
1 Lecture 40: Exponential growth and decay

• A model for exponential growth and decay

• Fitting our solution to data, doubling time and half-life

• Examples: Population growth, carbon dating, estimating time of death.

1.1 Warmup question

If f ′(x) = 2f(x), what is f?

1.2 A model for population growth

A simple model for a population is to assume that the rate of change of the population
is directly proportional to the total population. If y is the total population and b is
the birth rate or the fraction of the population that give birth each unit of time, then
the rate of change due to births is by. Similarly if d is the death rate, then dy is the
number of deaths per year. The rate of change of the population y with respect to
time is by − dy. We can express this using a derivative as

dy

dt
= ky (1)

where the constant k = b−d. Since y is positive, we have that y is increasing if k > 0
and y is decreasing if k < 0. It is easy to see that the family of functions y(t) = P0e

kt

are solutions of (1). Here, P0 is a constant and each choice of P0 gives a different
solution of (1). In fact, these are the only solutions.

Theorem 2 If y solves (1) on an interval I, then there is a constant P0 so that
y(t) = P0e

kt on I.

Proof. If we want to show y(t) = P0e
kt, then we expect that e−kty(t) is constant.

One way to show a function is constant is to show the derivative is zero. We consider
the function f(t) = e−kty(t) and differentiate f using the product rule,

f ′(t) = (−k)e−kty(t) + e−kty′(t) = −ke−kty + e−ktky = 0.

We have used (1) for the second equality. Since f ′ = 0 on an interval, f is constant.
If we call the constant P0, then we have f(t) = P0e

kt.



1.3 Model fitting

If a function y is given by y(t) = P0e
kt and k > 0 we say that y grows exponentially.

If k < 0, then we say that y decays exponentially. In this case we will often replace
k by −k and write y(t) = P0e

−kt. Thus the constant k is positive. Once we know
that we have exponential growth and decay, we need two additional bits of data to
determine the constant k and the value of P0. Note we have y(0) = P0 so P0 is the
initial value of y.

Example. Suppose that y obeys (1), y(1) = 2 and y(2) = 5. Find y(t).

Solution. We know that y(t) = P0e
kt. The given information tells us that

P0e
k = 2, P0e

2k = 5.

To find k, we may divide these equations and find

P0e
2k

P0ek
=

5

2
.

Taking the natural logarithm of both sides, we find k ln(e) = ln(5/2). Thus, y(t) =
P0e

t ln(5/2). Substiuting t = 1, we find P0e
ln(5/2) = 2 or P0 = 4/5. Summarizing,

y(t) =
4

5
et ln(5/2) =

4

5

(
5

2

)t

.

One of the important features of exponential growth is the existence of a time T
during which the population doubles, i.e. that y(t + T ) = 2y(t). To see that this
doubling property is independent of t, we consider

y(t + T )

y(t)
=

P0e
k(t+T )

P0ekt
= ekT .

Thus, to find the doubling time we need to solve ekT = 2 for T .

Example. If f(t) = 100e0.3t, find the doubling time.
Can you find the tripling time?

Solution. We have
f(t + T )

f(t)
= e0.3T .

We solve the equation e0.3T = 2 to find T = ln(2)/0.3.
The same argument gives that the tripling time is ln(3)/0.3.



In the case of exponential decay, the corresponding notion is half-life. This is the
time T so that y(t + T ) = 1

2
y(t).

1.4 Examples

Example. Suppose that a population grows at a rate of 3% per day. If the initial
population is 100, when will the population reach 1000. What is the doubling time?

Solution. Let y(t) denote the population at time t where t is measured in days. If
y(t) is the population at time t, we know that y′ = 0.03y and y(0) = 100. Thus,
y(t) = 100e0.03t. We are asked to find the time T when y(T ) = 1000. Thus we want
y(T ) = 100e0.03T = 1000. Thus we need e0.03T = 10 or T = ln(10)/0.03 ≈ 76.753
days.

To find the doubling time, we solve

100e0.03(t+T ) = 2 · 100e0.03t

for T to find e0.03T = 2 or T = ln(2)/0.03 ≈ 23.1 days.

The carbon in the atmosphere includes two isotopes C14 and C12 and the ratio of
these isotopes in living plants and animals is roughly the same as in the atmosphere.
When the organism dies, the C14 starts to decay. If R(t) represents the ratio of C14

to C12 at a time t years after the organism’s death, we find that R(t) = Rae
−kt where

Ra is ratio of C14 to C12 in the atmosphere. The half-life of C14 is approximately
5730 years.

Example. Suppose that in a sample of wood, the ratio of C14 to C12 is 23% of the
ratio in the atmosphere. How long ago was the wood in a living tree? You will need
to use that the half life of carbon 14 is about 5730 years.

Solution. Let R(t) the ratio of C14 to C12 at a time t years after the tree dies. As
R(t) = Rae

−kt, we want to find the time T so that R(T ) = 0.23Ra.
Before we can do this, we need to find k. We use that the half-life is 5730 years to

find k. Since e−k5730 = 1
2
, we have that −k = ln(1/2)/5730 of k = ln(2)/5730 ≈ 1.21 ·

10−4. Thus, if e−kT = 0.23, we may solve for T and find that T = ln(0.23)/(−k) =
ln(0.23)5730/ ln(2) ≈ 12, 149 years.

Finally, we give an example related to temperature.

Example. If we place a hot object whose temperature is Θ(t) in a room of temper-
ature T , the object’s temperature will fall and approach T . Newton’s law of cooling



tells that the rate of change of the temperature is proportional to the difference be-
tween the object’s temperature and the room’s temperature. This can be expressed
using the derivative by

dΘ

dt
= −k(Θ − T )

where k > 0 is a constant. This example indicates that this law can be used to
estimate time of death.

A body is found in a room at 12noon and its temperature is 34◦ C. One hour
later, the temperature is 29◦ C. The temperature of the room is 25 ◦ C. Estimate the
time of death.

Solution. To answer this question, we need to know that the normal temperature of
a human is 37◦ C.

We take t = 0 to be 12 noon and measure time in hours. We let y(t) = Θ(t)−T and
note that Newton’s law of cooling tells us that y′ = −ky. We know that y(0) = 34−25
and thus y(t) = 9e−kt. Since we are given that y(1) = 4, we can solve the equation
9e−k = 4 to obtain that k = ln(9/4). Finally, to answer the question, we want to
find the time when y(t) = 12. Thus we need to solve 9e−kt = 12 for t and obtain
that 3/4 = ekt or t = ln(3/4)/k ≈ −0.35476. This means that the time of death was
approximately 21 minutes before 12 noon or 11:39 am.

Example. Perform calculations to check the conclusion in the following short article.



Solution. We suppose that the growth is exponential and thus the number of pages
in a calculus text book are modelled by P (t) = 202ekt where t is the number of years
after 1716. To find k, we use one of the entries on the table. For example if we use
the information about Stewart’s Calculus book, we have

P (295) = 202ek295 = 1368

since 2011−1716 = 295. Solving the displayed equation for k gives k = ln(1368/202)/295 ≈
0.0064842.

To find when the size of a text book reaches 2000 pages, we need to solve

202ekT = 2000.

The solution is T = log(2000/202)/k ≈ 354 years after 1716. Thus, we can expect
our calculus textbook to reach 2000 pages in 1716 + 354 = 2070.

Note that our answer differs from that given in the article. A more careful ap-
proach would try to find a way to use all of the given data, rather than just one line
of the table. Presumably this is how the author arrived at the answer of 2090.
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