 3.1.

A calculator gives the more accurate approximation,

f(4.3) ≈ 3.0984.

The errors are

|f(4.3)− 3.1| ≈ 0.00161, 100%× |f(4.3)− 3.1|
|f(4.3)|

≈ 0.0521%.

Finally, the percentage error in f(4.3) is given by

100%× |f(4.3)− f(4)− f ′(4)(4.3− 4)|
|f(4.3)|

≈ 0.052%.

1Be careful on the homework. When computing the percentage error, be careful to use the right
denominator. Read the question.



Example. Suppose that we paint a sphere of diameter 1 meter with a layer of point
that is 0.2 mm thick. How much paint do we use? Use the linear approximation and
give your answer in cubic centimeters.

Solution. First note that since the diameter is one meter, the radius is 0.5 meter
and if we convert 0.2 mm to meters, we have 0.2 mm = 0.2× 10−3 m = 0.0002 m. If
V (r) is the volume of a sphere of radius, then the answer to the question is

V (0.5002)− V (0.5).

We recall that the volume of a sphere is V (r) = 43πr3, then the linearization at r = a
is

L(r) =
4

3
πa3 + 4πa2(r − a).

Thus we have

V (0.5002)− V (0.5) ≈ 4 π 0.52 0.0002 ≈ 6.28× 10−4m3.

Converting this to cubic centimeters gives about 62.8cm3 of paint.
There is a nice, simple interpretation of this answer. If you cover a surface with

a thin layer of paint, the volume of the layer is approximately the area of the surface
times the thickness of the layer. For a flat surface, this gives the exact answer. For
a curved surface, such as a sphere, this is only an approximation. The error tells us
something about the curvature of the surface. But that is a topic for another course.

We close with another reason to consider linear approximation. For a curve which
is given implicitly as the solution of an equation such as x2 + y3 = xy, it is difficult
to find points on the on the curve. If one can find one point on the curve, we can use
linear approximation to approximate nearby points.

Example. Suppose that a curve is given by the equation x2 + y3 = 2x2y. Verify
that the point (x, y) = (1, 1) lies on the curve. Assume that the curve is given by a
function y = y(x) for x near 1 and approximate y(1.2).

Solution. To verify that (x, y) = (1, 1) lies on the curve, we need to know that
13 + 12 = 2 · 12 · 1 which is true.

To find the linearization, we use that y(1) = 1 and find the derivative of y at
x = 1. Differentiating

(x2 + y3)′ = (2x2y)′

gives
2x+ 3y2y′ = 4y + 2x2y′.



Solving for y′ gives

y′ =
4y − 2x

3y2 − 2x2

and that y′(1) = 2. Thus the linearization of y is L(x) = 1+2(x−1) and L(1.2) ≈ 1.4.
Thus the point (1, 1.2) should be close to the curve.

If we substitute this point into the equation x2 + y3 = 2x2y, we find that 1.22 +
1.43 = 4.184 and 2 · 1.22 · 1.4 = 4.0320. As these values are close, we expect that
(1.2, 1.4) is close to a point on the curve.

We conclude with a function where this type of approximation is not as helpful.


