1 Lecture 37 and 38: The fundamental theorems
of calculus.

The fundamental theorems of calculus.

Evaluating definite integrals.

The indefinite integral-a new name for anti-derivative.

Differentiating integrals.

Today we provide the connection between the two main ideas of the course. The
integral and the derivative.

Theorem 1 (FTC I) Suppose f is a continuous function on [a,b]. If F is an anti-
derivative of f, then

/abf(t) dt = F(b) — F(a).

(FTC II) Assume f is continuous on an open interval I and a is in 1. Then the
area function

Alz) = /axf(t) dt

is an anti-derivative of f and thus A’ = f.

d =1
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Ezxample. Compute

Compute

Proof. An idea of the proofs.

FTC I We let F' be an anti-derivative of f and let P = {a = 2o < 11 < 23 <
... < x, =0b}. We will express the change of F', F/(b) — F'(a), as a Riemann sum for
this partition. Letting the size of the largest interval in the partition tend to zero, we
obtain the integral is equal to the change in F'.

We begin by writing

Fb)—F(a) = F(xp)—F(xp_1)+F(rp1)—. . .+ F(z;) = F(x;-1)+. ..+ F(x1)— F(x9).

We recall that F' is an anti-derivative of f and apply the mean value theorem on each
interval [z;_1, x;] and find a value ¢; so that F(x;) — F(x;—1) = f(¢;)(2; —x;—1). Thus,

we have .

F(b) — F(a) =Y f(ei)(x; — zim1).

=1



Since the right-hand side is a Riemann sum for the integral, we may let the width of
the largest subinterval tend to zero and obtain

FTC II:
Write
Alx + h / £#)
h
We will show
x+h
dim o [ e = 7

The reader should write out a similar argument for the limit from the left.
If f is continuous, then f has maximum and minimum values M}, and m;, on the
interval [z, x + h]. Using the order property of the integral,

my, < — / t)dt < My,

As h tends to 0, we have limy, o+ M}, = limy,_,o+ my, = f(z) since f is continuous. It

follows that
hligh h / /().

1.1 Indefinite integrals.
We use the symbol

/f(a:) dx

to denote the indefinite integral or anti-derivative of f.

The indefinite integral is a function. The definite integral is a number. According
FTC I, we can find the (numerical) value of a definite integral by evaluating the
indefinite integral at the endpoints of the integral. Since this procedure happens so
often, we have a special notation for this evaluation.

F(z)[;_, = F(b) = F(a).

Ezrample. Find
b

Tr=a

Yy

and zall_,

zal

Solution.
ba — a* Ty — 2°



According to FTC 11, anti-derivatives exist provided f is continuous.

The box on page 351 should be memorized. (In fact, you should already have
memorized this information when we studied derivatives in Chapter 3 and when we
studied anti-derivatives in Chapter 4.)

Example. Verify

1
/xcos(xz) dx = 5 sin(z?).

Solution. According to the definition of anti-derivative, we need to see if

dl . 5 9
) sin(x®) = z cos(z”).

This holds, by the chain rule. 1

1.2 Computing integrals.

The main use of FTC I is to simplify the evaluation of integrals.
We give a few examples.

Ezample. a) Compute
/ sin(x) dz.
0

b) Compute

/4 222 +1 d
T.
1

Solution. a) Since Z-(—cos(z)) = sin(z), we have — cos(z) is an anti-derivative of

sin(z). Using the second part of the fundamental theorem of calculus gives,

/ "sin(z) dz = — cos(x)|T_, = 2.
0

b) We first find an anti-derivative. As the indefinite integral is linear, we write
222 4+ 1 4
v dr = /2273/2 + 27V = 2/x3/2d:v+/x_1/2dm = 2% 2212 4 C.
NG 5
With this anti-derivative, we may then use FTC I to find
4

2
/4 233 -+ 1 dx _ %{EE—’/Q 4 21.1/2
1 \/E 5

=1
4 4

_ 745/2 241/2 (= 2
5) + 5 +2)

= 128/5+420/5 — (4/5+ 10/5)
= 134/5.



Ezxample. Find
VT )
/ 2z cos(z?) dx.
0

Solution. We recognize that sin(z?) is an anti-derivative of 2z cos(z?),
/Qx cos(z?) dx = sin(z?) + C.

Thus,

v =0-0.
=0

Here, is a more involved example that illustrates the progress we have made.

Example. Find

Solution. 'We recognize that
1 n
— > sin(k/n)
[}

is a Riemann sum for an integral. The points 2y, k = 0,...,n divide the interval [0, 1]
into n equal sub-intervals of length 1/n. Thus, we may write the limit as an integral

n

lim ! > sin(k/n) = /01 sin(x) dx.

To evaluate the resulting integral, we use FTC I. An anti-derivative of sin(z) is
— cos(z), thus

[ sin(e) de = — cos(a)|Ly = 1~ cos(1).

1.3 Differentiating integrals.

FTC II shows that any continuous function has an anti-derivative and can be used
to find the derivatives of integrals.

Ezample. Find

- /0 sin(t2)dt  L'(2)if L(z) = /1 cat / sin(i?) dt
Is the function L(z) = [ } dt increasing or decreasing? Is the graph of L concave

t
up or concave down?



Solution. The first one is a straightforward application of the second part of the
fundamental theorem. The function sin(x?) is continuous everywhere and thus we
have

d T
%/0 sin(t?) dt = sin(z?).
The second one is also straightforward,

d (=1 1
7/ Sdt==, x>0
dr J1 t T

Taking another derivative, we find that
> =1
— [ Zdt=—-1/2%
dzx? /1 t /*
Thus this function is concave down for x > 0.

Of course we can also use FTC I to see that [{ 1 dt = In(z) —In(1) and then apply

the differentiation rules to compute the derivative. Note that we could not use this
approach in the first example since we do not know an anti-derivative for sin(z?).

Finally, the third one requires us to use the properties of the integral to put it in
a form where we can use FTC II. We can write

T 0 T x? T
/ sin(#?) dt = / sin(f) df + / sin(t?) dt = — / sin(t) dt + / sin(t?) d.
T T 0 0 0
Now applying FTC II and using the chain rule for the first integral gives
d x? T
—(—/ sin(t?) dt —i—/ sin(t?) dt) = —2x sin(x*) + sin(z?).
dz 0 0
1

Our second example shows that it is necessary to assume that f is continuous in
FTC IL

Example. Let f be the function given by
0, <2

R E
Find F(x) = [y f(z)dz and determine where F' is differentiable.

Y

Solution. We have that the integral is given by

0, <2
F(x):{(x—Q), x;()

It is pretty clear that F is differentiable everywhere except at 2. At 2, we can compute
the left and right limits of the difference quotient and find

L PR -F@) L F2+h) - F(@2)
h—0— h h—0t h
Thus F’(2) does not exist. 1

=1.




1.4 The net change theorem

Since F'is always an anti-derivative of F’, one consequence of part I of the fundamental
theorem of calculus is that if F” is continuous on the interval [a, b], then

b
/ F'(t)dt = F(b) — F(a).
This helps us to understand some common physical interpretations of the integral.

Example. An object falls with constant acceleration g, at ¢ = 1 its height is h; and
its velocity is v;. Find its position at all times.

Solution. By the net change theorem,

v(t) —v(l) = /ltgds =g(t—1).

Thus v(t) = g(t — 1) +v;. Applying the net change theorem again we have the height
at time time ¢, h(t) is

¢ 1 1
h(t) — h(1) = /1 g(s = 1) Fvrds = Sg(s — Dy + sl = 9t = 1)? vy (t —1).
1 2
ht) = S0t — 1P + vt = 1) + b,

Note this gives a different version of the equations for a falling object.

To give a less familiar example, suppose we have a rope whose thickness varies
along its length. Fix one end of the rope to measure from and let m(z) denote the
mass in kilograms of the rope from 0 to x meters along the rope. If we take the
derivative, ¥ = limy,_o (m(z + h) — m(x))/h, then this represents mass per unit
length (or linear density) of the rope near x and the units are kilograms/meter. If we

integrate this linear density and observe that m(0) = 0, then we recover the mass

= dm
m(z) = ; %dx.

This is another example of the net change theorem.
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