1 Lecture 08: The squeeze theorem

- The squeeze theorem
- The limit of $\sin(x)/x$
- Related trig limits

1.1 The squeeze theorem

Example. Is the function g defined by

$$g(x) = \begin{cases} x^2 \sin(1/x), & x \neq 0\\ 0, & x = 0 \end{cases}$$

continuous?

Solution. If $x \neq 0$, then $\sin(1/x)$ is a composition of continuous function and thus $x^2 \sin(1/x)$ is a product of continuous function and hence continuous.

If x = 0, we need to have that $\lim_{x\to 0} g(x) = g(0) = 0$ in order for g to satisfy the definition of continuity. Recalling that $\sin(1/x)$ oscilates between $-1 \le x \le 1$, we have that

$$-x^2 \le g(x) \le x^2$$

and since $\lim_{x\to 0} x^2 = \lim_{x\to 0} -x^2 = 0$, the theorem below tells us we have $\lim_{x\to 0} g(x) = 0$.

Theorem 1 (The squeeze theorem) If f, g, and h are functions and for all x in an open interval containing c, but perhaps not at c, we have

$$f(x) \le g(x) \le h(x)$$

and

$$\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L_{x,x}$$

then

$$\lim_{x \to c} g(x) = L.$$

We will not give a proof but it should be intuitive that if g is trapped between two functions that approach the limit L, then g also approaches that limit.

Example. Suppose that for all real numbers x, we have

$$a \le f(x) \le 1 + x^2.$$

There is exactly one choice for a, c, and L so that

$$\lim_{x \to c} f(x) = L$$

Find a, c, and L.

Solution. For the squeeze theorem to apply, we need the graphs of y = 1 and $y = 1 + x^2$ to touch at one point. This means the equation $1 + x^2 = a$ will have exactly one solution. This will happen only if a = 1 and the solution is x = 0. Thus we have $1 \le f(x) \le 1 + x^2$ for all x and the squeeze theorem tells us that

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} 1 = \lim_{x \to 0} (1 + x^2) = 1.$$

1.2 The limit of $\sin(x)/x$

We consider the limit

$$\lim_{x \to 0} \frac{\sin(x)}{x}.$$

The quotient rule for limits does not apply since the limit of the denominator is 0. Unlike our previous limits, we cannot simplify to obtain a function where we can use the direct substitution rule or another rule. Instead, we will use the squeeze theorem.

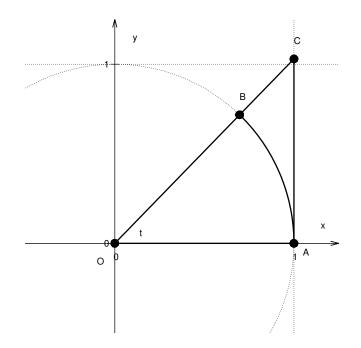
Theorem 2

$$\lim_{t \to 0} \frac{\sin(t)}{t}.$$

Proof. We start by observing that $\sin(-t)/(-t) = \sin(t)/t$, so it suffices to consider $\lim_{t\to 0^+} \sin(t)/t$.

In the figure below we draw an angle t with $0 < t < \pi/2$ and observe that we have the inequalities

Area triangle $OAB \leq$ Area sector $OAB \leq$ Area triangle OAC.



We have

Area triangle
$$OAB = \frac{1}{2}\sin(t)$$

Area sector $OAB = \frac{1}{2}t$
Area triangle $OAC = \frac{1}{2}\tan(t)$

Thus we have

$$\frac{1}{2}\sin(t) \le t/2 \le \frac{1}{2}\tan(t).$$

Since t > 0, we can rearrange to obtain

$$\cos(t) \le \frac{\sin(t)}{t} \le 1. \tag{3}$$

and since $\sin(-t)/(-t) = \sin(t)/t$, we also have (3) if $0 < |t| < \pi/2$. Since $\lim_{t\to 0} \cos(t) = 1$, the squeeze theorem implies

$$\lim_{t \to 0} \frac{\sin(t)}{t} = 1.$$

1.3 Some consequences

Using this limit, we can find several related limits.

The first one will be used in the next chapter.

Example. Find the limit

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x}.$$

Solution. We note that since the limit of the denominator is zero, we cannot use the quotient rule for limits. However, if we multiply and divide by $1 + \cos(x)$ and use the identity $\sin^2(x) + \cos^2(x) = 1$, we have

$$\frac{1 - \cos(x)}{x} = \frac{(1 - \cos(x))(1 + \cos(x))}{x(1 + \cos(x))} = \frac{\sin^2(x)}{x}.$$

Thus, we may use the rule for a limit of a product,

$$\lim_{x \to 0} \frac{1 - \cos(x)}{x} = \lim_{x \to 0} \frac{\sin^2(x)}{x} = \lim_{x \to 0} \sin(x) \lim_{x \to 0} \frac{\sin(x)}{x} = 0.$$

Below are a few more to try

1. $\lim_{t\to 0} \frac{\sin(2t)}{t}$ 2. $\lim_{t\to 0} \frac{\sin(2t)}{\sin(3t)}$ 3. $\lim_{t\to 0} \frac{1-\cos(t)}{t^2}$

Solution. To find the limit $\lim_{t\to 0} \sin(2t)/t$, we begin by multiplying and dividing by 2 to obtain

$$\frac{\sin(2t)}{t} = \frac{2\sin(2t)}{2t}.$$

Now if t is close to zero, then 2t will also be close to zero. Thus,

$$\lim_{t \to 0} \frac{\sin(2t)}{t} = \lim_{t \to 0} \frac{2\sin(2t)}{2t} = 2\lim_{u \to 0} \frac{\sin(u)}{u} = 2.$$

Example. Suppose that for all real numbers x, we have

$$a \le f(x) \le x^2 + 6x$$

There is exactly one value of a for which we can use the squeeze theorem to evaluate the limit

$$\lim_{x \to c} f(x) = L$$

Find a, c, and L.

Solution. In order for the squeeze theorem to apply, we need for the equation

$$x^2 + 6x = a$$
 or $x^2 + 6x - a = 0$

to have exactly one solution. From the quadratic formula the solutions are

$$\frac{-6 \pm \sqrt{36 + 4a}}{2}$$

This will give us one solution when the discriminant, 36 + 4a, is zero or if 36 + 4a = 0. Solving this question gives a = -9. We have the inequality $x^2 + 6x \ge -9$ for all x with equality only at x = -3. Since $\lim_{x\to -3} x^2 + 6x = \lim_{x\to -3} -9 = -9$, the squeeze theorem will imply that

$$\lim_{x \to -3} f(x) = -9.$$

September 13, 2015