
1 Lecture 37 and 38: The fundamental theorems

of calculus.

• The fundamental theorems of calculus.

• Evaluating definite integrals.

• The indefinite integral-a new name for anti-derivative.

• Differentiating integrals.

Today we provide the connection between the two main ideas of the course. The
integral and the derivative.

Theorem 1 (FTC I) Suppose f is a continuous function on [a, b]. If F is an anti-
derivative of f , then ∫ b

a
f(t) dt = F (b)− F (a).

(FTC II) Assume f is continuous on an open interval I and a is in I. Then the
area function

A(x) =
∫ x

a
f(t) dt

is an anti-derivative of f and thus A′ = f .

Example. Compute
d

dx

∫ x

1

1

t
dt.

Compute ∫ 3

0
x3 dx.

Proof. An idea of the proofs.
FTC I: We let F be an anti-derivative of f and let P = {a = x0 < x1 < x2 <

. . . < xn = b}. We will express the change of F , F (b)− F (a), as a Riemann sum for
this partition. Letting the size of the largest interval in the partition tend to zero, we
obtain the integral is equal to the change in F .

We begin by writing

F (b)−F (a) = F (xn)−F (xn−1)+F (xn−1)−. . .+F (xi)−F (xi−1)+. . .+F (x1)−F (x0).

We recall that F is an anti-derivative of f and apply the mean value theorem on each
interval [xi−1, xi] and find a value ci so that F (xi)−F (xi−1) = f(ci)(xi−xi−1). Thus,
we have

F (b)− F (a) =
n∑
i=1

f(ci)(xi − xi−1).



Since the right-hand side is a Riemann sum for the integral, we may let the width of
the largest subinterval tend to zero and obtain

F (b)− F (a) =
∫ b

a
f(s) ds.

FTC II:
Write

A(x + h)− A(x)

h
=

1

h

∫ x+h

x
f(t) dt.

We will show

lim
h→0+

1

h

∫ x+h

x
f(t) dt = f(x).

The reader should write out a similar argument for the limit from the left.
If f is continuous, then f has maximum and minimum values Mh and mh on the

interval [x, x + h]. Using the order property of the integral,

mh ≤
1

h

∫ x+h

x
f(t) dt ≤Mh.

As h tends to 0, we have limh→0+ Mh = limh→0+ mh = f(x) since f is continuous. It
follows that

lim
h→0+

1

h

∫ x+h

x
f(t) dt = f(x).

1.1 Indefinite integrals.

We use the symbol ∫
f(x) dx

to denote the indefinite integral or anti-derivative of f .
The indefinite integral is a function. The definite integral is a number. According

FTC I, we can find the (numerical) value of a definite integral by evaluating the
indefinite integral at the endpoints of the integral. Since this procedure happens so
often, we have a special notation for this evaluation.

F (x)|bx=a = F (b)− F (a).

Example. Find
xa|bx=a and xa|ya=x

Solution.
ba− a2 xy − x2



According to FTC II, anti-derivatives exist provided f is continuous.
The box on page 351 should be memorized. (In fact, you should already have

memorized this information when we studied derivatives in Chapter 3 and when we
studied anti-derivatives in Chapter 4.)

Example. Verify ∫
x cos(x2) dx =

1

2
sin(x2).

Solution. According to the definition of anti-derivative, we need to see if

d

dx

1

2
sin(x2) = x cos(x2).

This holds, by the chain rule.

1.2 Computing integrals.

The main use of FTC I is to simplify the evaluation of integrals.
We give a few examples.

Example. a) Compute ∫ π

0
sin(x) dx.

b) Compute ∫ 4

1

2x2 + 1√
x

dx.

Solution. a) Since d
dx

(− cos(x)) = sin(x), we have − cos(x) is an anti-derivative of
sin(x). Using the second part of the fundamental theorem of calculus gives,∫ π

0
sin(x) dx = − cos(x)|πx=0 = 2.

b) We first find an anti-derivative. As the indefinite integral is linear, we write∫ 2x2 + 1√
x

dx =
∫

2x3/2 + x−1/2 dx = 2
∫
x3/2 dx +

∫
x−1/2 dx =

4

5
x5/2 + 2x1/2 + C.

With this anti-derivative, we may then use FTC I to find∫ 4

1

2x2 + 1√
x

dx =
4

5
x5/2 + 2x1/2

∣∣∣∣4
x=1

=
4

5
45/2 + 241/2 − (

4

5
+ 2)

= 128/5 + 20/5− (4/5 + 10/5)

= 134/5.



Example. Find ∫ √π
0

2x cos(x2) dx.

Solution. We recognize that sin(x2) is an anti-derivative of 2x cos(x2),∫
2x cos(x2) dx = sin(x2) + C.

Thus, ∫ √π
0

2x cos(x2) dx = sin(x2)
∣∣∣√π
x=0

= 0− 0.

Here, is a more involved example that illustrates the progress we have made.

Example. Find

lim
n→∞

1

n

n∑
k=1

sin(k/n).

Solution. We recognize that
1

n

n∑
k=1

sin(k/n)

is a Riemann sum for an integral. The points xk, k = 0, . . . , n divide the interval [0, 1]
into n equal sub-intervals of length 1/n. Thus, we may write the limit as an integral

lim
n→∞

1

n

n∑
k=1

sin(k/n) =
∫ 1

0
sin(x) dx.

To evaluate the resulting integral, we use FTC I. An anti-derivative of sin(x) is
− cos(x), thus ∫ 1

0
sin(x) dx = − cos(x)|1x=0 = 1− cos(1).

1.3 Differentiating integrals.

FTC II shows that any continuous function has an anti-derivative and can be used
to find the derivatives of integrals.

Example. Find

d

dx

∫ x

0
sin(t2) dt L′(x)if L(x) =

∫ x

1

1

t
dt

d

dx

∫ x

x2
sin(t2) dt

Is the function L(x) =
∫ x
1

1
t
dt increasing or decreasing? Is the graph of L concave

up or concave down?



Solution. The first one is a straightforward application of the second part of the
fundamental theorem. The function sin(x2) is continuous everywhere and thus we
have

d

dx

∫ x

0
sin(t2) dt = sin(x2).

The second one is also straightforward,

d

dx

∫ x

1

1

t
dt =

1

x
, x > 0.

Taking another derivative, we find that

d2

dx2

∫ x

1

1

t
dt = −1/x2.

Thus this function is concave down for x > 0.
Of course we can also use FTC I to see that

∫ x
1

1
t
dt = ln(x)− ln(1) and then apply

the differentiation rules to compute the derivative. Note that we could not use this
approach in the first example since we do not know an anti-derivative for sin(x2).

Finally, the third one requires us to use the properties of the integral to put it in
a form where we can use FTC II. We can write∫ x

x2
sin(t2) dt =

∫ 0

x2
sin(t2) dt +

∫ x

0
sin(t2) dt = −

∫ x2

0
sin(t2) dt +

∫ x

0
sin(t2) dt.

Now applying FTC II and using the chain rule for the first integral gives

d

dx
(−

∫ x2

0
sin(t2) dt +

∫ x

0
sin(t2) dt) = −2x sin(x4) + sin(x2).

Our second example shows that it is necessary to assume that f is continuous in
FTC II.

Example. Let f be the function given by

f(x) =

{
0, x < 2
1, x ≥ 2

Find F (x) =
∫ x
0 f(x) dx and determine where F is differentiable.

Solution. We have that the integral is given by

F (x) =

{
0, x < 2
(x− 2), x ≥ 0

It is pretty clear that F is differentiable everywhere except at 2. At 2, we can compute
the left and right limits of the difference quotient and find

lim
h→0−

F (2 + h)− F (2)

h
= 0 lim

h→0+

F (2 + h)− F (2)

h
= 1.

Thus F ′(2) does not exist.



1.4 The net change theorem

Since F is always an anti-derivative of F ′, one consequence of part I of the fundamental
theorem of calculus is that if F ′ is continuous on the interval [a, b], then∫ b

a
F ′(t) dt = F (b)− F (a).

This helps us to understand some common physical interpretations of the integral.

Example. An object falls with constant acceleration g, at t = 1 its height is h1 and
its velocity is v1. Find its position at all times.

Solution. By the net change theorem,

v(t)− v(1) =
∫ t

1
g ds = g(t− 1).

Thus v(t) = g(t−1) + v1. Applying the net change theorem again we have the height
at time time t, h(t) is

h(t)− h(1) =
∫ t

1
g(s− 1) + v1 ds =

1

2
g(s− 1)2|ts=1 + v1s|ts=1 =

1

2
g(t− 1)2 + v1(t− 1).

Thus

h(t) =
1

2
g(t− 1)2 + v1(t− 1) + h1.

Note this gives a different version of the equations for a falling object.
To give a less familiar example, suppose we have a rope whose thickness varies

along its length. Fix one end of the rope to measure from and let m(x) denote the
mass in kilograms of the rope from 0 to x meters along the rope. If we take the
derivative, dm

dx
= limh→0 (m(x + h)−m(x))/h, then this represents mass per unit

length (or linear density) of the rope near x and the units are kilograms/meter. If we
integrate this linear density and observe that m(0) = 0, then we recover the mass

m(x) =
∫ x

0

dm

dx
dx.

This is another example of the net change theorem.
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