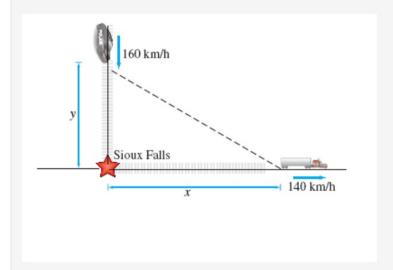

B3.1 #6

Find f(3) and f'(3), assuming that the tangent line to y = f(x) at x = 3 has equation y = 6 x + 2.

The following is a graph of the function $f(x)=e^x-5x\,$:

Sketch the graph of f'(x).


If
$$f(x)=10\sin^2(x)$$
 then $f'(x)=$

Given the following functions: $f(x) = \cos(x)$ and $g(x) = x^7 + 1$. Find:

$$rac{d}{dx}\,f(g(x))=$$

B3.11 #10

A police car is traveling south on Hwy 43 toward Sioux City at $180\,$ km/h and a truck is traveling east away from Sioux City, IA, at $120\,$ km/h (See figure below).

At time $t_0=0$, the police car is $50\,$ km north and the truck is $30\,$ km east of Sioux Falls.

Calculate the rate at which the distance between the vehicles is changing after $10\,$ minutes.

(Use decimal notation. Give your answer to three decimal places.)

The rate of change of the distance between the vehicles is

C4.4 #8

Find the critical points of f(x) and use the Second Derivative Test (if possible) to determine whether each corresponds to a local minimum or maximum. Let

$$f(x)=xe^{-x^2}$$

Note: The function \exp is another name for exponential function with base e. Thus, $\exp(t)=e^t$.

You must enter your critical points in ascending order.

Critical Point 1 =		is what by the Second Derivative
Test ? ?		
Critical Point 2 =		is what by the Second Derivative
Test ? ?		

C4.7 #2

Find a positive number x such that the sum of $25x$ and $\frac{1}{x}$ is as small as possible.
x =
Does this problem require optimization over an open interval or a closed interval?
A. open B. closed

C4.9 #9

Evaluate this indefinite integral.

$$\int \frac{3}{5} \sin(x) - \frac{1}{4} \cos(x) \ dx =$$