
1 Lecture 40: Exponential growth and decay

• A model for exponential growth and decay

• Fitting our solution to data, doubling time and half-life

• Example: Population growth

• Example: Carbon dating

1.1 A model for population growth

A simple model for a population is to assume that the rate of change of the population
is directly proportional to the total population. If y is the total population and b is
the birth rate or the fraction of the population that give birth each unit of time, then
the rate of change due to births is by. Similarly if d is the death rate, then dy is the
number of deaths per year. The rate of change of the population y with respect to
time is by − dy. We can express this using a derivative as

dy

dt
= ky (1)

where the constant k = b−d. Since y is positive, we have that y is increasing if k > 0
and y is decreasing if k < 0. It is easy to see that the family of functions y(t) = P0e

kt

are solutions of (1). Here, P0 is a constant and each choice of P0 gives a different
solution of (1). In fact, these are the only solutions.

Theorem 2 If y solves (1) on an interval I, then there is a constant P0 so that
y(t) = P0e

kt on I.

Proof. If we want to show y(t) = P0e
kt, then we expect that e−kty(t) is constant.

One way to show a function is constant is to show the derivative is zero. We consider
the function f(t) = e−kty(t) and differentiate f using the product rule,

f ′(t) = (−k)e−kty(t) + e−kty′(t) = −ke−kty + e−ktky = 0.

We have used (1) for the second equality. Since f ′ = 0 on an interval, f is constant.
If we call the constant P0, then we have f(t) = P0e

kt.

1.2 Model fitting

If a function y is given by y(t) = P0e
kt and k > 0 we say that y grows exponentially.

If k < 0, then we say that y decays exponentially. In this case we will often replace
k by −k and write y(t) = P0e

−kt. Thus the constant k is positive. Once we know
that we have exponential growth and decay, we need two additional bits of data to
determine the constant k and the value of P0. Note we have y(0) = P0 so P0 is the
initial value of y.



Example. Suppose that y obeys (1), y(1) = 2 and y(2) = 5. Find y(t).

Solution. We know that y(t) = P0e
kt. The given information tells us that

P0e
k = 2, P0e

2k = 5.

To find k, we may divide these equations and find

P0e
2k

P0ek
=

5

2
.

Taking the natural logarithm of both sides, we find k ln(e) = ln(5/2). Thus, y(t) =
P0e

t ln(5/2). Substiuting t = 1, we find P0e
ln(5/2) = 2 or P0 = 4/5. Summarizing,

y(t) =
4

5
et ln(5/2) =

4

5

(
5

2

)t

.

One of the important features of exponential growth is the existence of a time T
during which the population doubles, i.e. that y(t + T ) = 2y(t). To see that this
doubling property is independent of t, we consider

y(t + T )

y(t)
=

P0e
k(t+T )

P0ekt
= ekT .

Thus, to find the doubling time we need to solve ekT = 2 for T .

Example. If f(t) = 100e0.3t, find the doubling time.
Can you find the tripling time?

Solution. We have
f(t + T )

f(t)
= e0.3T .

We solve the equation e0.3T = 2 to find T = ln(2)/0.3.
The same argument gives that the tripling time is ln(3)/0.3.

In the case of exponential decay, the corresponding notion is half-life. This is the
time T so that y(t + T ) = 1

2
y(t).

1.3 Example: Exponential growth

Example. Suppose that a population grows at a rate of 3% per day. If the initial
population is 100, when will the population reach 1000. What is the doubling time?



Solution. Let y(t) denote the population at time t where t is measured in days. If
y(t) is the population at time t, we know that y′ = 0.03y and y(0) = 100. Thus,
y(t) = 100e0.03t. We are asked to find the time T when y(T ) = 1000. Thus we want
y(T ) = 100e0.03T = 1000. Thus we need e0.03T = 10 or T = ln(10)/0.03 ≈ 76.753
days.

To find the doubling time, we solve

100e0.03(t+T ) = 2 · 100e0.03t

for T to find e0.03T = 2 or T = ln(2)/0.03 ≈ 23.1 days.

1.4 Example: Carbon dating

The carbon in the atmosphere includes two isotopes C14 and C12 and the ratio of
these isotopes in living plants and animals is roughly the same as in the atmosphere.
When the organism dies, the C14 starts to decay. If R(t) represents the ratio of C14

to C12 at a time t years after the organism’s death, we find that R(t) = Rae
−kt where

Ra is ratio of C14 to C12 in the atmosphere. The half-life of C14 is approximately
5730 years.

Example. Suppose that in a sample of wood, the ratio of C14 to C12 is 23% of the
ratio in the atmosphere. How long ago was the wood in a living tree?

Solution. Let R(t) the ratio of C14 to C12 at a time t years after the tree dies. As
R(t) = Rae

−kt, we want to find the time T so that R(T ) = 0.23Ra.
Before we can do this, we need to find k. We use that the half-life is 5730 years to

find k. Since e−k5730 = 1
2
, we have that −k = ln(1/2)/5730 of k = ln(2)/5730 ≈ 1.21 ·

10−4. Thus, if e−kT = 0.23, we may solve for T and find that T = ln(0.23)/(−k) =
ln(0.23)5730/ ln(2) ≈ 12, 149 years.
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